Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 07 Dec 2016 11:44:30 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t148110757485vs08mhar9l7zu.htm/, Retrieved Fri, 01 Nov 2024 03:32:50 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297996, Retrieved Fri, 01 Nov 2024 03:32:50 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact100
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical composi...] [2016-12-07 10:44:30] [c0b73e623858a81821526bb2f691ccd9] [Current]
Feedback Forum

Post a new message
Dataseries X:
7360
4820
2600
5520
3180
4080
3360
4960
4640
5420
4880
4780
4860
3780
4120
3980
3060
4420
3340
4220
5780
5440
4200
3720
4040
3920
3160
3500
2780
3340
3100
3100
4400
3480
5100
4260
3640
2900
3820
2980
2860
2420
2680
4420
3160
3160
4300
2820
3240
2520
3480
2740
2240
3700
2600
3160
3800
3440
2180
2300
3160
1800
2620
2820
2180
2300
2560
2860
2620
3960
3960
2320
3400
2640
2340
2340
1960
2100
2280
2320
2660
2520
2120
1800
2300
2420
1920
1720
2000
1960
2860
2160
2360
2300
2360
2260
2460
2200
1620
1740
1720
2460
1840
2160
2460
2860
2700
2420




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297996&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297996&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297996&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
17360NANA287.934NA
24820NANA-304.566NA
32600NANA-166.128NA
45520NANA-298.941NA
53180NANA-651.753NA
64080NANA-140.608NA
733604134.74529.17-394.462-774.705
849604578.874381.67197.205381.128
946404895.124401.67493.455-255.122
1054204956.584400.83555.747463.42
1148804837.24331.67505.53842.7951
1247804257.414340.83-83.4201522.587
1348604642.14354.17287.934217.899
1437804017.934322.5-304.566-237.934
1541204173.044339.17-166.128-53.0382
1639804088.564387.5-298.941-108.559
1730603708.254360-651.753-648.247
1844204146.894287.5-140.608273.108
1933403814.74209.17-394.462-474.705
2042204378.044180.83197.205-158.038
2157804640.124146.67493.4551139.88
2254404642.414086.67555.747797.587
2342004560.544055505.538-360.538
2437203914.913998.33-83.4201-194.913
2540404231.273943.33287.934-191.267
2639203582.13886.67-304.566337.899
2731603616.373782.5-166.128-456.372
2835003344.393643.33-298.941155.608
2927802947.413599.17-651.753-167.413
3033403518.563659.17-140.608-178.559
3131003270.543665-394.462-170.538
3231003803.043605.83197.205-703.038
3344004084.293590.83493.455315.712
3434804152.413596.67555.747-672.413
3551004083.873578.33505.5381016.13
3642603459.913543.33-83.4201800.087
3736403775.433487.5287.934-135.434
3829003220.433525-304.566-320.434
3938203362.23528.33-166.128457.795
4029803164.393463.33-298.941-184.392
4128602764.913416.67-651.75395.0868
4224203182.733323.33-140.608-762.726
4326802852.23246.67-394.462-172.205
4444203411.373214.17197.2051008.63
4531603677.623184.17493.455-517.622
4631603715.753160555.747-555.747
4743003629.73124.17505.538670.295
4828203068.253151.67-83.4201-248.247
4932403489.63201.67287.934-249.601
5025202841.273145.83-304.566-321.267
5134802953.873120-166.128526.128
5227402859.393158.33-298.941-119.392
5322402429.913081.67-651.753-189.913
5437002831.062971.67-140.608868.941
5526002552.22946.67-394.46247.7951
