Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationWed, 07 Dec 2016 11:20:59 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481106543opu0isyft3xps76.htm/, Retrieved Fri, 01 Nov 2024 03:38:52 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297977, Retrieved Fri, 01 Nov 2024 03:38:52 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact141
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [Tijdreeks vb ] [2016-12-07 10:20:59] [c0b73e623858a81821526bb2f691ccd9] [Current]
Feedback Forum

Post a new message
Dataseries X:
7360
4820
2600
5520
3180
4080
3360
4960
4640
5420
4880
4780
4860
3780
4120
3980
3060
4420
3340
4220
5780
5440
4200
3720
4040
3920
3160
3500
2780
3340
3100
3100
4400
3480
5100
4260
3640
2900
3820
2980
2860
2420
2680
4420
3160
3160
4300
2820
3240
2520
3480
2740
2240
3700
2600
3160
3800
3440
2180
2300
3160
1800
2620
2820
2180
2300
2560
2860
2620
3960
3960
2320
3400
2640
2340
2340
1960
2100
2280
2320
2660
2520
2120
1800
2300
2420
1920
1720
2000
1960
2860
2160
2360
2300
2360
2260
2460
2200
1620
1740
1720
2460
1840
2160
2460
2860
2700
2420




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time14 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time14 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297977&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]14 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297977&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297977&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time14 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
173607360000
248205662.77808563375-122.800250890809-122.800250580105-2.69424716823634
326003881.41479759503-190.201859842663-190.201859842663-3.49319539300882
455204848.649390882-160.36933742692-160.369337426922.58176399542645
531803920.56286477419-175.176371453376-175.176371453375-1.73925912717541
640804035.19634390805-170.417669840245-170.4176698402460.65993212337065
733603674.81584791357-173.28422280739-173.284222807391-0.433406649950157
849604428.39797867787-159.924787956927-159.9247879569262.11637528217732
946404570.33076778099-155.693705221246-155.6937052212470.689499759650389
1054205074.10418536312-146.631567160018-146.6315671600171.50661715133965
1148804983.79530462529-145.87004142741-145.870041427410.128687888421437
1247804887.88006523174-145.204357879525-145.2043578795250.114146299173625
1348604195.96288256276-100.2118824460431102.33070691533-1.60458684420557
1437803960.76379313269-104.720523205125-104.720523178954-0.255067106591899
1541204070.2233624539-100.720732708786-100.7207327087850.469297932260072
1639804033.11035751568-99.9608242658232-99.96082426582380.143815506767419
1730603492.57211204091-103.934906581756-103.934906581756-1.0042969171985
1844204034.89291631499-98.9310548479047-98.93105484790511.47691562022207
1933403653.12544701333-100.959325079892-100.959325079892-0.646979747969393
2042203989.59891790871-97.9405326651517-97.94053266515131.00098771124524
2157805021.7807552601-90.3005892001912-90.30058920019152.58649999674934
2254405272.18375180938-88.0264277874138-88.02642778741350.779822586542886
2342004674.29566896086-91.3984237086261-91.3984237086261-1.16704569202395
2437204143.94312692373-94.2791905053007-94.2791905053008-1.00476469593455
2540403576.05747282212-75.6393493937734832.032843156519-1.23667786913573
2639203800.30948221033-69.0834536301296-69.0834535450090.609160444698326
2731603441.48331579721-72.5968876142005-72.5968876142-0.64525242886446
2835003485.24650431986-71.6926000378951-71.69260003789580.264387165801462
2927803093.38359840396-73.5766366985836-73.5766366985837-0.731318345886575
3033403244.04271818866-72.4409170136294-72.44091701362970.51303957606409
3131003172.07953957534-72.4386703574433-72.4386703574440.00109370019216418
3231003141.08399311809-72.2506651250046-72.25066512500420.094899813632302
3344003867.76315274149-68.6920648774644-68.69206487746481.82964141334079
3434803656.53797789522-69.3203512615747-69.3203512615744-0.326432264956168
3551004487.85919482793-65.3779471077641-65.37794710776412.06271398328509
3642604367.20325856573-65.6185942662778-65.6185942662775-0.126603178574263
3736403628.07666113725-48.1996991660849530.196690739072-1.68699052614904
3829003203.40675344984-54.3164051255857-54.3164049175493-0.790291090780974
3938203566.19889401863-50.57170539976-50.57170539975960.936053434504538
4029803238.7289255144-52.1663054060067-52.1663054060074-0.630641562337471
4128603030.19833708755-52.8490763449371-52.8490763449371-0.357511757968622
4224202690.00297543532-53.930435138736-53.9304351387364-0.65779636164344
4326802691.80004809542-53.73547552335-53.73547552335070.127629034782184
4444203683.36921924611-50.2036685050554-50.20366850505492.39441877075308
4531603392.31943866341-51.0035807790682-51.0035807790687-0.551733714607927
