Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 07 Dec 2016 12:59:56 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481112059cha5r9oqp3rcnt4.htm/, Retrieved Fri, 01 Nov 2024 03:34:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298019, Retrieved Fri, 01 Nov 2024 03:34:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact84
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [classic] [2016-12-07 11:59:56] [d42b2dfaed369a60e2334709a5cede2f] [Current]
Feedback Forum

Post a new message
Dataseries X:
1800
2000
2200
2250
2400
2350
2350
2250
2250
2200
2150
2150
1900
2050
2100
2100
1900
1950
1900
1950
2000
2050
1900
2050
1750
1950
2250
2150
2250
2500
2250
2300
2550
2550
2600
2900
2400
2750
3300
3200
3150
3200
3200
3250
3600
3550
3600
3600
3300
3650
4200
3900
3950
4200
4300
4350
4650
4650
4450
4750
4300
4600
5350
4750
4900
4700
4500
4700
4700
4350
4400
4450
4050
4700
5050
4750
4800
4900
5000
5050
5400
5400
5350
5600
5200
6000
6650
6050
6050
6400
6400
6100
7050
6450
6250
6600
6000
6600
7400
6650
6250
6650




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298019&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298019&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298019&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
11800NANA-399.445NA
22000NANA-46.4689NA
32200NANA359.186NA
42250NANA19.6026NA
52400NANA-15.8141NA
62350NANA54.7216NA
723502184.782200-15.2189165.219
822502151.452206.25-54.802298.5522
922502379.572204.17175.406-129.573
1022002194.162193.750.4061265.84387
1121502061.62166.67-105.06388.396
1221502156.662129.1727.4895-6.65613
1319001694.32093.75-399.445205.695
1420502016.032062.5-46.468933.9689
1521002398.772039.58359.186-298.769
1621002042.522022.9219.602657.4808
1719001990.442006.25-15.8141-90.4359
1819502046.391991.6754.7216-96.3883
1919001966.031981.25-15.2189-66.0311
2019501916.031970.83-54.802233.9689
2120002148.321972.92175.406-148.323
2220501981.661981.250.40612668.3439
2319001892.851997.92-105.0637.14596
2420502062.912035.4227.4895-12.9061
2517501673.472072.92-399.44576.5284
2619502055.612102.08-46.4689-105.614
2722502498.772139.58359.186-248.769
2821502202.942183.3319.6026-52.9359
2922502217.522233.33-15.814132.4808
3025002352.642297.9254.7216147.362
3122502345.22360.42-15.2189-95.1978
3223002366.032420.83-54.8022-66.0311
3325502673.322497.92175.406-123.323
3425502585.822585.420.406126-35.8228
3526002561.62666.67-105.06338.396
3629002760.822733.3327.4895139.177
3724002402.642802.08-399.445-2.63827
3827502834.782881.25-46.4689-84.7811
3933003323.772964.58359.186-23.7692
4032003069.6305019.6026130.397
4131503117.523133.33-15.814132.4808
4232003258.893204.1754.7216-58.8883
4332003255.613270.83-15.2189-55.6145
4432503291.033345.83-54.8022-41.0311
4536003596.243420.83175.4063.76054
4635503487.913487.50.40612662.0939
4736003444.943550-105.063155.063
4836003652.49362527.4895-52.4895
4933003313.053712.5-399.445-13.0549
5036503757.73804.17-46.4689-107.698
5142004252.943893.75359.186-52.9359
5239004002.943983.3319.6026-102.936