5631603110.542913.33197.20549.4618
5738003340.952847.5493.455459.045
5834403370.752815555.74769.2535
5921803321.372815.83505.538-1141.37
6023002671.582755-83.4201-371.58
6131602982.932695287.934177.066
6218002376.272680.83-304.566-576.267
6326202453.042619.17-166.128166.962
6428202292.732591.67-298.941527.274
6521802035.752687.5-651.753144.253
6623002621.892762.5-140.608-321.892
6725602378.872773.33-394.462181.128
6828603015.542818.33197.205-155.538
6926203335.122841.67493.455-715.122
7039603365.752810555.747594.253
7139603286.372780.83505.538673.628
7223202679.912763.33-83.4201-359.913
7334003031.272743.33287.934368.733
7426402404.62709.17-304.566235.399
7523402522.22688.33-166.128-182.205
7623402331.062630-298.9418.94097
7719601841.582493.33-651.753118.42
7821002254.392395-140.608-154.392
7922801933.042327.5-394.462346.962
8023202469.72272.5197.205-149.705
8126602739.292245.83493.455-79.2882
8225202758.252202.5555.747-238.247
8321202683.872178.33505.538-563.872
8418002090.752174.17-83.4201-290.747
8523002480.432192.5287.934-180.434
8624201905.432210-304.566514.566
8719202024.72190.83-166.128-104.705
8817201870.232169.17-298.941-150.226
8920001518.252170-651.753481.753
9019602058.562199.17-140.608-98.559
9128601830.542225-394.4621029.46
9221602419.72222.5197.205-259.705
9323602694.292200.83493.455-334.288
9423002744.912189.17555.747-444.913
9523602683.872178.33505.538-323.872
9622602104.082187.5-83.4201155.92
9724602453.772165.83287.9346.23264
9822001818.772123.33-304.566381.233
9916201961.372127.5-166.128-341.372
10017401856.062155-298.941-116.059
10117201540.752192.5-651.753179.253
10224602072.732213.33-140.608387.274
1031840NANA-394.462NA
1042160NANA197.205NA
1052460NANA493.455NA
1062860NANA555.747NA
1072700NANA505.538NA
1082420NANA-83.4201NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 7360 & NA & NA & 287.934 & NA \tabularnewline
2 & 4820 & NA & NA & -304.566 & NA \tabularnewline
3 & 2600 & NA & NA & -166.128 & NA \tabularnewline
4 & 5520 & NA & NA & -298.941 & NA \tabularnewline
5 & 3180 & NA & NA & -651.753 & NA \tabularnewline
6 & 4080 & NA & NA & -140.608 & NA \tabularnewline
7 & 3360 & 4134.7 & 4529.17 & -394.462 & -774.705 \tabularnewline
8 & 4960 & 4578.87 & 4381.67 & 197.205 & 381.128 \tabularnewline
9 & 4640 & 4895.12 & 4401.67 & 493.455 & -255.122 \tabularnewline
10 & 5420 & 4956.58 & 4400.83 & 555.747 & 463.42 \tabularnewline
11 & 4880 & 4837.2 & 4331.67 & 505.538 & 42.7951 \tabularnewline
12 & 4780 & 4257.41 & 4340.83 & -83.4201 & 522.587 \tabularnewline
13 & 4860 & 4642.1 & 4354.17 & 287.934 & 217.899 \tabularnewline
14 & 3780 & 4017.93 & 4322.5 & -304.566 & -237.934 \tabularnewline
15 & 4120 & 4173.04 & 4339.17 & -166.128 & -53.0382 \tabularnewline
16 & 3980 & 4088.56 & 4387.5 & -298.941 & -108.559 \tabularnewline
17 & 3060 & 3708.25 & 4360 & -651.753 & -648.247 \tabularnewline
18 & 4420 & 4146.89 & 4287.5 & -140.608 & 273.108 \tabularnewline
19 & 3340 & 3814.7 & 4209.17 & -394.462 & -474.705 \tabularnewline
20 & 4220 & 4378.04 & 4180.83 & 197.205 & -158.038 \tabularnewline
21 & 5780 & 4640.12 & 4146.67 & 493.455 & 1139.88 \tabularnewline
22 & 5440 & 4642.41 & 4086.67 & 555.747 & 797.587 \tabularnewline