4631603267.11304127786-51.2477451702477-51.2477451702473-0.169990531926612
4743003862.37711260037-49.1328531854133-49.13285318541321.48111112064144
4828203275.64600029318-50.883776240052-50.8837762400517-1.23160834394545
4932402949.43707367065-45.5811536555616501.392689889236-0.675024352086302
5025202704.11888930763-48.1633378154856-48.163337427477-0.42726201920433
5134803156.64581961646-44.5947699413318-44.59476994133161.12866427113991
5227402925.18599760893-45.4495221183915-45.4495221183922-0.426179511930942
5322402541.07966121947-46.625046255069-46.625046255069-0.774754803358226
5437003207.7279333826-44.4895917386682-44.48959173866851.63336587744102
5526002867.78199518767-45.312501938869-45.3125019388697-0.67682248445489
5631603040.509575401-44.7255862900442-44.72558629004360.499550183461261
5738003479.27183258863-43.445415722306-43.44541572230651.10778158148086
5834403462.94613352249-43.3742260601623-43.3742260601620.0621391133304921
5921802738.32107001117-45.1532271792901-45.1532271792899-1.5609615607828
6023002494.96875596912-45.6688757249909-45.6688757249908-0.454139716888623
6131602557.12200840671-47.3231087287292520.5541954884250.260923160249976
6218002121.01694103607-51.4965560607413-51.4965554015798-0.841863788650833
6326202414.65247008844-49.4570689284874-49.45706892848730.780286862080745
6428202652.88838030335-48.3656297955896-48.36562979559030.65673430564677
6521802390.16668728322-48.983075502213-48.9830755022131-0.490575775181636
6623002345.62674328306-48.9720312458129-48.97203124581310.0101767741982134
6725602474.55377883722-48.5604521934618-48.56045219346240.407588817823321
6828602700.85746693545-47.9455908395865-47.9455908395860.629821492313024
6926202661.4747591531-47.9267405943677-47.92674059436810.0196218847683422
7039603407.75184772883-46.1926531700265-46.19265317002621.81996060068623
7139603728.72591550604-45.3947858909473-45.39478589094720.841390459855679
7223202932.66838481987-47.0206525860841-47.0206525860838-1.72020915943158
7334002884.13643300626-47.0013848073929517.015231996317-0.00362523537763278
7426402749.40656022795-47.8065275035224-47.8065265883539-0.191597805427956
7523402521.85132038154-48.7136885289841-48.713688528984-0.407224034774955
7623402424.97978362298-48.8697603972524-48.869760397253-0.110003806665821
7719602166.83432274114-49.3849111802099-49.3849111802101-0.479078497848773
7821002135.64310096234-49.3462497484775-49.34624974847770.0416781139327263
7922802224.74958079116-49.0723205663759-49.07232056637650.317247187691281
8023202285.84071171968-48.8615085044998-48.86150850449930.252451032142519
8126602505.77353325678-48.355154148087-48.35515414808730.615995983589521
8225202520.61003929947-48.2370477966374-48.23704779663720.144818963133753
8321202299.13175918832-48.5593988455657-48.5593988455654-0.397027432807949
8418002021.57869155938-48.9842230805153-48.9842230805151-0.524800787008346
8523001860.19333416621-47.7583902547378525.342291974156-0.267922084595966
8624202194.13711747409-44.6990034896882-44.69900279451020.838923141924201
8719202043.68465689497-45.164747468797-45.1647474687968-0.239955292096565
8817201865.4238258069-45.5412212088319-45.5412212088326-0.304168789146899
8920001948.4769732493-45.2648628381774-45.26486283817760.294440457820952
9019601961.35393866833-45.1569685784833-45.15696857848350.133206510244503
9128602479.58502878375-44.1833094345173-44.18330943451781.29103938680575
9221602303.68577770424-44.4035334188938-44.4035334188933-0.301861698578763
9323602341.95111354188-44.2674364493269-44.26743644932720.189464342382074
9423002324.22016573414-44.2240822219118-44.22408222191150.0608185128772129
9523602350.76258838981-44.1089539805241-44.10895398052390.162189664839046
9622602305.20405709499-44.111305804334-44.1113058043337-0.00332229583945383
9724602107.57241884795-42.6485215559602469.133736415529-0.364192961886323
9822002168.18561330707-41.9139202338397-41.9139195700510.228061482717277
9916201860.58664883418-42.9518222621359-42.9518222621358-0.603558140302919
10017401797.85497196547-43.0014574072636-43.0014574072642-0.0452203564646177
10117201759.49673365064-42.9926029468655-42.99260294686560.0106331659999654
10224602164.59843341859-42.2545928774658-42.25459287746611.0267022940175
10318401985.56508866121-42.4644319972424-42.4644319972431-0.313457080635264
10421602090.8561693957-42.2450906272303-42.24509062722970.338638765316463
10524602307.0366360242-41.8672810773727-41.86728107737310.592300981253744
10628602627.88102594436-41.340948683176-41.34094868317560.831332146597176
10727002674.72632783375-41.2134972787863-41.21349727878610.202123419088399
10824202535.35816755741-41.3549927854572-41.3549927854568-0.224971750564911

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 7360 & 7360 & 0 & 0 & 0 \tabularnewline
