Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationWed, 07 Dec 2016 12:40:00 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481110823zlo1ljf3zbp6ry1.htm/, Retrieved Fri, 01 Nov 2024 03:34:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=298007, Retrieved Fri, 01 Nov 2024 03:34:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact94
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [Corrolation matri...] [2016-12-07 11:40:00] [9a9519454d094169f95f881e5b6f16f7] [Current]
Feedback Forum

Post a new message
Dataseries X:
2	3	4	3	3
4	1	5	3	4
4	5	4	3	5
4	4	4	3	4
3	3	4	4	4
4	2	5	3	5
1	4	5	5	5
4	5	5	3	5
3	5	5	4	5
4	3	5	3	5
2	2	5	3	5
4	2	4	3	4
4	4	4	4	4
5	4	4	3	4
4	4	4	4	4
1	5	5	3	5
2	2	4	4	4
4	2	3	4	4
5	4	5	4	5
5	4	5	3	4
4	4	4	3	4
1	5	5	3	4
4	3	4	3	4
2	4	5	4	5
4	3	5	3	5
5	3	4	4	4
3	3	4	3	4
5	5	4	3	5
3	4	4	3	5
5	4	3	3	3
2	3	4	3	5
1	3	5	4	4
5	5	5	2	5
4	3	4	3	4
4	3	5	3	5
3	3	4	3	4
5	5	3	4	4
4	3	2	4	4
3	3	5	4	5
4	3	4	3	4
2	4	5	3	5
3	3	4	3	3
1	1	4	3	5
3	4	4	3	4
3	4	3	3	5
3	3	5	3	5
4	4	4	3	4
4	4	3	3	3
4	4	5	3	5
4	4	5	3	5
2	3	4	4	4
5	2	2	3	3
3	4	3	3	4
3	3	2	3	4
4	3	4	3	4
4	3	5	3	4
4	4	4	4	4
3	4	4	3	4
4	3	5	3	5
4	4	5	3	4
4	5	4	3	4
4	2	5	3	4
4	3	4	3	4
2	3	4	2	4
4	3	5	3	5
4	4	3	3	4
4	3	2	4	4
4	4	5	3	4
4	3	4	3	4
5	1	4	3	4
3	4	3	3	3
2	3	4	3	4
4	2	4	4	4
5	3	4	3	4
4	3	5	3	5
5	4	3	3	4
5	5	2	5	4
2	3	5	3	5
4	4	5	3	5
4	2	1	3	3
4	2	5	3	5
3	2	5	4	4
4	3	5	4	5
2	4	5	5	5
5	3	4	4	5
3	5	5	4	5
4	4	4	3	4
2	4	5	4	4
4	3	5	3	2
3	4	4	3	4
3	3	4	3	5
4	5	5	3	5
4	4	4	3	5
4	4	4	3	4
3	3	4	4	4
4	4	4	5	4
3	1	5	4	5
3	4	5	3	4
4	4	5	4	5
3	4	4	3	4
3	4	2	3	4
5	3	4	3	4
5	5	5	4	5
4	3	4	4	4
5	5	5	3	5
4	4	4	3	4
4	4	4	4	4
4	4	4	4	4
4	4	3	3	3
3	3	4	3	4
4	4	3	3	3
3	3	5	5	5
4	3	4	4	4
2	3	5	3	4
1	3	5	4	5
5	2	5	3	4
4	4	3	3	4
3	3	4	3	4
4	2	3	3	4
4	4	4	4	4
4	4	4	3	4
4	3	5	4	5
2	4	4	3	4
4	5	5	3	4
4	4	5	3	5
4	4	4	3	4
4	4	4	3	4
3	4	2	3	3
4	4	4	4	4
5	5	4	5	4
2	2	4	3	4
5	4	2	3	3
4	4	4	4	4
3	5	4	5	5
4	4	3	3	3
2	4	4	3	4
2	5	5	4	5
2	2	4	3	5
4	4	4	3	4
4	5	3	3	4
5	3	4	4	4
3	4	3	3	3
3	4	4	3	5
4	3	2	4	4
4	5	5	4	5
4	5	4	3	4
4	3	4	4	4
4	2	3	3	3
4	4	4	4	4
4	5	5	3	4
2	3	4	3	4
5	3	2	3	3
4	4	4	3	4
4	3	5	3	5
4	2	3	3	3
4	3	4	3	4
4	3	5	4	5
2	4	4	3	4
3	1	5	3	5
3	4	3	4	4
4	3	4	3	4
4	3	4	4	4
4	2	4	3	4
4	3	4	4	4
3	3	3	3	3
3	5	3	5	4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298007&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=298007&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298007&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Correlations for all pairs of data series (method=kendall)
IV1IV3TV1TV4TV3
IV110.079-0.122-0.017-0.132
IV30.07910.0040.0630.08
TV1-0.1220.00410.0520.618
TV4-0.0170.0630.05210.142
TV3-0.1320.080.6180.1421