5339504048.774064.58-15.8141-98.7692
5442004202.644147.9254.7216-2.63827
5543004222.284237.5-15.218977.7189
5643504263.954318.75-54.802286.0522
5746504581.664406.25175.40668.3439
5846504489.994489.580.406126160.011
5944504459.524564.58-105.063-9.52071
6047504652.49462527.489597.5105
6143004254.724654.17-399.44545.2784
6246004630.614677.08-46.4689-30.6145
6353505052.944693.75359.186297.064
6447504702.944683.3319.602647.0641
6549004652.944668.75-15.8141247.064
6647004708.894654.1754.7216-8.88827
6745004616.034631.25-15.2189-116.031
6847004570.24625-54.8022129.802
6947004792.074616.67175.406-92.0728
7043504604.574604.170.406126-254.573
7144004494.944600-105.063-94.9374
7244504631.664604.1727.4895-181.656
7340504233.894633.33-399.445-183.888
7447004622.284668.75-46.468977.7189
7550505071.694712.5359.186-21.6859
7647504805.024785.4219.6026-55.0192
7748004852.944868.75-15.8141-52.9359
7849005010.974956.2554.7216-110.972
7950005036.865052.08-15.2189-36.8645
8050505099.365154.17-54.8022-49.3645
8154005450.415275175.406-50.4061
8254005396.245395.830.4061263.76054
8353505397.025502.08-105.063-47.0207
8456005644.165616.6727.4895-44.1561
8552005338.055737.5-399.445-138.055
8660005793.115839.58-46.4689206.886
8766506311.275952.08359.186338.731
8860506084.196064.5819.6026-34.1859
8960506130.026145.83-15.8141-80.0192
9064006279.72622554.7216120.278
9164006284.786300-15.2189115.219
9261006303.536358.33-54.8022-203.531
9370506589.996414.58175.406460.011
9464506471.246470.830.406126-21.2395
9562506399.16504.17-105.063-149.104
9666006550.416522.9227.489549.5939
976000NANA-399.445NA
986600NANA-46.4689NA
997400NANA359.186NA
1006650NANA19.6026NA
1016250NANA-15.8141NA
1026650NANA54.7216NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 1800 & NA & NA & -399.445 & NA \tabularnewline
2 & 2000 & NA & NA & -46.4689 & NA \tabularnewline
3 & 2200 & NA & NA & 359.186 & NA \tabularnewline
4 & 2250 & NA & NA & 19.6026 & NA \tabularnewline
5 & 2400 & NA & NA & -15.8141 & NA \tabularnewline
6 & 2350 & NA & NA & 54.7216 & NA \tabularnewline
7 & 2350 & 2184.78 & 2200 & -15.2189 & 165.219 \tabularnewline
8 & 2250 & 2151.45 & 2206.25 & -54.8022 & 98.5522 \tabularnewline
9 & 2250 & 2379.57 & 2204.17 & 175.406 & -129.573 \tabularnewline
10 & 2200 & 2194.16 & 2193.75 & 0.406126 & 5.84387 \tabularnewline
11 & 2150 & 2061.6 & 2166.67 & -105.063 & 88.396 \tabularnewline
12 & 2150 & 2156.66 & 2129.17 & 27.4895 & -6.65613 \tabularnewline
13 & 1900 & 1694.3 & 2093.75 & -399.445 & 205.695 \tabularnewline
14 & 2050 & 2016.03 & 2062.5 & -46.4689 & 33.9689 \tabularnewline
15 & 2100 & 2398.77 & 2039.58 & 359.186 & -298.769 \tabularnewline
16 & 2100 & 2042.52 & 2022.92 & 19.6026 & 57.4808 \tabularnewline
17 & 1900 & 1990.44 & 2006.25 & -15.8141 & -90.4359 \tabularnewline
18 & 1950 & 2046.39 & 1991.67 & 54.7216 & -96.3883 \tabularnewline
19 & 1900 & 1966.03 & 1981.25 & -15.2189 & -66.0311 \tabularnewline
20 & 1950 & 1916.03 & 1970.83 & -54.8022 & 33.9689 \tabularnewline