23 & 4200 & 4560.54 & 4055 & 505.538 & -360.538 \tabularnewline
24 & 3720 & 3914.91 & 3998.33 & -83.4201 & -194.913 \tabularnewline
25 & 4040 & 4231.27 & 3943.33 & 287.934 & -191.267 \tabularnewline
26 & 3920 & 3582.1 & 3886.67 & -304.566 & 337.899 \tabularnewline
27 & 3160 & 3616.37 & 3782.5 & -166.128 & -456.372 \tabularnewline
28 & 3500 & 3344.39 & 3643.33 & -298.941 & 155.608 \tabularnewline
29 & 2780 & 2947.41 & 3599.17 & -651.753 & -167.413 \tabularnewline
30 & 3340 & 3518.56 & 3659.17 & -140.608 & -178.559 \tabularnewline
31 & 3100 & 3270.54 & 3665 & -394.462 & -170.538 \tabularnewline
32 & 3100 & 3803.04 & 3605.83 & 197.205 & -703.038 \tabularnewline
33 & 4400 & 4084.29 & 3590.83 & 493.455 & 315.712 \tabularnewline
34 & 3480 & 4152.41 & 3596.67 & 555.747 & -672.413 \tabularnewline
35 & 5100 & 4083.87 & 3578.33 & 505.538 & 1016.13 \tabularnewline
36 & 4260 & 3459.91 & 3543.33 & -83.4201 & 800.087 \tabularnewline
37 & 3640 & 3775.43 & 3487.5 & 287.934 & -135.434 \tabularnewline
38 & 2900 & 3220.43 & 3525 & -304.566 & -320.434 \tabularnewline
39 & 3820 & 3362.2 & 3528.33 & -166.128 & 457.795 \tabularnewline
40 & 2980 & 3164.39 & 3463.33 & -298.941 & -184.392 \tabularnewline
41 & 2860 & 2764.91 & 3416.67 & -651.753 & 95.0868 \tabularnewline
42 & 2420 & 3182.73 & 3323.33 & -140.608 & -762.726 \tabularnewline
43 & 2680 & 2852.2 & 3246.67 & -394.462 & -172.205 \tabularnewline
44 & 4420 & 3411.37 & 3214.17 & 197.205 & 1008.63 \tabularnewline
45 & 3160 & 3677.62 & 3184.17 & 493.455 & -517.622 \tabularnewline
46 & 3160 & 3715.75 & 3160 & 555.747 & -555.747 \tabularnewline
47 & 4300 & 3629.7 & 3124.17 & 505.538 & 670.295 \tabularnewline
48 & 2820 & 3068.25 & 3151.67 & -83.4201 & -248.247 \tabularnewline
49 & 3240 & 3489.6 & 3201.67 & 287.934 & -249.601 \tabularnewline
50 & 2520 & 2841.27 & 3145.83 & -304.566 & -321.267 \tabularnewline
51 & 3480 & 2953.87 & 3120 & -166.128 & 526.128 \tabularnewline
52 & 2740 & 2859.39 & 3158.33 & -298.941 & -119.392 \tabularnewline
53 & 2240 & 2429.91 & 3081.67 & -651.753 & -189.913 \tabularnewline
54 & 3700 & 2831.06 & 2971.67 & -140.608 & 868.941 \tabularnewline
55 & 2600 & 2552.2 & 2946.67 & -394.462 & 47.7951 \tabularnewline
56 & 3160 & 3110.54 & 2913.33 & 197.205 & 49.4618 \tabularnewline
57 & 3800 & 3340.95 & 2847.5 & 493.455 & 459.045 \tabularnewline
58 & 3440 & 3370.75 & 2815 & 555.747 & 69.2535 \tabularnewline
59 & 2180 & 3321.37 & 2815.83 & 505.538 & -1141.37 \tabularnewline
60 & 2300 & 2671.58 & 2755 & -83.4201 & -371.58 \tabularnewline
61 & 3160 & 2982.93 & 2695 & 287.934 & 177.066 \tabularnewline
62 & 1800 & 2376.27 & 2680.83 & -304.566 & -576.267 \tabularnewline
63 & 2620 & 2453.04 & 2619.17 & -166.128 & 166.962 \tabularnewline
64 & 2820 & 2292.73 & 2591.67 & -298.941 & 527.274 \tabularnewline
65 & 2180 & 2035.75 & 2687.5 & -651.753 & 144.253 \tabularnewline
66 & 2300 & 2621.89 & 2762.5 & -140.608 & -321.892 \tabularnewline
67 & 2560 & 2378.87 & 2773.33 & -394.462 & 181.128 \tabularnewline
68 & 2860 & 3015.54 & 2818.33 & 197.205 & -155.538 \tabularnewline
69 & 2620 & 3335.12 & 2841.67 & 493.455 & -715.122 \tabularnewline