2 & 4820 & 5662.77808563375 & -122.800250890809 & -122.800250580105 & -2.69424716823634 \tabularnewline
3 & 2600 & 3881.41479759503 & -190.201859842663 & -190.201859842663 & -3.49319539300882 \tabularnewline
4 & 5520 & 4848.649390882 & -160.36933742692 & -160.36933742692 & 2.58176399542645 \tabularnewline
5 & 3180 & 3920.56286477419 & -175.176371453376 & -175.176371453375 & -1.73925912717541 \tabularnewline
6 & 4080 & 4035.19634390805 & -170.417669840245 & -170.417669840246 & 0.65993212337065 \tabularnewline
7 & 3360 & 3674.81584791357 & -173.28422280739 & -173.284222807391 & -0.433406649950157 \tabularnewline
8 & 4960 & 4428.39797867787 & -159.924787956927 & -159.924787956926 & 2.11637528217732 \tabularnewline
9 & 4640 & 4570.33076778099 & -155.693705221246 & -155.693705221247 & 0.689499759650389 \tabularnewline
10 & 5420 & 5074.10418536312 & -146.631567160018 & -146.631567160017 & 1.50661715133965 \tabularnewline
11 & 4880 & 4983.79530462529 & -145.87004142741 & -145.87004142741 & 0.128687888421437 \tabularnewline
12 & 4780 & 4887.88006523174 & -145.204357879525 & -145.204357879525 & 0.114146299173625 \tabularnewline
13 & 4860 & 4195.96288256276 & -100.211882446043 & 1102.33070691533 & -1.60458684420557 \tabularnewline
14 & 3780 & 3960.76379313269 & -104.720523205125 & -104.720523178954 & -0.255067106591899 \tabularnewline
15 & 4120 & 4070.2233624539 & -100.720732708786 & -100.720732708785 & 0.469297932260072 \tabularnewline
16 & 3980 & 4033.11035751568 & -99.9608242658232 & -99.9608242658238 & 0.143815506767419 \tabularnewline
17 & 3060 & 3492.57211204091 & -103.934906581756 & -103.934906581756 & -1.0042969171985 \tabularnewline
18 & 4420 & 4034.89291631499 & -98.9310548479047 & -98.9310548479051 & 1.47691562022207 \tabularnewline
19 & 3340 & 3653.12544701333 & -100.959325079892 & -100.959325079892 & -0.646979747969393 \tabularnewline
20 & 4220 & 3989.59891790871 & -97.9405326651517 & -97.9405326651513 & 1.00098771124524 \tabularnewline
21 & 5780 & 5021.7807552601 & -90.3005892001912 & -90.3005892001915 & 2.58649999674934 \tabularnewline
22 & 5440 & 5272.18375180938 & -88.0264277874138 & -88.0264277874135 & 0.779822586542886 \tabularnewline
23 & 4200 & 4674.29566896086 & -91.3984237086261 & -91.3984237086261 & -1.16704569202395 \tabularnewline
24 & 3720 & 4143.94312692373 & -94.2791905053007 & -94.2791905053008 & -1.00476469593455 \tabularnewline
25 & 4040 & 3576.05747282212 & -75.6393493937734 & 832.032843156519 & -1.23667786913573 \tabularnewline
26 & 3920 & 3800.30948221033 & -69.0834536301296 & -69.083453545009 & 0.609160444698326 \tabularnewline
27 & 3160 & 3441.48331579721 & -72.5968876142005 & -72.5968876142 & -0.64525242886446 \tabularnewline
28 & 3500 & 3485.24650431986 & -71.6926000378951 & -71.6926000378958 & 0.264387165801462 \tabularnewline
29 & 2780 & 3093.38359840396 & -73.5766366985836 & -73.5766366985837 & -0.731318345886575 \tabularnewline
30 & 3340 & 3244.04271818866 & -72.4409170136294 & -72.4409170136297 & 0.51303957606409 \tabularnewline
31 & 3100 & 3172.07953957534 & -72.4386703574433 & -72.438670357444 & 0.00109370019216418 \tabularnewline
32 & 3100 & 3141.08399311809 & -72.2506651250046 & -72.2506651250042 & 0.094899813632302 \tabularnewline
33 & 4400 & 3867.76315274149 & -68.6920648774644 & -68.6920648774648 & 1.82964141334079 \tabularnewline
34 & 3480 & 3656.53797789522 & -69.3203512615747 & -69.3203512615744 & -0.326432264956168 \tabularnewline
35 & 5100 & 4487.85919482793 & -65.3779471077641 & -65.3779471077641 & 2.06271398328509 \tabularnewline
36 & 4260 & 4367.20325856573 & -65.6185942662778 & -65.6185942662775 & -0.126603178574263 \tabularnewline
37 & 3640 & 3628.07666113725 & -48.1996991660849 & 530.196690739072 & -1.68699052614904 \tabularnewline
38 & 2900 & 3203.40675344984 & -54.3164051255857 & -54.3164049175493 & -0.790291090780974 \tabularnewline
39 & 3820 & 3566.19889401863 & -50.57170539976 & -50.5717053997596 & 0.936053434504538 \tabularnewline
40 & 2980 & 3238.7289255144 & -52.1663054060067 & -52.1663054060074 & -0.630641562337471 \tabularnewline
41 & 2860 & 3030.19833708755 & -52.8490763449371 & -52.8490763449371 & -0.357511757968622 \tabularnewline
42 & 2420 & 2690.00297543532 & -53.930435138736 & -53.9304351387364 & -0.65779636164344 \tabularnewline
43 & 2680 & 2691.80004809542 & -53.73547552335 & -53.7354755233507 & 0.127629034782184 \tabularnewline
44 & 4420 & 3683.36921924611 & -50.2036685050554 & -50.2036685050549 & 2.39441877075308 \tabularnewline
45 & 3160 & 3392.31943866341 & -51.0035807790682 & -51.0035807790687 & -0.551733714607927 \tabularnewline
46 & 3160 & 3267.11304127786 & -51.2477451702477 & -51.2477451702473 & -0.169990531926612 \tabularnewline