21 & 2000 & 2148.32 & 1972.92 & 175.406 & -148.323 \tabularnewline
22 & 2050 & 1981.66 & 1981.25 & 0.406126 & 68.3439 \tabularnewline
23 & 1900 & 1892.85 & 1997.92 & -105.063 & 7.14596 \tabularnewline
24 & 2050 & 2062.91 & 2035.42 & 27.4895 & -12.9061 \tabularnewline
25 & 1750 & 1673.47 & 2072.92 & -399.445 & 76.5284 \tabularnewline
26 & 1950 & 2055.61 & 2102.08 & -46.4689 & -105.614 \tabularnewline
27 & 2250 & 2498.77 & 2139.58 & 359.186 & -248.769 \tabularnewline
28 & 2150 & 2202.94 & 2183.33 & 19.6026 & -52.9359 \tabularnewline
29 & 2250 & 2217.52 & 2233.33 & -15.8141 & 32.4808 \tabularnewline
30 & 2500 & 2352.64 & 2297.92 & 54.7216 & 147.362 \tabularnewline
31 & 2250 & 2345.2 & 2360.42 & -15.2189 & -95.1978 \tabularnewline
32 & 2300 & 2366.03 & 2420.83 & -54.8022 & -66.0311 \tabularnewline
33 & 2550 & 2673.32 & 2497.92 & 175.406 & -123.323 \tabularnewline
34 & 2550 & 2585.82 & 2585.42 & 0.406126 & -35.8228 \tabularnewline
35 & 2600 & 2561.6 & 2666.67 & -105.063 & 38.396 \tabularnewline
36 & 2900 & 2760.82 & 2733.33 & 27.4895 & 139.177 \tabularnewline
37 & 2400 & 2402.64 & 2802.08 & -399.445 & -2.63827 \tabularnewline
38 & 2750 & 2834.78 & 2881.25 & -46.4689 & -84.7811 \tabularnewline
39 & 3300 & 3323.77 & 2964.58 & 359.186 & -23.7692 \tabularnewline
40 & 3200 & 3069.6 & 3050 & 19.6026 & 130.397 \tabularnewline
41 & 3150 & 3117.52 & 3133.33 & -15.8141 & 32.4808 \tabularnewline
42 & 3200 & 3258.89 & 3204.17 & 54.7216 & -58.8883 \tabularnewline
43 & 3200 & 3255.61 & 3270.83 & -15.2189 & -55.6145 \tabularnewline
44 & 3250 & 3291.03 & 3345.83 & -54.8022 & -41.0311 \tabularnewline
45 & 3600 & 3596.24 & 3420.83 & 175.406 & 3.76054 \tabularnewline
46 & 3550 & 3487.91 & 3487.5 & 0.406126 & 62.0939 \tabularnewline
47 & 3600 & 3444.94 & 3550 & -105.063 & 155.063 \tabularnewline
48 & 3600 & 3652.49 & 3625 & 27.4895 & -52.4895 \tabularnewline
49 & 3300 & 3313.05 & 3712.5 & -399.445 & -13.0549 \tabularnewline
50 & 3650 & 3757.7 & 3804.17 & -46.4689 & -107.698 \tabularnewline
51 & 4200 & 4252.94 & 3893.75 & 359.186 & -52.9359 \tabularnewline
52 & 3900 & 4002.94 & 3983.33 & 19.6026 & -102.936 \tabularnewline
53 & 3950 & 4048.77 & 4064.58 & -15.8141 & -98.7692 \tabularnewline
54 & 4200 & 4202.64 & 4147.92 & 54.7216 & -2.63827 \tabularnewline
55 & 4300 & 4222.28 & 4237.5 & -15.2189 & 77.7189 \tabularnewline
56 & 4350 & 4263.95 & 4318.75 & -54.8022 & 86.0522 \tabularnewline
57 & 4650 & 4581.66 & 4406.25 & 175.406 & 68.3439 \tabularnewline
58 & 4650 & 4489.99 & 4489.58 & 0.406126 & 160.011 \tabularnewline
59 & 4450 & 4459.52 & 4564.58 & -105.063 & -9.52071 \tabularnewline
60 & 4750 & 4652.49 & 4625 & 27.4895 & 97.5105 \tabularnewline
61 & 4300 & 4254.72 & 4654.17 & -399.445 & 45.2784 \tabularnewline
62 & 4600 & 4630.61 & 4677.08 & -46.4689 & -30.6145 \tabularnewline
63 & 5350 & 5052.94 & 4693.75 & 359.186 & 297.064 \tabularnewline
64 & 4750 & 4702.94 & 4683.33 & 19.6026 & 47.0641 \tabularnewline
65 & 4900 & 4652.94 & 4668.75 & -15.8141 & 247.064 \tabularnewline