70 & 3960 & 3365.75 & 2810 & 555.747 & 594.253 \tabularnewline
71 & 3960 & 3286.37 & 2780.83 & 505.538 & 673.628 \tabularnewline
72 & 2320 & 2679.91 & 2763.33 & -83.4201 & -359.913 \tabularnewline
73 & 3400 & 3031.27 & 2743.33 & 287.934 & 368.733 \tabularnewline
74 & 2640 & 2404.6 & 2709.17 & -304.566 & 235.399 \tabularnewline
75 & 2340 & 2522.2 & 2688.33 & -166.128 & -182.205 \tabularnewline
76 & 2340 & 2331.06 & 2630 & -298.941 & 8.94097 \tabularnewline
77 & 1960 & 1841.58 & 2493.33 & -651.753 & 118.42 \tabularnewline
78 & 2100 & 2254.39 & 2395 & -140.608 & -154.392 \tabularnewline
79 & 2280 & 1933.04 & 2327.5 & -394.462 & 346.962 \tabularnewline
80 & 2320 & 2469.7 & 2272.5 & 197.205 & -149.705 \tabularnewline
81 & 2660 & 2739.29 & 2245.83 & 493.455 & -79.2882 \tabularnewline
82 & 2520 & 2758.25 & 2202.5 & 555.747 & -238.247 \tabularnewline
83 & 2120 & 2683.87 & 2178.33 & 505.538 & -563.872 \tabularnewline
84 & 1800 & 2090.75 & 2174.17 & -83.4201 & -290.747 \tabularnewline
85 & 2300 & 2480.43 & 2192.5 & 287.934 & -180.434 \tabularnewline
86 & 2420 & 1905.43 & 2210 & -304.566 & 514.566 \tabularnewline
87 & 1920 & 2024.7 & 2190.83 & -166.128 & -104.705 \tabularnewline
88 & 1720 & 1870.23 & 2169.17 & -298.941 & -150.226 \tabularnewline
89 & 2000 & 1518.25 & 2170 & -651.753 & 481.753 \tabularnewline
90 & 1960 & 2058.56 & 2199.17 & -140.608 & -98.559 \tabularnewline
91 & 2860 & 1830.54 & 2225 & -394.462 & 1029.46 \tabularnewline
92 & 2160 & 2419.7 & 2222.5 & 197.205 & -259.705 \tabularnewline
93 & 2360 & 2694.29 & 2200.83 & 493.455 & -334.288 \tabularnewline
94 & 2300 & 2744.91 & 2189.17 & 555.747 & -444.913 \tabularnewline
95 & 2360 & 2683.87 & 2178.33 & 505.538 & -323.872 \tabularnewline
96 & 2260 & 2104.08 & 2187.5 & -83.4201 & 155.92 \tabularnewline
97 & 2460 & 2453.77 & 2165.83 & 287.934 & 6.23264 \tabularnewline
98 & 2200 & 1818.77 & 2123.33 & -304.566 & 381.233 \tabularnewline
99 & 1620 & 1961.37 & 2127.5 & -166.128 & -341.372 \tabularnewline
100 & 1740 & 1856.06 & 2155 & -298.941 & -116.059 \tabularnewline
101 & 1720 & 1540.75 & 2192.5 & -651.753 & 179.253 \tabularnewline
102 & 2460 & 2072.73 & 2213.33 & -140.608 & 387.274 \tabularnewline
103 & 1840 & NA & NA & -394.462 & NA \tabularnewline
104 & 2160 & NA & NA & 197.205 & NA \tabularnewline
105 & 2460 & NA & NA & 493.455 & NA \tabularnewline
106 & 2860 & NA & NA & 555.747 & NA \tabularnewline
107 & 2700 & NA & NA & 505.538 & NA \tabularnewline
108 & 2420 & NA & NA & -83.4201 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297996&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]7360[/C][C]NA[/C][C]NA[/C][C]287.934[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]4820[/C][C]NA[/C][C]NA[/C][C]-304.566[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]2600[/C][C]NA[/C][C]NA[/C][C]-166.128[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]5520[/C][C]NA[/C][C]NA[/C][C]-298.941[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]3180[/C][C]NA[/C][C]NA[/C][C]-651.753[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]4080[/C][C]NA[/C][C]NA[/C][C]-140.608[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3360[/C][C]4134.7[/C][C]4529.17[/C][C]-394.462[/C][C]-774.705[/C][/ROW]