47 & 4300 & 3862.37711260037 & -49.1328531854133 & -49.1328531854132 & 1.48111112064144 \tabularnewline
48 & 2820 & 3275.64600029318 & -50.883776240052 & -50.8837762400517 & -1.23160834394545 \tabularnewline
49 & 3240 & 2949.43707367065 & -45.5811536555616 & 501.392689889236 & -0.675024352086302 \tabularnewline
50 & 2520 & 2704.11888930763 & -48.1633378154856 & -48.163337427477 & -0.42726201920433 \tabularnewline
51 & 3480 & 3156.64581961646 & -44.5947699413318 & -44.5947699413316 & 1.12866427113991 \tabularnewline
52 & 2740 & 2925.18599760893 & -45.4495221183915 & -45.4495221183922 & -0.426179511930942 \tabularnewline
53 & 2240 & 2541.07966121947 & -46.625046255069 & -46.625046255069 & -0.774754803358226 \tabularnewline
54 & 3700 & 3207.7279333826 & -44.4895917386682 & -44.4895917386685 & 1.63336587744102 \tabularnewline
55 & 2600 & 2867.78199518767 & -45.312501938869 & -45.3125019388697 & -0.67682248445489 \tabularnewline
56 & 3160 & 3040.509575401 & -44.7255862900442 & -44.7255862900436 & 0.499550183461261 \tabularnewline
57 & 3800 & 3479.27183258863 & -43.445415722306 & -43.4454157223065 & 1.10778158148086 \tabularnewline
58 & 3440 & 3462.94613352249 & -43.3742260601623 & -43.374226060162 & 0.0621391133304921 \tabularnewline
59 & 2180 & 2738.32107001117 & -45.1532271792901 & -45.1532271792899 & -1.5609615607828 \tabularnewline
60 & 2300 & 2494.96875596912 & -45.6688757249909 & -45.6688757249908 & -0.454139716888623 \tabularnewline
61 & 3160 & 2557.12200840671 & -47.3231087287292 & 520.554195488425 & 0.260923160249976 \tabularnewline
62 & 1800 & 2121.01694103607 & -51.4965560607413 & -51.4965554015798 & -0.841863788650833 \tabularnewline
63 & 2620 & 2414.65247008844 & -49.4570689284874 & -49.4570689284873 & 0.780286862080745 \tabularnewline
64 & 2820 & 2652.88838030335 & -48.3656297955896 & -48.3656297955903 & 0.65673430564677 \tabularnewline
65 & 2180 & 2390.16668728322 & -48.983075502213 & -48.9830755022131 & -0.490575775181636 \tabularnewline
66 & 2300 & 2345.62674328306 & -48.9720312458129 & -48.9720312458131 & 0.0101767741982134 \tabularnewline
67 & 2560 & 2474.55377883722 & -48.5604521934618 & -48.5604521934624 & 0.407588817823321 \tabularnewline
68 & 2860 & 2700.85746693545 & -47.9455908395865 & -47.945590839586 & 0.629821492313024 \tabularnewline
69 & 2620 & 2661.4747591531 & -47.9267405943677 & -47.9267405943681 & 0.0196218847683422 \tabularnewline
70 & 3960 & 3407.75184772883 & -46.1926531700265 & -46.1926531700262 & 1.81996060068623 \tabularnewline
71 & 3960 & 3728.72591550604 & -45.3947858909473 & -45.3947858909472 & 0.841390459855679 \tabularnewline
72 & 2320 & 2932.66838481987 & -47.0206525860841 & -47.0206525860838 & -1.72020915943158 \tabularnewline
73 & 3400 & 2884.13643300626 & -47.0013848073929 & 517.015231996317 & -0.00362523537763278 \tabularnewline
74 & 2640 & 2749.40656022795 & -47.8065275035224 & -47.8065265883539 & -0.191597805427956 \tabularnewline
75 & 2340 & 2521.85132038154 & -48.7136885289841 & -48.713688528984 & -0.407224034774955 \tabularnewline
76 & 2340 & 2424.97978362298 & -48.8697603972524 & -48.869760397253 & -0.110003806665821 \tabularnewline
77 & 1960 & 2166.83432274114 & -49.3849111802099 & -49.3849111802101 & -0.479078497848773 \tabularnewline
78 & 2100 & 2135.64310096234 & -49.3462497484775 & -49.3462497484777 & 0.0416781139327263 \tabularnewline
79 & 2280 & 2224.74958079116 & -49.0723205663759 & -49.0723205663765 & 0.317247187691281 \tabularnewline
80 & 2320 & 2285.84071171968 & -48.8615085044998 & -48.8615085044993 & 0.252451032142519 \tabularnewline
81 & 2660 & 2505.77353325678 & -48.355154148087 & -48.3551541480873 & 0.615995983589521 \tabularnewline
82 & 2520 & 2520.61003929947 & -48.2370477966374 & -48.2370477966372 & 0.144818963133753 \tabularnewline
83 & 2120 & 2299.13175918832 & -48.5593988455657 & -48.5593988455654 & -0.397027432807949 \tabularnewline
84 & 1800 & 2021.57869155938 & -48.9842230805153 & -48.9842230805151 & -0.524800787008346 \tabularnewline
85 & 2300 & 1860.19333416621 & -47.7583902547378 & 525.342291974156 & -0.267922084595966 \tabularnewline
86 & 2420 & 2194.13711747409 & -44.6990034896882 & -44.6990027945102 & 0.838923141924201 \tabularnewline
87 & 1920 & 2043.68465689497 & -45.164747468797 & -45.1647474687968 & -0.239955292096565 \tabularnewline
88 & 1720 & 1865.4238258069 & -45.5412212088319 & -45.5412212088326 & -0.304168789146899 \tabularnewline
89 & 2000 & 1948.4769732493 & -45.2648628381774 & -45.2648628381776 & 0.294440457820952 \tabularnewline
90 & 1960 & 1961.35393866833 & -45.1569685784833 & -45.1569685784835 & 0.133206510244503 \tabularnewline
91 & 2860 & 2479.58502878375 & -44.1833094345173 & -44.1833094345178 & 1.29103938680575 \tabularnewline
92 & 2160 & 2303.68577770424 & -44.4035334188938 & -44.4035334188933 & -0.301861698578763 \tabularnewline