66 & 4700 & 4708.89 & 4654.17 & 54.7216 & -8.88827 \tabularnewline
67 & 4500 & 4616.03 & 4631.25 & -15.2189 & -116.031 \tabularnewline
68 & 4700 & 4570.2 & 4625 & -54.8022 & 129.802 \tabularnewline
69 & 4700 & 4792.07 & 4616.67 & 175.406 & -92.0728 \tabularnewline
70 & 4350 & 4604.57 & 4604.17 & 0.406126 & -254.573 \tabularnewline
71 & 4400 & 4494.94 & 4600 & -105.063 & -94.9374 \tabularnewline
72 & 4450 & 4631.66 & 4604.17 & 27.4895 & -181.656 \tabularnewline
73 & 4050 & 4233.89 & 4633.33 & -399.445 & -183.888 \tabularnewline
74 & 4700 & 4622.28 & 4668.75 & -46.4689 & 77.7189 \tabularnewline
75 & 5050 & 5071.69 & 4712.5 & 359.186 & -21.6859 \tabularnewline
76 & 4750 & 4805.02 & 4785.42 & 19.6026 & -55.0192 \tabularnewline
77 & 4800 & 4852.94 & 4868.75 & -15.8141 & -52.9359 \tabularnewline
78 & 4900 & 5010.97 & 4956.25 & 54.7216 & -110.972 \tabularnewline
79 & 5000 & 5036.86 & 5052.08 & -15.2189 & -36.8645 \tabularnewline
80 & 5050 & 5099.36 & 5154.17 & -54.8022 & -49.3645 \tabularnewline
81 & 5400 & 5450.41 & 5275 & 175.406 & -50.4061 \tabularnewline
82 & 5400 & 5396.24 & 5395.83 & 0.406126 & 3.76054 \tabularnewline
83 & 5350 & 5397.02 & 5502.08 & -105.063 & -47.0207 \tabularnewline
84 & 5600 & 5644.16 & 5616.67 & 27.4895 & -44.1561 \tabularnewline
85 & 5200 & 5338.05 & 5737.5 & -399.445 & -138.055 \tabularnewline
86 & 6000 & 5793.11 & 5839.58 & -46.4689 & 206.886 \tabularnewline
87 & 6650 & 6311.27 & 5952.08 & 359.186 & 338.731 \tabularnewline
88 & 6050 & 6084.19 & 6064.58 & 19.6026 & -34.1859 \tabularnewline
89 & 6050 & 6130.02 & 6145.83 & -15.8141 & -80.0192 \tabularnewline
90 & 6400 & 6279.72 & 6225 & 54.7216 & 120.278 \tabularnewline
91 & 6400 & 6284.78 & 6300 & -15.2189 & 115.219 \tabularnewline
92 & 6100 & 6303.53 & 6358.33 & -54.8022 & -203.531 \tabularnewline
93 & 7050 & 6589.99 & 6414.58 & 175.406 & 460.011 \tabularnewline
94 & 6450 & 6471.24 & 6470.83 & 0.406126 & -21.2395 \tabularnewline
95 & 6250 & 6399.1 & 6504.17 & -105.063 & -149.104 \tabularnewline
96 & 6600 & 6550.41 & 6522.92 & 27.4895 & 49.5939 \tabularnewline
97 & 6000 & NA & NA & -399.445 & NA \tabularnewline
98 & 6600 & NA & NA & -46.4689 & NA \tabularnewline
99 & 7400 & NA & NA & 359.186 & NA \tabularnewline
100 & 6650 & NA & NA & 19.6026 & NA \tabularnewline
101 & 6250 & NA & NA & -15.8141 & NA \tabularnewline
102 & 6650 & NA & NA & 54.7216 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298019&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]1800[/C][C]NA[/C][C]NA[/C][C]-399.445[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]2000[/C][C]NA[/C][C]NA[/C][C]-46.4689[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]2200[/C][C]NA[/C][C]NA[/C][C]359.186[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]2250[/C][C]NA[/C][C]NA[/C][C]19.6026[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]2400[/C][C]NA[/C][C]NA[/C][C]-15.8141[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]2350[/C][C]NA[/C][C]NA[/C][C]54.7216[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]2350[/C][C]2184.78[/C][C]2200[/C][C]-15.2189[/C][C]165.219[/C][/ROW]