[ROW][C]8[/C][C]4960[/C][C]4578.87[/C][C]4381.67[/C][C]197.205[/C][C]381.128[/C][/ROW]
[ROW][C]9[/C][C]4640[/C][C]4895.12[/C][C]4401.67[/C][C]493.455[/C][C]-255.122[/C][/ROW]
[ROW][C]10[/C][C]5420[/C][C]4956.58[/C][C]4400.83[/C][C]555.747[/C][C]463.42[/C][/ROW]
[ROW][C]11[/C][C]4880[/C][C]4837.2[/C][C]4331.67[/C][C]505.538[/C][C]42.7951[/C][/ROW]
[ROW][C]12[/C][C]4780[/C][C]4257.41[/C][C]4340.83[/C][C]-83.4201[/C][C]522.587[/C][/ROW]
[ROW][C]13[/C][C]4860[/C][C]4642.1[/C][C]4354.17[/C][C]287.934[/C][C]217.899[/C][/ROW]
[ROW][C]14[/C][C]3780[/C][C]4017.93[/C][C]4322.5[/C][C]-304.566[/C][C]-237.934[/C][/ROW]
[ROW][C]15[/C][C]4120[/C][C]4173.04[/C][C]4339.17[/C][C]-166.128[/C][C]-53.0382[/C][/ROW]
[ROW][C]16[/C][C]3980[/C][C]4088.56[/C][C]4387.5[/C][C]-298.941[/C][C]-108.559[/C][/ROW]
[ROW][C]17[/C][C]3060[/C][C]3708.25[/C][C]4360[/C][C]-651.753[/C][C]-648.247[/C][/ROW]
[ROW][C]18[/C][C]4420[/C][C]4146.89[/C][C]4287.5[/C][C]-140.608[/C][C]273.108[/C][/ROW]
[ROW][C]19[/C][C]3340[/C][C]3814.7[/C][C]4209.17[/C][C]-394.462[/C][C]-474.705[/C][/ROW]
[ROW][C]20[/C][C]4220[/C][C]4378.04[/C][C]4180.83[/C][C]197.205[/C][C]-158.038[/C][/ROW]
[ROW][C]21[/C][C]5780[/C][C]4640.12[/C][C]4146.67[/C][C]493.455[/C][C]1139.88[/C][/ROW]
[ROW][C]22[/C][C]5440[/C][C]4642.41[/C][C]4086.67[/C][C]555.747[/C][C]797.587[/C][/ROW]
[ROW][C]23[/C][C]4200[/C][C]4560.54[/C][C]4055[/C][C]505.538[/C][C]-360.538[/C][/ROW]
[ROW][C]24[/C][C]3720[/C][C]3914.91[/C][C]3998.33[/C][C]-83.4201[/C][C]-194.913[/C][/ROW]
[ROW][C]25[/C][C]4040[/C][C]4231.27[/C][C]3943.33[/C][C]287.934[/C][C]-191.267[/C][/ROW]
[ROW][C]26[/C][C]3920[/C][C]3582.1[/C][C]3886.67[/C][C]-304.566[/C][C]337.899[/C][/ROW]
[ROW][C]27[/C][C]3160[/C][C]3616.37[/C][C]3782.5[/C][C]-166.128[/C][C]-456.372[/C][/ROW]
[ROW][C]28[/C][C]3500[/C][C]3344.39[/C][C]3643.33[/C][C]-298.941[/C][C]155.608[/C][/ROW]
[ROW][C]29[/C][C]2780[/C][C]2947.41[/C][C]3599.17[/C][C]-651.753[/C][C]-167.413[/C][/ROW]
[ROW][C]30[/C][C]3340[/C][C]3518.56[/C][C]3659.17[/C][C]-140.608[/C][C]-178.559[/C][/ROW]
[ROW][C]31[/C][C]3100[/C][C]3270.54[/C][C]3665[/C][C]-394.462[/C][C]-170.538[/C][/ROW]
[ROW][C]32[/C][C]3100[/C][C]3803.04[/C][C]3605.83[/C][C]197.205[/C][C]-703.038[/C][/ROW]
[ROW][C]33[/C][C]4400[/C][C]4084.29[/C][C]3590.83[/C][C]493.455[/C][C]315.712[/C][/ROW]
[ROW][C]34[/C][C]3480[/C][C]4152.41[/C][C]3596.67[/C][C]555.747[/C][C]-672.413[/C][/ROW]
[ROW][C]35[/C][C]5100[/C][C]4083.87[/C][C]3578.33[/C][C]505.538[/C][C]1016.13[/C][/ROW]
[ROW][C]36[/C][C]4260[/C][C]3459.91[/C][C]3543.33[/C][C]-83.4201[/C][C]800.087[/C][/ROW]
[ROW][C]37[/C][C]3640[/C][C]3775.43[/C][C]3487.5[/C][C]287.934[/C][C]-135.434[/C][/ROW]
[ROW][C]38[/C][C]2900[/C][C]3220.43[/C][C]3525[/C][C]-304.566[/C][C]-320.434[/C][/ROW]
[ROW][C]39[/C][C]3820[/C][C]3362.2[/C][C]3528.33[/C][C]-166.128[/C][C]457.795[/C][/ROW]
[ROW][C]40[/C][C]2980[/C][C]3164.39[/C][C]3463.33[/C][C]-298.941[/C][C]-184.392[/C][/ROW]
[ROW][C]41[/C][C]2860[/C][C]2764.91[/C][C]3416.67[/C][C]-651.753[/C][C]95.0868[/C][/ROW]
[ROW][C]42[/C][C]2420[/C][C]3182.73[/C][C]3323.33[/C][C]-140.608[/C][C]-762.726[/C][/ROW]
[ROW][C]43[/C][C]2680[/C][C]2852.2[/C][C]3246.67[/C][C]-394.462[/C][C]-172.205[/C][/ROW]