93 & 2360 & 2341.95111354188 & -44.2674364493269 & -44.2674364493272 & 0.189464342382074 \tabularnewline
94 & 2300 & 2324.22016573414 & -44.2240822219118 & -44.2240822219115 & 0.0608185128772129 \tabularnewline
95 & 2360 & 2350.76258838981 & -44.1089539805241 & -44.1089539805239 & 0.162189664839046 \tabularnewline
96 & 2260 & 2305.20405709499 & -44.111305804334 & -44.1113058043337 & -0.00332229583945383 \tabularnewline
97 & 2460 & 2107.57241884795 & -42.6485215559602 & 469.133736415529 & -0.364192961886323 \tabularnewline
98 & 2200 & 2168.18561330707 & -41.9139202338397 & -41.913919570051 & 0.228061482717277 \tabularnewline
99 & 1620 & 1860.58664883418 & -42.9518222621359 & -42.9518222621358 & -0.603558140302919 \tabularnewline
100 & 1740 & 1797.85497196547 & -43.0014574072636 & -43.0014574072642 & -0.0452203564646177 \tabularnewline
101 & 1720 & 1759.49673365064 & -42.9926029468655 & -42.9926029468656 & 0.0106331659999654 \tabularnewline
102 & 2460 & 2164.59843341859 & -42.2545928774658 & -42.2545928774661 & 1.0267022940175 \tabularnewline
103 & 1840 & 1985.56508866121 & -42.4644319972424 & -42.4644319972431 & -0.313457080635264 \tabularnewline
104 & 2160 & 2090.8561693957 & -42.2450906272303 & -42.2450906272297 & 0.338638765316463 \tabularnewline
105 & 2460 & 2307.0366360242 & -41.8672810773727 & -41.8672810773731 & 0.592300981253744 \tabularnewline
106 & 2860 & 2627.88102594436 & -41.340948683176 & -41.3409486831756 & 0.831332146597176 \tabularnewline
107 & 2700 & 2674.72632783375 & -41.2134972787863 & -41.2134972787861 & 0.202123419088399 \tabularnewline
108 & 2420 & 2535.35816755741 & -41.3549927854572 & -41.3549927854568 & -0.224971750564911 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297977&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]7360[/C][C]7360[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]4820[/C][C]5662.77808563375[/C][C]-122.800250890809[/C][C]-122.800250580105[/C][C]-2.69424716823634[/C][/ROW]
[ROW][C]3[/C][C]2600[/C][C]3881.41479759503[/C][C]-190.201859842663[/C][C]-190.201859842663[/C][C]-3.49319539300882[/C][/ROW]
[ROW][C]4[/C][C]5520[/C][C]4848.649390882[/C][C]-160.36933742692[/C][C]-160.36933742692[/C][C]2.58176399542645[/C][/ROW]
[ROW][C]5[/C][C]3180[/C][C]3920.56286477419[/C][C]-175.176371453376[/C][C]-175.176371453375[/C][C]-1.73925912717541[/C][/ROW]
[ROW][C]6[/C][C]4080[/C][C]4035.19634390805[/C][C]-170.417669840245[/C][C]-170.417669840246[/C][C]0.65993212337065[/C][/ROW]
[ROW][C]7[/C][C]3360[/C][C]3674.81584791357[/C][C]-173.28422280739[/C][C]-173.284222807391[/C][C]-0.433406649950157[/C][/ROW]
[ROW][C]8[/C][C]4960[/C][C]4428.39797867787[/C][C]-159.924787956927[/C][C]-159.924787956926[/C][C]2.11637528217732[/C][/ROW]
[ROW][C]9[/C][C]4640[/C][C]4570.33076778099[/C][C]-155.693705221246[/C][C]-155.693705221247[/C][C]0.689499759650389[/C][/ROW]
[ROW][C]10[/C][C]5420[/C][C]5074.10418536312[/C][C]-146.631567160018[/C][C]-146.631567160017[/C][C]1.50661715133965[/C][/ROW]
[ROW][C]11[/C][C]4880[/C][C]4983.79530462529[/C][C]-145.87004142741[/C][C]-145.87004142741[/C][C]0.128687888421437[/C][/ROW]
[ROW][C]12[/C][C]4780[/C][C]4887.88006523174[/C][C]-145.204357879525[/C][C]-145.204357879525[/C][C]0.114146299173625[/C][/ROW]
[ROW][C]13[/C][C]4860[/C][C]4195.96288256276[/C][C]-100.211882446043[/C][C]1102.33070691533[/C][C]-1.60458684420557[/C][/ROW]
[ROW][C]14[/C][C]3780[/C][C]3960.76379313269[/C][C]-104.720523205125[/C][C]-104.720523178954[/C][C]-0.255067106591899[/C][/ROW]
[ROW][C]15[/C][C]4120[/C][C]4070.2233624539[/C][C]-100.720732708786[/C][C]-100.720732708785[/C][C]0.469297932260072[/C][/ROW]
[ROW][C]16[/C][C]3980[/C][C]4033.11035751568[/C][C]-99.9608242658232[/C][C]-99.9608242658238[/C][C]0.143815506767419[/C][/ROW]
[ROW][C]17[/C][C]3060[/C][C]3492.57211204091[/C][C]-103.934906581756[/C][C]-103.934906581756[/C][C]-1.0042969171985[/C][/ROW]
[ROW][C]18[/C][C]4420[/C][C]4034.89291631499[/C][C]-98.9310548479047[/C][C]-98.9310548479051[/C][C]1.47691562022207[/C][/ROW]
[ROW][C]19[/C][C]3340[/C][C]3653.12544701333[/C][C]-100.959325079892[/C][C]-100.959325079892[/C][C]-0.646979747969393[/C][/ROW]
[ROW][C]20[/C][C]4220[/C][C]3989.59891790871[/C][C]-97.9405326651517[/C][C]-97.9405326651513[/C][C]1.00098771124524[/C][/ROW]
[ROW][C]21[/C][C]5780[/C][C]5021.7807552601[/C][C]-90.3005892001912[/C][C]-90.3005892001915[/C][C]2.58649999674934[/C][/ROW]
[ROW][C]22[/C][C]5440[/C][C]5272.18375180938[/C][C]-88.0264277874138[/C][C]-88.0264277874135[/C][C]0.779822586542886[/C][/ROW]
[ROW][C]23[/C][C]4200[/C][C]4674.29566896086[/C][C]-91.3984237086261[/C][C]-91.3984237086261[/C][C]-1.16704569202395[/C][/ROW]
[ROW][C]24[/C][C]3720[/C][C]4143.94312692373[/C][C]-94.2791905053007[/C][C]-94.2791905053008[/C][C]-1.00476469593455[/C][/ROW]