[ROW][C]8[/C][C]2250[/C][C]2151.45[/C][C]2206.25[/C][C]-54.8022[/C][C]98.5522[/C][/ROW]
[ROW][C]9[/C][C]2250[/C][C]2379.57[/C][C]2204.17[/C][C]175.406[/C][C]-129.573[/C][/ROW]
[ROW][C]10[/C][C]2200[/C][C]2194.16[/C][C]2193.75[/C][C]0.406126[/C][C]5.84387[/C][/ROW]
[ROW][C]11[/C][C]2150[/C][C]2061.6[/C][C]2166.67[/C][C]-105.063[/C][C]88.396[/C][/ROW]
[ROW][C]12[/C][C]2150[/C][C]2156.66[/C][C]2129.17[/C][C]27.4895[/C][C]-6.65613[/C][/ROW]
[ROW][C]13[/C][C]1900[/C][C]1694.3[/C][C]2093.75[/C][C]-399.445[/C][C]205.695[/C][/ROW]
[ROW][C]14[/C][C]2050[/C][C]2016.03[/C][C]2062.5[/C][C]-46.4689[/C][C]33.9689[/C][/ROW]
[ROW][C]15[/C][C]2100[/C][C]2398.77[/C][C]2039.58[/C][C]359.186[/C][C]-298.769[/C][/ROW]
[ROW][C]16[/C][C]2100[/C][C]2042.52[/C][C]2022.92[/C][C]19.6026[/C][C]57.4808[/C][/ROW]
[ROW][C]17[/C][C]1900[/C][C]1990.44[/C][C]2006.25[/C][C]-15.8141[/C][C]-90.4359[/C][/ROW]
[ROW][C]18[/C][C]1950[/C][C]2046.39[/C][C]1991.67[/C][C]54.7216[/C][C]-96.3883[/C][/ROW]
[ROW][C]19[/C][C]1900[/C][C]1966.03[/C][C]1981.25[/C][C]-15.2189[/C][C]-66.0311[/C][/ROW]
[ROW][C]20[/C][C]1950[/C][C]1916.03[/C][C]1970.83[/C][C]-54.8022[/C][C]33.9689[/C][/ROW]
[ROW][C]21[/C][C]2000[/C][C]2148.32[/C][C]1972.92[/C][C]175.406[/C][C]-148.323[/C][/ROW]
[ROW][C]22[/C][C]2050[/C][C]1981.66[/C][C]1981.25[/C][C]0.406126[/C][C]68.3439[/C][/ROW]
[ROW][C]23[/C][C]1900[/C][C]1892.85[/C][C]1997.92[/C][C]-105.063[/C][C]7.14596[/C][/ROW]
[ROW][C]24[/C][C]2050[/C][C]2062.91[/C][C]2035.42[/C][C]27.4895[/C][C]-12.9061[/C][/ROW]
[ROW][C]25[/C][C]1750[/C][C]1673.47[/C][C]2072.92[/C][C]-399.445[/C][C]76.5284[/C][/ROW]
[ROW][C]26[/C][C]1950[/C][C]2055.61[/C][C]2102.08[/C][C]-46.4689[/C][C]-105.614[/C][/ROW]
[ROW][C]27[/C][C]2250[/C][C]2498.77[/C][C]2139.58[/C][C]359.186[/C][C]-248.769[/C][/ROW]
[ROW][C]28[/C][C]2150[/C][C]2202.94[/C][C]2183.33[/C][C]19.6026[/C][C]-52.9359[/C][/ROW]
[ROW][C]29[/C][C]2250[/C][C]2217.52[/C][C]2233.33[/C][C]-15.8141[/C][C]32.4808[/C][/ROW]
[ROW][C]30[/C][C]2500[/C][C]2352.64[/C][C]2297.92[/C][C]54.7216[/C][C]147.362[/C][/ROW]
[ROW][C]31[/C][C]2250[/C][C]2345.2[/C][C]2360.42[/C][C]-15.2189[/C][C]-95.1978[/C][/ROW]
[ROW][C]32[/C][C]2300[/C][C]2366.03[/C][C]2420.83[/C][C]-54.8022[/C][C]-66.0311[/C][/ROW]
[ROW][C]33[/C][C]2550[/C][C]2673.32[/C][C]2497.92[/C][C]175.406[/C][C]-123.323[/C][/ROW]
[ROW][C]34[/C][C]2550[/C][C]2585.82[/C][C]2585.42[/C][C]0.406126[/C][C]-35.8228[/C][/ROW]
[ROW][C]35[/C][C]2600[/C][C]2561.6[/C][C]2666.67[/C][C]-105.063[/C][C]38.396[/C][/ROW]
[ROW][C]36[/C][C]2900[/C][C]2760.82[/C][C]2733.33[/C][C]27.4895[/C][C]139.177[/C][/ROW]
[ROW][C]37[/C][C]2400[/C][C]2402.64[/C][C]2802.08[/C][C]-399.445[/C][C]-2.63827[/C][/ROW]
[ROW][C]38[/C][C]2750[/C][C]2834.78[/C][C]2881.25[/C][C]-46.4689[/C][C]-84.7811[/C][/ROW]
[ROW][C]39[/C][C]3300[/C][C]3323.77[/C][C]2964.58[/C][C]359.186[/C][C]-23.7692[/C][/ROW]
[ROW][C]40[/C][C]3200[/C][C]3069.6[/C][C]3050[/C][C]19.6026[/C][C]130.397[/C][/ROW]