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=kendall) \tabularnewline
  & IV1 & IV3 & TV1 & TV4 & TV3 \tabularnewline
IV1 & 1 & 0.079 & -0.122 & -0.017 & -0.132 \tabularnewline
IV3 & 0.079 & 1 & 0.004 & 0.063 & 0.08 \tabularnewline
TV1 & -0.122 & 0.004 & 1 & 0.052 & 0.618 \tabularnewline
TV4 & -0.017 & 0.063 & 0.052 & 1 & 0.142 \tabularnewline
TV3 & -0.132 & 0.08 & 0.618 & 0.142 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298007&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=kendall)[/C][/ROW]
[ROW][C] [/C][C]IV1[/C][C]IV3[/C][C]TV1[/C][C]TV4[/C][C]TV3[/C][/ROW]
[ROW][C]IV1[/C][C]1[/C][C]0.079[/C][C]-0.122[/C][C]-0.017[/C][C]-0.132[/C][/ROW]
[ROW][C]IV3[/C][C]0.079[/C][C]1[/C][C]0.004[/C][C]0.063[/C][C]0.08[/C][/ROW]
[ROW][C]TV1[/C][C]-0.122[/C][C]0.004[/C][C]1[/C][C]0.052[/C][C]0.618[/C][/ROW]
[ROW][C]TV4[/C][C]-0.017[/C][C]0.063[/C][C]0.052[/C][C]1[/C][C]0.142[/C][/ROW]
[ROW][C]TV3[/C][C]-0.132[/C][C]0.08[/C][C]0.618[/C][C]0.142[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298007&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298007&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=kendall)
IV1IV3TV1TV4TV3
IV110.079-0.122-0.017-0.132
IV30.07910.0040.0630.08
TV1-0.1220.00410.0520.618
TV4-0.0170.0630.05210.142
TV3-0.1320.080.6180.1421







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
IV1;IV30.09020.09140.0794
p-value(0.2478)(0.2414)(0.2316)
IV1;TV1-0.1901-0.139-0.1223
p-value(0.0142)(0.0741)(0.0708)
IV1;TV4-0.0427-0.0187-0.0166
p-value(0.5849)(0.8107)(0.8134)
IV1;TV3-0.1655-0.1477-0.1318
p-value(0.0331)(0.0575)(0.0574)
IV3;TV10.02270.00760.0044
p-value(0.7717)(0.9225)(0.9479)
IV3;TV40.11880.070.0628
p-value(0.1274)(0.37)(0.3701)
IV3;TV30.08810.0890.0795
p-value(0.259)(0.2542)(0.2502)
TV1;TV40.03210.05670.0523
p-value(0.6814)(0.4679)(0.4637)
TV1;TV30.60990.65420.6183
p-value(0)(0)(0)
TV4;TV30.16540.14940.1415
p-value(0.0332)(0.0547)(0.053)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
IV1;IV3 & 0.0902 & 0.0914 & 0.0794 \tabularnewline
p-value & (0.2478) & (0.2414) & (0.2316) \tabularnewline
IV1;TV1 & -0.1901 & -0.139 & -0.1223 \tabularnewline
p-value & (0.0142) & (0.0741) & (0.0708) \tabularnewline
IV1;TV4 & -0.0427 & -0.0187 & -0.0166 \tabularnewline
p-value & (0.5849) & (0.8107) & (0.8134) \tabularnewline
IV1;TV3 & -0.1655 & -0.1477 & -0.1318 \tabularnewline
p-value & (0.0331) & (0.0575) & (0.0574) \tabularnewline
IV3;TV1 & 0.0227 & 0.0076 & 0.0044 \tabularnewline
p-value & (0.7717) & (0.9225) & (0.9479) \tabularnewline
IV3;TV4 & 0.1188 & 0.07 & 0.0628 \tabularnewline
p-value & (0.1274) & (0.37) & (0.3701) \tabularnewline
IV3;TV3 & 0.0881 & 0.089 & 0.0795 \tabularnewline
p-value & (0.259) & (0.2542) & (0.2502) \tabularnewline
TV1;TV4 & 0.0321 & 0.0567 & 0.0523 \tabularnewline
p-value & (0.6814) & (0.4679) & (0.4637) \tabularnewline
TV1;TV3 & 0.6099 & 0.6542 & 0.6183 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
TV4;TV3 & 0.1654 & 0.1494 & 0.1415 \tabularnewline
p-value & (0.0332) & (0.0547) & (0.053) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298007&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]IV1;IV3[/C][C]0.0902[/C][C]0.0914[/C][C]0.0794[/C][/ROW]
[ROW][C]p-value[/C][C](0.2478)[/C][C](0.2414)[/C][C](0.2316)[/C][/ROW]
[ROW][C]IV1;TV1[/C][C]-0.1901[/C][C]-0.139[/C][C]-0.1223[/C][/ROW]
[ROW][C]p-value[/C][C](0.0142)[/C][C](0.0741)[/C][C](0.0708)[/C][/ROW]
[ROW][C]IV1;TV4[/C][C]-0.0427[/C][C]-0.0187[/C][C]-0.0166[/C][/ROW]
[ROW][C]p-value[/C][C](0.5849)[/C][C](0.8107)[/C][C](0.8134)[/C][/ROW]
[ROW][C]IV1;TV3[/C][C]-0.1655[/C][C]-0.1477[/C][C]-0.1318[/C][/ROW]
[ROW][C]p-value[/C][C](0.0331)[/C][C](0.0575)[/C][C](0.0574)[/C][/ROW]
[ROW][C]IV3;TV1[/C][C]0.0227[/C][C]0.0076[/C][C]0.0044[/C][/ROW]
[ROW][C]p-value[/C][C](0.7717)[/C][C](0.9225)[/C][C](0.9479)[/C][/ROW]
[ROW][C]IV3;TV4[/C][C]0.1188[/C][C]0.07[/C][C]0.0628[/C][/ROW]
[ROW][C]p-value[/C][C](0.1274)[/C][C](0.37)[/C][C](0.3701)[/C][/ROW]
[ROW][C]IV3;TV3[/C][C]0.0881[/C][C]0.089[/C][C]0.0795[/C][/ROW]
[ROW][C]p-value[/C][C](0.259)[/C][C](0.2542)[/C][C](0.2502)[/C][/ROW]
[ROW][C]TV1;TV4[/C][C]0.0321[/C][C]0.0567[/C][C]0.0523[/C][/ROW]
[ROW][C]p-value[/C][C](0.6814)[/C][C](0.4679)[/C][C](0.4637)[/C][/ROW]
[ROW][C]TV1;TV3[/C][C]0.6099[/C][C]0.6542[/C][C]0.6183[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]TV4;TV3[/C][C]0.1654[/C][C]0.1494[/C][C]0.1415[/C][/ROW]
[ROW][C]p-value[/C][C](0.0332)[/C][C](0.0547)[/C][C](0.053)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298007&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298007&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
IV1;IV30.09020.09140.0794
p-value(0.2478)(0.2414)(0.2316)
IV1;TV1-0.1901-0.139-0.1223
p-value(0.0142)(0.0741)(0.0708)
IV1;TV4-0.0427-0.0187-0.0166
p-value(0.5849)(0.8107)(0.8134)
IV1;TV3-0.1655-0.1477-0.1318
p-value(0.0331)(0.0575)(0.0574)
IV3;TV10.02270.00760.0044
p-value(0.7717)(0.9225)(0.9479)
IV3;TV40.11880.070.0628
p-value(0.1274)(0.37)(0.3701)
IV3;TV30.08810.0890.0795
p-value(0.259)(0.2542)(0.2502)
TV1;TV40.03210.05670.0523
p-value(0.6814)(0.4679)(0.4637)
TV1;TV30.60990.65420.6183
p-value(0)(0)(0)
TV4;TV30.16540.14940.1415
p-value(0.0332)(0.0547)(0.053)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.10.10.1
0.020.20.10.1
0.030.20.10.1
0.040.40.10.1
0.050.40.10.1
0.060.40.30.3
0.070.40.30.3
0.080.40.40.4
0.090.40.40.4
0.10.40.40.4