[ROW][C]44[/C][C]4420[/C][C]3411.37[/C][C]3214.17[/C][C]197.205[/C][C]1008.63[/C][/ROW]
[ROW][C]45[/C][C]3160[/C][C]3677.62[/C][C]3184.17[/C][C]493.455[/C][C]-517.622[/C][/ROW]
[ROW][C]46[/C][C]3160[/C][C]3715.75[/C][C]3160[/C][C]555.747[/C][C]-555.747[/C][/ROW]
[ROW][C]47[/C][C]4300[/C][C]3629.7[/C][C]3124.17[/C][C]505.538[/C][C]670.295[/C][/ROW]
[ROW][C]48[/C][C]2820[/C][C]3068.25[/C][C]3151.67[/C][C]-83.4201[/C][C]-248.247[/C][/ROW]
[ROW][C]49[/C][C]3240[/C][C]3489.6[/C][C]3201.67[/C][C]287.934[/C][C]-249.601[/C][/ROW]
[ROW][C]50[/C][C]2520[/C][C]2841.27[/C][C]3145.83[/C][C]-304.566[/C][C]-321.267[/C][/ROW]
[ROW][C]51[/C][C]3480[/C][C]2953.87[/C][C]3120[/C][C]-166.128[/C][C]526.128[/C][/ROW]
[ROW][C]52[/C][C]2740[/C][C]2859.39[/C][C]3158.33[/C][C]-298.941[/C][C]-119.392[/C][/ROW]
[ROW][C]53[/C][C]2240[/C][C]2429.91[/C][C]3081.67[/C][C]-651.753[/C][C]-189.913[/C][/ROW]
[ROW][C]54[/C][C]3700[/C][C]2831.06[/C][C]2971.67[/C][C]-140.608[/C][C]868.941[/C][/ROW]
[ROW][C]55[/C][C]2600[/C][C]2552.2[/C][C]2946.67[/C][C]-394.462[/C][C]47.7951[/C][/ROW]
[ROW][C]56[/C][C]3160[/C][C]3110.54[/C][C]2913.33[/C][C]197.205[/C][C]49.4618[/C][/ROW]
[ROW][C]57[/C][C]3800[/C][C]3340.95[/C][C]2847.5[/C][C]493.455[/C][C]459.045[/C][/ROW]
[ROW][C]58[/C][C]3440[/C][C]3370.75[/C][C]2815[/C][C]555.747[/C][C]69.2535[/C][/ROW]
[ROW][C]59[/C][C]2180[/C][C]3321.37[/C][C]2815.83[/C][C]505.538[/C][C]-1141.37[/C][/ROW]
[ROW][C]60[/C][C]2300[/C][C]2671.58[/C][C]2755[/C][C]-83.4201[/C][C]-371.58[/C][/ROW]
[ROW][C]61[/C][C]3160[/C][C]2982.93[/C][C]2695[/C][C]287.934[/C][C]177.066[/C][/ROW]
[ROW][C]62[/C][C]1800[/C][C]2376.27[/C][C]2680.83[/C][C]-304.566[/C][C]-576.267[/C][/ROW]
[ROW][C]63[/C][C]2620[/C][C]2453.04[/C][C]2619.17[/C][C]-166.128[/C][C]166.962[/C][/ROW]
[ROW][C]64[/C][C]2820[/C][C]2292.73[/C][C]2591.67[/C][C]-298.941[/C][C]527.274[/C][/ROW]
[ROW][C]65[/C][C]2180[/C][C]2035.75[/C][C]2687.5[/C][C]-651.753[/C][C]144.253[/C][/ROW]
[ROW][C]66[/C][C]2300[/C][C]2621.89[/C][C]2762.5[/C][C]-140.608[/C][C]-321.892[/C][/ROW]
[ROW][C]67[/C][C]2560[/C][C]2378.87[/C][C]2773.33[/C][C]-394.462[/C][C]181.128[/C][/ROW]
[ROW][C]68[/C][C]2860[/C][C]3015.54[/C][C]2818.33[/C][C]197.205[/C][C]-155.538[/C][/ROW]
[ROW][C]69[/C][C]2620[/C][C]3335.12[/C][C]2841.67[/C][C]493.455[/C][C]-715.122[/C][/ROW]
[ROW][C]70[/C][C]3960[/C][C]3365.75[/C][C]2810[/C][C]555.747[/C][C]594.253[/C][/ROW]
[ROW][C]71[/C][C]3960[/C][C]3286.37[/C][C]2780.83[/C][C]505.538[/C][C]673.628[/C][/ROW]
[ROW][C]72[/C][C]2320[/C][C]2679.91[/C][C]2763.33[/C][C]-83.4201[/C][C]-359.913[/C][/ROW]
[ROW][C]73[/C][C]3400[/C][C]3031.27[/C][C]2743.33[/C][C]287.934[/C][C]368.733[/C][/ROW]
[ROW][C]74[/C][C]2640[/C][C]2404.6[/C][C]2709.17[/C][C]-304.566[/C][C]235.399[/C][/ROW]
[ROW][C]75[/C][C]2340[/C][C]2522.2[/C][C]2688.33[/C][C]-166.128[/C][C]-182.205[/C][/ROW]
[ROW][C]76[/C][C]2340[/C][C]2331.06[/C][C]2630[/C][C]-298.941[/C][C]8.94097[/C][/ROW]
[ROW][C]77[/C][C]1960[/C][C]1841.58[/C][C]2493.33[/C][C]-651.753[/C][C]118.42[/C][/ROW]
[ROW][C]78[/C][C]2100[/C][C]2254.39[/C][C]2395[/C][C]-140.608[/C][C]-154.392[/C][/ROW]
[ROW][C]79[/C][C]2280[/C][C]1933.04[/C][C]2327.5[/C][C]-394.462[/C][C]346.962[/C][/ROW]