[ROW][C]25[/C][C]4040[/C][C]3576.05747282212[/C][C]-75.6393493937734[/C][C]832.032843156519[/C][C]-1.23667786913573[/C][/ROW]
[ROW][C]26[/C][C]3920[/C][C]3800.30948221033[/C][C]-69.0834536301296[/C][C]-69.083453545009[/C][C]0.609160444698326[/C][/ROW]
[ROW][C]27[/C][C]3160[/C][C]3441.48331579721[/C][C]-72.5968876142005[/C][C]-72.5968876142[/C][C]-0.64525242886446[/C][/ROW]
[ROW][C]28[/C][C]3500[/C][C]3485.24650431986[/C][C]-71.6926000378951[/C][C]-71.6926000378958[/C][C]0.264387165801462[/C][/ROW]
[ROW][C]29[/C][C]2780[/C][C]3093.38359840396[/C][C]-73.5766366985836[/C][C]-73.5766366985837[/C][C]-0.731318345886575[/C][/ROW]
[ROW][C]30[/C][C]3340[/C][C]3244.04271818866[/C][C]-72.4409170136294[/C][C]-72.4409170136297[/C][C]0.51303957606409[/C][/ROW]
[ROW][C]31[/C][C]3100[/C][C]3172.07953957534[/C][C]-72.4386703574433[/C][C]-72.438670357444[/C][C]0.00109370019216418[/C][/ROW]
[ROW][C]32[/C][C]3100[/C][C]3141.08399311809[/C][C]-72.2506651250046[/C][C]-72.2506651250042[/C][C]0.094899813632302[/C][/ROW]
[ROW][C]33[/C][C]4400[/C][C]3867.76315274149[/C][C]-68.6920648774644[/C][C]-68.6920648774648[/C][C]1.82964141334079[/C][/ROW]
[ROW][C]34[/C][C]3480[/C][C]3656.53797789522[/C][C]-69.3203512615747[/C][C]-69.3203512615744[/C][C]-0.326432264956168[/C][/ROW]
[ROW][C]35[/C][C]5100[/C][C]4487.85919482793[/C][C]-65.3779471077641[/C][C]-65.3779471077641[/C][C]2.06271398328509[/C][/ROW]
[ROW][C]36[/C][C]4260[/C][C]4367.20325856573[/C][C]-65.6185942662778[/C][C]-65.6185942662775[/C][C]-0.126603178574263[/C][/ROW]
[ROW][C]37[/C][C]3640[/C][C]3628.07666113725[/C][C]-48.1996991660849[/C][C]530.196690739072[/C][C]-1.68699052614904[/C][/ROW]
[ROW][C]38[/C][C]2900[/C][C]3203.40675344984[/C][C]-54.3164051255857[/C][C]-54.3164049175493[/C][C]-0.790291090780974[/C][/ROW]
[ROW][C]39[/C][C]3820[/C][C]3566.19889401863[/C][C]-50.57170539976[/C][C]-50.5717053997596[/C][C]0.936053434504538[/C][/ROW]
[ROW][C]40[/C][C]2980[/C][C]3238.7289255144[/C][C]-52.1663054060067[/C][C]-52.1663054060074[/C][C]-0.630641562337471[/C][/ROW]
[ROW][C]41[/C][C]2860[/C][C]3030.19833708755[/C][C]-52.8490763449371[/C][C]-52.8490763449371[/C][C]-0.357511757968622[/C][/ROW]
[ROW][C]42[/C][C]2420[/C][C]2690.00297543532[/C][C]-53.930435138736[/C][C]-53.9304351387364[/C][C]-0.65779636164344[/C][/ROW]
[ROW][C]43[/C][C]2680[/C][C]2691.80004809542[/C][C]-53.73547552335[/C][C]-53.7354755233507[/C][C]0.127629034782184[/C][/ROW]
[ROW][C]44[/C][C]4420[/C][C]3683.36921924611[/C][C]-50.2036685050554[/C][C]-50.2036685050549[/C][C]2.39441877075308[/C][/ROW]
[ROW][C]45[/C][C]3160[/C][C]3392.31943866341[/C][C]-51.0035807790682[/C][C]-51.0035807790687[/C][C]-0.551733714607927[/C][/ROW]
[ROW][C]46[/C][C]3160[/C][C]3267.11304127786[/C][C]-51.2477451702477[/C][C]-51.2477451702473[/C][C]-0.169990531926612[/C][/ROW]
[ROW][C]47[/C][C]4300[/C][C]3862.37711260037[/C][C]-49.1328531854133[/C][C]-49.1328531854132[/C][C]1.48111112064144[/C][/ROW]
[ROW][C]48[/C][C]2820[/C][C]3275.64600029318[/C][C]-50.883776240052[/C][C]-50.8837762400517[/C][C]-1.23160834394545[/C][/ROW]
[ROW][C]49[/C][C]3240[/C][C]2949.43707367065[/C][C]-45.5811536555616[/C][C]501.392689889236[/C][C]-0.675024352086302[/C][/ROW]
[ROW][C]50[/C][C]2520[/C][C]2704.11888930763[/C][C]-48.1633378154856[/C][C]-48.163337427477[/C][C]-0.42726201920433[/C][/ROW]
[ROW][C]51[/C][C]3480[/C][C]3156.64581961646[/C][C]-44.5947699413318[/C][C]-44.5947699413316[/C][C]1.12866427113991[/C][/ROW]
[ROW][C]52[/C][C]2740[/C][C]2925.18599760893[/C][C]-45.4495221183915[/C][C]-45.4495221183922[/C][C]-0.426179511930942[/C][/ROW]
[ROW][C]53[/C][C]2240[/C][C]2541.07966121947[/C][C]-46.625046255069[/C][C]-46.625046255069[/C][C]-0.774754803358226[/C][/ROW]
[ROW][C]54[/C][C]3700[/C][C]3207.7279333826[/C][C]-44.4895917386682[/C][C]-44.4895917386685[/C][C]1.63336587744102[/C][/ROW]
[ROW][C]55[/C][C]2600[/C][C]2867.78199518767[/C][C]-45.312501938869[/C][C]-45.3125019388697[/C][C]-0.67682248445489[/C][/ROW]
[ROW][C]56[/C][C]3160[/C][C]3040.509575401[/C][C]-44.7255862900442[/C][C]-44.7255862900436[/C][C]0.499550183461261[/C][/ROW]
[ROW][C]57[/C][C]3800[/C][C]3479.27183258863[/C][C]-43.445415722306[/C][C]-43.4454157223065[/C][C]1.10778158148086[/C][/ROW]
[ROW][C]58[/C][C]3440[/C][C]3462.94613352249[/C][C]-43.3742260601623[/C][C]-43.374226060162[/C][C]0.0621391133304921[/C][/ROW]
[ROW][C]59[/C][C]2180[/C][C]2738.32107001117[/C][C]-45.1532271792901[/C][C]-45.1532271792899[/C][C]-1.5609615607828[/C][/ROW]
[ROW][C]60[/C][C]2300[/C][C]2494.96875596912[/C][C]-45.6688757249909[/C][C]-45.6688757249908[/C][C]-0.454139716888623[/C][/ROW]
[ROW][C]61[/C][C]3160[/C][C]2557.12200840671[/C][C]-47.3231087287292[/C][C]520.554195488425[/C][C]0.260923160249976[/C][/ROW]
[ROW][C]62[/C][C]1800[/C][C]2121.01694103607[/C][C]-51.4965560607413[/C][C]-51.4965554015798[/C][C]-0.841863788650833[/C][/ROW]