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.1 & 0.1 & 0.1 \tabularnewline
0.02 & 0.2 & 0.1 & 0.1 \tabularnewline
0.03 & 0.2 & 0.1 & 0.1 \tabularnewline
0.04 & 0.4 & 0.1 & 0.1 \tabularnewline
0.05 & 0.4 & 0.1 & 0.1 \tabularnewline
0.06 & 0.4 & 0.3 & 0.3 \tabularnewline
0.07 & 0.4 & 0.3 & 0.3 \tabularnewline
0.08 & 0.4 & 0.4 & 0.4 \tabularnewline
0.09 & 0.4 & 0.4 & 0.4 \tabularnewline
0.1 & 0.4 & 0.4 & 0.4 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=298007&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.1[/C][C]0.1[/C][C]0.1[/C][/ROW]
[ROW][C]0.02[/C][C]0.2[/C][C]0.1[/C][C]0.1[/C][/ROW]
[ROW][C]0.03[/C][C]0.2[/C][C]0.1[/C][C]0.1[/C][/ROW]
[ROW][C]0.04[/C][C]0.4[/C][C]0.1[/C][C]0.1[/C][/ROW]
[ROW][C]0.05[/C][C]0.4[/C][C]0.1[/C][C]0.1[/C][/ROW]
[ROW][C]0.06[/C][C]0.4[/C][C]0.3[/C][C]0.3[/C][/ROW]
[ROW][C]0.07[/C][C]0.4[/C][C]0.3[/C][C]0.3[/C][/ROW]
[ROW][C]0.08[/C][C]0.4[/C][C]0.4[/C][C]0.4[/C][/ROW]
[ROW][C]0.09[/C][C]0.4[/C][C]0.4[/C][C]0.4[/C][/ROW]
[ROW][C]0.1[/C][C]0.4[/C][C]0.4[/C][C]0.4[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=298007&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=298007&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.10.10.1
0.020.20.10.1
0.030.20.10.1
0.040.40.10.1
0.050.40.10.1
0.060.40.30.3
0.070.40.30.3
0.080.40.40.4
0.090.40.40.4
0.10.40.40.4



Parameters (Session):
par1 = 8 ; par2 = 0 ;
Parameters (R input):
par1 = kendall ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')