[ROW][C]80[/C][C]2320[/C][C]2469.7[/C][C]2272.5[/C][C]197.205[/C][C]-149.705[/C][/ROW]
[ROW][C]81[/C][C]2660[/C][C]2739.29[/C][C]2245.83[/C][C]493.455[/C][C]-79.2882[/C][/ROW]
[ROW][C]82[/C][C]2520[/C][C]2758.25[/C][C]2202.5[/C][C]555.747[/C][C]-238.247[/C][/ROW]
[ROW][C]83[/C][C]2120[/C][C]2683.87[/C][C]2178.33[/C][C]505.538[/C][C]-563.872[/C][/ROW]
[ROW][C]84[/C][C]1800[/C][C]2090.75[/C][C]2174.17[/C][C]-83.4201[/C][C]-290.747[/C][/ROW]
[ROW][C]85[/C][C]2300[/C][C]2480.43[/C][C]2192.5[/C][C]287.934[/C][C]-180.434[/C][/ROW]
[ROW][C]86[/C][C]2420[/C][C]1905.43[/C][C]2210[/C][C]-304.566[/C][C]514.566[/C][/ROW]
[ROW][C]87[/C][C]1920[/C][C]2024.7[/C][C]2190.83[/C][C]-166.128[/C][C]-104.705[/C][/ROW]
[ROW][C]88[/C][C]1720[/C][C]1870.23[/C][C]2169.17[/C][C]-298.941[/C][C]-150.226[/C][/ROW]
[ROW][C]89[/C][C]2000[/C][C]1518.25[/C][C]2170[/C][C]-651.753[/C][C]481.753[/C][/ROW]
[ROW][C]90[/C][C]1960[/C][C]2058.56[/C][C]2199.17[/C][C]-140.608[/C][C]-98.559[/C][/ROW]
[ROW][C]91[/C][C]2860[/C][C]1830.54[/C][C]2225[/C][C]-394.462[/C][C]1029.46[/C][/ROW]
[ROW][C]92[/C][C]2160[/C][C]2419.7[/C][C]2222.5[/C][C]197.205[/C][C]-259.705[/C][/ROW]
[ROW][C]93[/C][C]2360[/C][C]2694.29[/C][C]2200.83[/C][C]493.455[/C][C]-334.288[/C][/ROW]
[ROW][C]94[/C][C]2300[/C][C]2744.91[/C][C]2189.17[/C][C]555.747[/C][C]-444.913[/C][/ROW]
[ROW][C]95[/C][C]2360[/C][C]2683.87[/C][C]2178.33[/C][C]505.538[/C][C]-323.872[/C][/ROW]
[ROW][C]96[/C][C]2260[/C][C]2104.08[/C][C]2187.5[/C][C]-83.4201[/C][C]155.92[/C][/ROW]
[ROW][C]97[/C][C]2460[/C][C]2453.77[/C][C]2165.83[/C][C]287.934[/C][C]6.23264[/C][/ROW]
[ROW][C]98[/C][C]2200[/C][C]1818.77[/C][C]2123.33[/C][C]-304.566[/C][C]381.233[/C][/ROW]
[ROW][C]99[/C][C]1620[/C][C]1961.37[/C][C]2127.5[/C][C]-166.128[/C][C]-341.372[/C][/ROW]
[ROW][C]100[/C][C]1740[/C][C]1856.06[/C][C]2155[/C][C]-298.941[/C][C]-116.059[/C][/ROW]
[ROW][C]101[/C][C]1720[/C][C]1540.75[/C][C]2192.5[/C][C]-651.753[/C][C]179.253[/C][/ROW]
[ROW][C]102[/C][C]2460[/C][C]2072.73[/C][C]2213.33[/C][C]-140.608[/C][C]387.274[/C][/ROW]
[ROW][C]103[/C][C]1840[/C][C]NA[/C][C]NA[/C][C]-394.462[/C][C]NA[/C][/ROW]
[ROW][C]104[/C][C]2160[/C][C]NA[/C][C]NA[/C][C]197.205[/C][C]NA[/C][/ROW]
[ROW][C]105[/C][C]2460[/C][C]NA[/C][C]NA[/C][C]493.455[/C][C]NA[/C][/ROW]
[ROW][C]106[/C][C]2860[/C][C]NA[/C][C]NA[/C][C]555.747[/C][C]NA[/C][/ROW]
[ROW][C]107[/C][C]2700[/C][C]NA[/C][C]NA[/C][C]505.538[/C][C]NA[/C][/ROW]
[ROW][C]108[/C][C]2420[/C][C]NA[/C][C]NA[/C][C]-83.4201[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297996&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297996&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
17360NANA287.934NA
24820NANA-304.566NA
32600NANA-166.128NA
45520NANA-298.941NA
53180NANA-651.753NA
64080NANA-140.608NA
733604134.74529.17-394.462-774.705
849604578.874381.67197.205381.128
946404895.124401.67493.455-255.122
1054204956.584400.83555.747463.42
1148804837.24331.67505.53842.7951
1247804257.414340.83-83.4201522.587
1348604642.14354.17287.934217.899
1437804017.934322.5-304.566-237.934
1541204173.044339.17-166.128-53.0382
1639804088.564387.5-298.941-108.559
1730603708.254360-651.753-648.247