[ROW][C]41[/C][C]3150[/C][C]3117.52[/C][C]3133.33[/C][C]-15.8141[/C][C]32.4808[/C][/ROW]
[ROW][C]42[/C][C]3200[/C][C]3258.89[/C][C]3204.17[/C][C]54.7216[/C][C]-58.8883[/C][/ROW]
[ROW][C]43[/C][C]3200[/C][C]3255.61[/C][C]3270.83[/C][C]-15.2189[/C][C]-55.6145[/C][/ROW]
[ROW][C]44[/C][C]3250[/C][C]3291.03[/C][C]3345.83[/C][C]-54.8022[/C][C]-41.0311[/C][/ROW]
[ROW][C]45[/C][C]3600[/C][C]3596.24[/C][C]3420.83[/C][C]175.406[/C][C]3.76054[/C][/ROW]
[ROW][C]46[/C][C]3550[/C][C]3487.91[/C][C]3487.5[/C][C]0.406126[/C][C]62.0939[/C][/ROW]
[ROW][C]47[/C][C]3600[/C][C]3444.94[/C][C]3550[/C][C]-105.063[/C][C]155.063[/C][/ROW]
[ROW][C]48[/C][C]3600[/C][C]3652.49[/C][C]3625[/C][C]27.4895[/C][C]-52.4895[/C][/ROW]
[ROW][C]49[/C][C]3300[/C][C]3313.05[/C][C]3712.5[/C][C]-399.445[/C][C]-13.0549[/C][/ROW]
[ROW][C]50[/C][C]3650[/C][C]3757.7[/C][C]3804.17[/C][C]-46.4689[/C][C]-107.698[/C][/ROW]
[ROW][C]51[/C][C]4200[/C][C]4252.94[/C][C]3893.75[/C][C]359.186[/C][C]-52.9359[/C][/ROW]
[ROW][C]52[/C][C]3900[/C][C]4002.94[/C][C]3983.33[/C][C]19.6026[/C][C]-102.936[/C][/ROW]
[ROW][C]53[/C][C]3950[/C][C]4048.77[/C][C]4064.58[/C][C]-15.8141[/C][C]-98.7692[/C][/ROW]
[ROW][C]54[/C][C]4200[/C][C]4202.64[/C][C]4147.92[/C][C]54.7216[/C][C]-2.63827[/C][/ROW]
[ROW][C]55[/C][C]4300[/C][C]4222.28[/C][C]4237.5[/C][C]-15.2189[/C][C]77.7189[/C][/ROW]
[ROW][C]56[/C][C]4350[/C][C]4263.95[/C][C]4318.75[/C][C]-54.8022[/C][C]86.0522[/C][/ROW]
[ROW][C]57[/C][C]4650[/C][C]4581.66[/C][C]4406.25[/C][C]175.406[/C][C]68.3439[/C][/ROW]
[ROW][C]58[/C][C]4650[/C][C]4489.99[/C][C]4489.58[/C][C]0.406126[/C][C]160.011[/C][/ROW]
[ROW][C]59[/C][C]4450[/C][C]4459.52[/C][C]4564.58[/C][C]-105.063[/C][C]-9.52071[/C][/ROW]
[ROW][C]60[/C][C]4750[/C][C]4652.49[/C][C]4625[/C][C]27.4895[/C][C]97.5105[/C][/ROW]
[ROW][C]61[/C][C]4300[/C][C]4254.72[/C][C]4654.17[/C][C]-399.445[/C][C]45.2784[/C][/ROW]
[ROW][C]62[/C][C]4600[/C][C]4630.61[/C][C]4677.08[/C][C]-46.4689[/C][C]-30.6145[/C][/ROW]
[ROW][C]63[/C][C]5350[/C][C]5052.94[/C][C]4693.75[/C][C]359.186[/C][C]297.064[/C][/ROW]
[ROW][C]64[/C][C]4750[/C][C]4702.94[/C][C]4683.33[/C][C]19.6026[/C][C]47.0641[/C][/ROW]
[ROW][C]65[/C][C]4900[/C][C]4652.94[/C][C]4668.75[/C][C]-15.8141[/C][C]247.064[/C][/ROW]
[ROW][C]66[/C][C]4700[/C][C]4708.89[/C][C]4654.17[/C][C]54.7216[/C][C]-8.88827[/C][/ROW]
[ROW][C]67[/C][C]4500[/C][C]4616.03[/C][C]4631.25[/C][C]-15.2189[/C][C]-116.031[/C][/ROW]
[ROW][C]68[/C][C]4700[/C][C]4570.2[/C][C]4625[/C][C]-54.8022[/C][C]129.802[/C][/ROW]
[ROW][C]69[/C][C]4700[/C][C]4792.07[/C][C]4616.67[/C][C]175.406[/C][C]-92.0728[/C][/ROW]
[ROW][C]70[/C][C]4350[/C][C]4604.57[/C][C]4604.17[/C][C]0.406126[/C][C]-254.573[/C][/ROW]
[ROW][C]71[/C][C]4400[/C][C]4494.94[/C][C]4600[/C][C]-105.063[/C][C]-94.9374[/C][/ROW]
[ROW][C]72[/C][C]4450[/C][C]4631.66[/C][C]4604.17[/C][C]27.4895[/C][C]-181.656[/C][/ROW]
[ROW][C]73[/C][C]4050[/C][C]4233.89[/C][C]4633.33[/C][C]-399.445[/C][C]-183.888[/C][/ROW]
[ROW][C]74[/C][C]4700[/C][C]4622.28[/C][C]4668.75[/C][C]-46.4689[/C][C]77.7189[/C][/ROW]