[ROW][C]63[/C][C]2620[/C][C]2414.65247008844[/C][C]-49.4570689284874[/C][C]-49.4570689284873[/C][C]0.780286862080745[/C][/ROW]
[ROW][C]64[/C][C]2820[/C][C]2652.88838030335[/C][C]-48.3656297955896[/C][C]-48.3656297955903[/C][C]0.65673430564677[/C][/ROW]
[ROW][C]65[/C][C]2180[/C][C]2390.16668728322[/C][C]-48.983075502213[/C][C]-48.9830755022131[/C][C]-0.490575775181636[/C][/ROW]
[ROW][C]66[/C][C]2300[/C][C]2345.62674328306[/C][C]-48.9720312458129[/C][C]-48.9720312458131[/C][C]0.0101767741982134[/C][/ROW]
[ROW][C]67[/C][C]2560[/C][C]2474.55377883722[/C][C]-48.5604521934618[/C][C]-48.5604521934624[/C][C]0.407588817823321[/C][/ROW]
[ROW][C]68[/C][C]2860[/C][C]2700.85746693545[/C][C]-47.9455908395865[/C][C]-47.945590839586[/C][C]0.629821492313024[/C][/ROW]
[ROW][C]69[/C][C]2620[/C][C]2661.4747591531[/C][C]-47.9267405943677[/C][C]-47.9267405943681[/C][C]0.0196218847683422[/C][/ROW]
[ROW][C]70[/C][C]3960[/C][C]3407.75184772883[/C][C]-46.1926531700265[/C][C]-46.1926531700262[/C][C]1.81996060068623[/C][/ROW]
[ROW][C]71[/C][C]3960[/C][C]3728.72591550604[/C][C]-45.3947858909473[/C][C]-45.3947858909472[/C][C]0.841390459855679[/C][/ROW]
[ROW][C]72[/C][C]2320[/C][C]2932.66838481987[/C][C]-47.0206525860841[/C][C]-47.0206525860838[/C][C]-1.72020915943158[/C][/ROW]
[ROW][C]73[/C][C]3400[/C][C]2884.13643300626[/C][C]-47.0013848073929[/C][C]517.015231996317[/C][C]-0.00362523537763278[/C][/ROW]
[ROW][C]74[/C][C]2640[/C][C]2749.40656022795[/C][C]-47.8065275035224[/C][C]-47.8065265883539[/C][C]-0.191597805427956[/C][/ROW]
[ROW][C]75[/C][C]2340[/C][C]2521.85132038154[/C][C]-48.7136885289841[/C][C]-48.713688528984[/C][C]-0.407224034774955[/C][/ROW]
[ROW][C]76[/C][C]2340[/C][C]2424.97978362298[/C][C]-48.8697603972524[/C][C]-48.869760397253[/C][C]-0.110003806665821[/C][/ROW]
[ROW][C]77[/C][C]1960[/C][C]2166.83432274114[/C][C]-49.3849111802099[/C][C]-49.3849111802101[/C][C]-0.479078497848773[/C][/ROW]
[ROW][C]78[/C][C]2100[/C][C]2135.64310096234[/C][C]-49.3462497484775[/C][C]-49.3462497484777[/C][C]0.0416781139327263[/C][/ROW]
[ROW][C]79[/C][C]2280[/C][C]2224.74958079116[/C][C]-49.0723205663759[/C][C]-49.0723205663765[/C][C]0.317247187691281[/C][/ROW]
[ROW][C]80[/C][C]2320[/C][C]2285.84071171968[/C][C]-48.8615085044998[/C][C]-48.8615085044993[/C][C]0.252451032142519[/C][/ROW]
[ROW][C]81[/C][C]2660[/C][C]2505.77353325678[/C][C]-48.355154148087[/C][C]-48.3551541480873[/C][C]0.615995983589521[/C][/ROW]
[ROW][C]82[/C][C]2520[/C][C]2520.61003929947[/C][C]-48.2370477966374[/C][C]-48.2370477966372[/C][C]0.144818963133753[/C][/ROW]
[ROW][C]83[/C][C]2120[/C][C]2299.13175918832[/C][C]-48.5593988455657[/C][C]-48.5593988455654[/C][C]-0.397027432807949[/C][/ROW]
[ROW][C]84[/C][C]1800[/C][C]2021.57869155938[/C][C]-48.9842230805153[/C][C]-48.9842230805151[/C][C]-0.524800787008346[/C][/ROW]
[ROW][C]85[/C][C]2300[/C][C]1860.19333416621[/C][C]-47.7583902547378[/C][C]525.342291974156[/C][C]-0.267922084595966[/C][/ROW]
[ROW][C]86[/C][C]2420[/C][C]2194.13711747409[/C][C]-44.6990034896882[/C][C]-44.6990027945102[/C][C]0.838923141924201[/C][/ROW]
[ROW][C]87[/C][C]1920[/C][C]2043.68465689497[/C][C]-45.164747468797[/C][C]-45.1647474687968[/C][C]-0.239955292096565[/C][/ROW]
[ROW][C]88[/C][C]1720[/C][C]1865.4238258069[/C][C]-45.5412212088319[/C][C]-45.5412212088326[/C][C]-0.304168789146899[/C][/ROW]
[ROW][C]89[/C][C]2000[/C][C]1948.4769732493[/C][C]-45.2648628381774[/C][C]-45.2648628381776[/C][C]0.294440457820952[/C][/ROW]
[ROW][C]90[/C][C]1960[/C][C]1961.35393866833[/C][C]-45.1569685784833[/C][C]-45.1569685784835[/C][C]0.133206510244503[/C][/ROW]
[ROW][C]91[/C][C]2860[/C][C]2479.58502878375[/C][C]-44.1833094345173[/C][C]-44.1833094345178[/C][C]1.29103938680575[/C][/ROW]
[ROW][C]92[/C][C]2160[/C][C]2303.68577770424[/C][C]-44.4035334188938[/C][C]-44.4035334188933[/C][C]-0.301861698578763[/C][/ROW]
[ROW][C]93[/C][C]2360[/C][C]2341.95111354188[/C][C]-44.2674364493269[/C][C]-44.2674364493272[/C][C]0.189464342382074[/C][/ROW]
[ROW][C]94[/C][C]2300[/C][C]2324.22016573414[/C][C]-44.2240822219118[/C][C]-44.2240822219115[/C][C]0.0608185128772129[/C][/ROW]
[ROW][C]95[/C][C]2360[/C][C]2350.76258838981[/C][C]-44.1089539805241[/C][C]-44.1089539805239[/C][C]0.162189664839046[/C][/ROW]
[ROW][C]96[/C][C]2260[/C][C]2305.20405709499[/C][C]-44.111305804334[/C][C]-44.1113058043337[/C][C]-0.00332229583945383[/C][/ROW]
[ROW][C]97[/C][C]2460[/C][C]2107.57241884795[/C][C]-42.6485215559602[/C][C]469.133736415529[/C][C]-0.364192961886323[/C][/ROW]
[ROW][C]98[/C][C]2200[/C][C]2168.18561330707[/C][C]-41.9139202338397[/C][C]-41.913919570051[/C][C]0.228061482717277[/C][/ROW]
[ROW][C]99[/C][C]1620[/C][C]1860.58664883418[/C][C]-42.9518222621359[/C][C]-42.9518222621358[/C][C]-0.603558140302919[/C][/ROW]