1844204146.894287.5-140.608273.108
1933403814.74209.17-394.462-474.705
2042204378.044180.83197.205-158.038
2157804640.124146.67493.4551139.88
2254404642.414086.67555.747797.587
2342004560.544055505.538-360.538
2437203914.913998.33-83.4201-194.913
2540404231.273943.33287.934-191.267
2639203582.13886.67-304.566337.899
2731603616.373782.5-166.128-456.372
2835003344.393643.33-298.941155.608
2927802947.413599.17-651.753-167.413
3033403518.563659.17-140.608-178.559
3131003270.543665-394.462-170.538
3231003803.043605.83197.205-703.038
3344004084.293590.83493.455315.712
3434804152.413596.67555.747-672.413
3551004083.873578.33505.5381016.13
3642603459.913543.33-83.4201800.087
3736403775.433487.5287.934-135.434
3829003220.433525-304.566-320.434
3938203362.23528.33-166.128457.795
4029803164.393463.33-298.941-184.392
4128602764.913416.67-651.75395.0868
4224203182.733323.33-140.608-762.726
4326802852.23246.67-394.462-172.205
4444203411.373214.17197.2051008.63
4531603677.623184.17493.455-517.622
4631603715.753160555.747-555.747
4743003629.73124.17505.538670.295
4828203068.253151.67-83.4201-248.247
4932403489.63201.67287.934-249.601
5025202841.273145.83-304.566-321.267
5134802953.873120-166.128526.128
5227402859.393158.33-298.941-119.392
5322402429.913081.67-651.753-189.913
5437002831.062971.67-140.608868.941
5526002552.22946.67-394.46247.7951
5631603110.542913.33197.20549.4618
5738003340.952847.5493.455459.045
5834403370.752815555.74769.2535
5921803321.372815.83505.538-1141.37
6023002671.582755-83.4201-371.58
6131602982.932695287.934177.066
6218002376.272680.83-304.566-576.267
6326202453.042619.17-166.128166.962
6428202292.732591.67-298.941527.274
6521802035.752687.5-651.753144.253
6623002621.892762.5-140.608-321.892
6725602378.872773.33-394.462181.128
6828603015.542818.33197.205-155.538
6926203335.122841.67493.455-715.122
7039603365.752810555.747594.253
7139603286.372780.83505.538673.628
7223202679.912763.33-83.4201-359.913
7334003031.272743.33287.934368.733
7426402404.62709.17-304.566235.399
7523402522.22688.33-166.128-182.205
7623402331.062630-298.9418.94097
7719601841.582493.33-651.753118.42
7821002254.392395-140.608-154.392
7922801933.042327.5-394.462346.962
8023202469.72272.5197.205-149.705
8126602739.292245.83493.455-79.2882
8225202758.252202.5555.747-238.247
8321202683.872178.33505.538-563.872
8418002090.752174.17-83.4201-290.747
8523002480.432192.5287.934-180.434
8624201905.432210-304.566514.566
8719202024.72190.83-166.128-104.705
8817201870.232169.17-298.941-150.226
8920001518.252170-651.753481.753
9019602058.562199.17-140.608-98.559
9128601830.542225-394.4621029.46
9221602419.72222.5197.205-259.705
9323602694.292200.83493.455-334.288
9423002744.912189.17555.747-444.913
9523602683.872178.33505.538-323.872
9622602104.082187.5-83.4201155.92
9724602453.772165.83287.9346.23264
9822001818.772123.33-304.566381.233
9916201961.372127.5-166.128-341.372
10017401856.062155-298.941-116.059
10117201540.752192.5-651.753179.253
10224602072.732213.33-140.608387.274
1031840NANA-394.462NA
1042160NANA197.205NA
1052460NANA493.455NA
1062860NANA555.747NA
1072700NANA505.538NA
1082420NANA-83.4201NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')