[ROW][C]75[/C][C]5050[/C][C]5071.69[/C][C]4712.5[/C][C]359.186[/C][C]-21.6859[/C][/ROW]
[ROW][C]76[/C][C]4750[/C][C]4805.02[/C][C]4785.42[/C][C]19.6026[/C][C]-55.0192[/C][/ROW]
[ROW][C]77[/C][C]4800[/C][C]4852.94[/C][C]4868.75[/C][C]-15.8141[/C][C]-52.9359[/C][/ROW]
[ROW][C]78[/C][C]4900[/C][C]5010.97[/C][C]4956.25[/C][C]54.7216[/C][C]-110.972[/C][/ROW]
[ROW][C]79[/C][C]5000[/C][C]5036.86[/C][C]5052.08[/C][C]-15.2189[/C][C]-36.8645[/C][/ROW]
[ROW][C]80[/C][C]5050[/C][C]5099.36[/C][C]5154.17[/C][C]-54.8022[/C][C]-49.3645[/C][/ROW]
[ROW][C]81[/C][C]5400[/C][C]5450.41[/C][C]5275[/C][C]175.406[/C][C]-50.4061[/C][/ROW]
[ROW][C]82[/C][C]5400[/C][C]5396.24[/C][C]5395.83[/C][C]0.406126[/C][C]3.76054[/C][/ROW]
[ROW][C]83[/C][C]5350[/C][C]5397.02[/C][C]5502.08[/C][C]-105.063[/C][C]-47.0207[/C][/ROW]
[ROW][C]84[/C][C]5600[/C][C]5644.16[/C][C]5616.67[/C][C]27.4895[/C][C]-44.1561[/C][/ROW]
[ROW][C]85[/C][C]5200[/C][C]5338.05[/C][C]5737.5[/C][C]-399.445[/C][C]-138.055[/C][/ROW]
[ROW][C]86[/C][C]6000[/C][C]5793.11[/C][C]5839.58[/C][C]-46.4689[/C][C]206.886[/C][/ROW]
[ROW][C]87[/C][C]6650[/C][C]6311.27[/C][C]5952.08[/C][C]359.186[/C][C]338.731[/C][/ROW]
[ROW][C]88[/C][C]6050[/C][C]6084.19[/C][C]6064.58[/C][C]19.6026[/C][C]-34.1859[/C][/ROW]
[ROW][C]89[/C][C]6050[/C][C]6130.02[/C][C]6145.83[/C][C]-15.8141[/C][C]-80.0192[/C][/ROW]
[ROW][C]90[/C][C]6400[/C][C]6279.72[/C][C]6225[/C][C]54.7216[/C][C]120.278[/C][/ROW]
[ROW][C]91[/C][C]6400[/C][C]6284.78[/C][C]6300[/C][C]-15.2189[/C][C]115.219[/C][/ROW]
[ROW][C]92[/C][C]6100[/C][C]6303.53[/C][C]6358.33[/C][C]-54.8022[/C][C]-203.531[/C][/ROW]
[ROW][C]93[/C][C]7050[/C][C]6589.99[/C][C]6414.58[/C][C]175.406[/C][C]460.011[/C][/ROW]
[ROW][C]94[/C][C]6450[/C][C]6471.24[/C][C]6470.83[/C][C]0.406126[/C][C]-21.2395[/C][/ROW]
[ROW][C]95[/C][C]6250[/C][C]6399.1[/C][C]6504.17[/C][C]-105.063[/C][C]-149.104[/C][/ROW]
[ROW][C]96[/C][C]6600[/C][C]6550.41[/C][C]6522.92[/C][C]27.4895[/C][C]49.5939[/C][/ROW]
[ROW][C]97[/C][C]6000[/C][C]NA[/C][C]NA[/C][C]-399.445[/C][C]NA[/C][/ROW]
[ROW][C]98[/C][C]6600[/C][C]NA[/C][C]NA[/C][C]-46.4689[/C][C]NA[/C][/ROW]
[ROW][C]99[/C][C]7400[/C][C]NA[/C][C]NA[/C][C]359.186[/C][C]NA[/C][/ROW]
[ROW][C]100[/C][C]6650[/C][C]NA[/C][C]NA[/C][C]19.6026[/C][C]NA[/C][/ROW]
[ROW][C]101[/C][C]6250[/C][C]NA[/C][C]NA[/C][C]-15.8141[/C][C]NA[/C][/ROW]
[ROW][C]102[/C][C]6650[/C][C]NA[/C][C]NA[/C][C]54.7216[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298019&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298019&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
11800NANA-399.445NA
22000NANA-46.4689NA
32200NANA359.186NA
42250NANA19.6026NA
52400NANA-15.8141NA
62350NANA54.7216NA
723502184.782200-15.2189165.219
822502151.452206.25-54.802298.5522
922502379.572204.17175.406-129.573
1022002194.162193.750.4061265.84387
1121502061.62166.67-105.06388.396
1221502156.662129.1727.4895-6.65613
1319001694.32093.75-399.445205.695
1420502016.032062.5-46.468933.9689
1521002398.772039.58359.186-298.769
1621002042.522022.9219.602657.4808
1719001990.442006.25-15.8141-90.4359
1819502046.391991.6754.7216-96.3883
1919001966.031981.25-15.2189-66.0311
2019501916.031970.83-54.802233.9689
2120002148.321972.92175.406-148.323
2220501981.661981.250.40612668.3439
2319001892.851997.92-105.0637.14596
2420502062.912035.4227.4895-12.9061
2517501673.472072.92-399.44576.5284
2619502055.612102.08-46.4689-105.614
2722502498.772139.58359.186-248.769
2821502202.942183.3319.6026-52.9359
2922502217.522233.33-15.814132.4808
3025002352.642297.9254.7216147.362
3122502345.22360.42-15.2189-95.1978
3223002366.032420.83-54.8022-66.0311
3325502673.322497.92175.406-123.323
3425502585.822585.420.406126-35.8228
3526002561.62666.67-105.06338.396
3629002760.822733.3327.4895139.177
3724002402.642802.08-399.445-2.63827
3827502834.782881.25-46.4689-84.7811
3933003323.772964.58359.186-23.7692
4032003069.6305019.6026130.397
4131503117.523133.33-15.814132.4808
4232003258.893204.1754.7216-58.8883
4332003255.613270.83-15.2189-55.6145
4432503291.033345.83-54.8022-41.0311
4536003596.243420.83175.4063.76054
4635503487.913487.50.40612662.0939
4736003444.943550-105.063155.063
4836003652.49362527.4895-52.4895
4933003313.053712.5-399.445-13.0549
5036503757.73804.17-46.4689-107.698
5142004252.943893.75359.186-52.9359
5239004002.943983.3319.6026-102.936
5339504048.774064.58-15.8141-98.7692
5442004202.644147.9254.7216-2.63827
5543004222.284237.5-15.218977.7189
5643504263.954318.75-54.802286.0522
5746504581.664406.25175.40668.3439
5846504489.994489.580.406126160.011
5944504459.524564.58-105.063-9.52071
6047504652.49462527.489597.5105
6143004254.724654.17-399.44545.2784
6246004630.614677.08-46.4689-30.6145
6353505052.944693.75359.186297.064
6447504702.944683.3319.602647.0641
6549004652.944668.75-15.8141247.064
6647004708.894654.1754.7216-8.88827
6745004616.034631.25-15.2189-116.031
6847004570.24625-54.8022129.802
6947004792.074616.67175.406-92.0728
7043504604.574604.170.406126-254.573
7144004494.944600-105.063-94.9374
7244504631.664604.1727.4895-181.656
7340504233.894633.33-399.445-183.888
7447004622.284668.75-46.468977.7189
7550505071.694712.5359.186-21.6859
7647504805.024785.4219.6026-55.0192
7748004852.944868.75-15.8141-52.9359
7849005010.974956.2554.7216-110.972
7950005036.865052.08-15.2189-36.8645
8050505099.365154.17-54.8022-49.3645
8154005450.415275175.406-50.4061
8254005396.245395.830.4061263.76054
8353505397.025502.08-105.063-47.0207
8456005644.165616.6727.4895-44.1561
8552005338.055737.5-399.445-138.055
8660005793.115839.58-46.4689206.886
8766506311.275952.08359.186338.731
8860506084.196064.5819.6026-34.1859
8960506130.026145.83-15.8141-80.0192
9064006279.72622554.7216120.278
9164006284.786300-15.2189115.219
9261006303.536358.33-54.8022-203.531
9370506589.996414.58175.406460.011
9464506471.246470.830.406126-21.2395
9562506399.16504.17-105.063-149.104
9666006550.416522.9227.489549.5939
976000NANA-399.445NA
986600NANA-46.4689NA
997400NANA359.186NA
1006650NANA19.6026NA
1016250NANA-15.8141NA
1026650NANA54.7216NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')