[ROW][C]100[/C][C]1740[/C][C]1797.85497196547[/C][C]-43.0014574072636[/C][C]-43.0014574072642[/C][C]-0.0452203564646177[/C][/ROW]
[ROW][C]101[/C][C]1720[/C][C]1759.49673365064[/C][C]-42.9926029468655[/C][C]-42.9926029468656[/C][C]0.0106331659999654[/C][/ROW]
[ROW][C]102[/C][C]2460[/C][C]2164.59843341859[/C][C]-42.2545928774658[/C][C]-42.2545928774661[/C][C]1.0267022940175[/C][/ROW]
[ROW][C]103[/C][C]1840[/C][C]1985.56508866121[/C][C]-42.4644319972424[/C][C]-42.4644319972431[/C][C]-0.313457080635264[/C][/ROW]
[ROW][C]104[/C][C]2160[/C][C]2090.8561693957[/C][C]-42.2450906272303[/C][C]-42.2450906272297[/C][C]0.338638765316463[/C][/ROW]
[ROW][C]105[/C][C]2460[/C][C]2307.0366360242[/C][C]-41.8672810773727[/C][C]-41.8672810773731[/C][C]0.592300981253744[/C][/ROW]
[ROW][C]106[/C][C]2860[/C][C]2627.88102594436[/C][C]-41.340948683176[/C][C]-41.3409486831756[/C][C]0.831332146597176[/C][/ROW]
[ROW][C]107[/C][C]2700[/C][C]2674.72632783375[/C][C]-41.2134972787863[/C][C]-41.2134972787861[/C][C]0.202123419088399[/C][/ROW]
[ROW][C]108[/C][C]2420[/C][C]2535.35816755741[/C][C]-41.3549927854572[/C][C]-41.3549927854568[/C][C]-0.224971750564911[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297977&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297977&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
173607360000
248205662.77808563375-122.800250890809-122.800250580105-2.69424716823634
326003881.41479759503-190.201859842663-190.201859842663-3.49319539300882
455204848.649390882-160.36933742692-160.369337426922.58176399542645
531803920.56286477419-175.176371453376-175.176371453375-1.73925912717541
640804035.19634390805-170.417669840245-170.4176698402460.65993212337065
733603674.81584791357-173.28422280739-173.284222807391-0.433406649950157
849604428.39797867787-159.924787956927-159.9247879569262.11637528217732
946404570.33076778099-155.693705221246-155.6937052212470.689499759650389
1054205074.10418536312-146.631567160018-146.6315671600171.50661715133965
1148804983.79530462529-145.87004142741-145.870041427410.128687888421437
1247804887.88006523174-145.204357879525-145.2043578795250.114146299173625
1348604195.96288256276-100.2118824460431102.33070691533-1.60458684420557
1437803960.76379313269-104.720523205125-104.720523178954-0.255067106591899
1541204070.2233624539-100.720732708786-100.7207327087850.469297932260072
1639804033.11035751568-99.9608242658232-99.96082426582380.143815506767419
1730603492.57211204091-103.934906581756-103.934906581756-1.0042969171985
1844204034.89291631499-98.9310548479047-98.93105484790511.47691562022207
1933403653.12544701333-100.959325079892-100.959325079892-0.646979747969393
2042203989.59891790871-97.9405326651517-97.94053266515131.00098771124524
2157805021.7807552601-90.3005892001912-90.30058920019152.58649999674934
2254405272.18375180938-88.0264277874138-88.02642778741350.779822586542886
2342004674.29566896086-91.3984237086261-91.3984237086261-1.16704569202395
2437204143.94312692373-94.2791905053007-94.2791905053008-1.00476469593455
2540403576.05747282212-75.6393493937734832.032843156519-1.23667786913573
2639203800.30948221033-69.0834536301296-69.0834535450090.609160444698326
2731603441.48331579721-72.5968876142005-72.5968876142-0.64525242886446
2835003485.24650431986-71.6926000378951-71.69260003789580.264387165801462
2927803093.38359840396-73.5766366985836-73.5766366985837-0.731318345886575
3033403244.04271818866-72.4409170136294-72.44091701362970.51303957606409
3131003172.07953957534-72.4386703574433-72.4386703574440.00109370019216418
3231003141.08399311809-72.2506651250046-72.25066512500420.094899813632302
3344003867.76315274149-68.6920648774644-68.69206487746481.82964141334079
3434803656.53797789522-69.3203512615747-69.3203512615744-0.326432264956168
3551004487.85919482793-65.3779471077641-65.37794710776412.06271398328509
3642604367.20325856573-65.6185942662778-65.6185942662775-0.126603178574263
3736403628.07666113725-48.1996991660849530.196690739072-1.68699052614904
3829003203.40675344984-54.3164051255857-54.3164049175493-0.790291090780974
3938203566.19889401863-50.57170539976-50.57170539975960.936053434504538
4029803238.7289255144-52.1663054060067-52.1663054060074-0.630641562337471
4128603030.19833708755-52.8490763449371-52.8490763449371-0.357511757968622
4224202690.00297543532-53.930435138736-53.9304351387364-0.65779636164344
4326802691.80004809542-53.73547552335-53.73547552335070.127629034782184
4444203683.36921924611-50.2036685050554-50.20366850505492.39441877075308
4531603392.31943866341-51.0035807790682-51.0035807790687-0.551733714607927
4631603267.11304127786-51.2477451702477-51.2477451702473-0.169990531926612
4743003862.37711260037-49.1328531854133-49.13285318541321.48111112064144
4828203275.64600029318-50.883776240052-50.8837762400517-1.23160834394545
4932402949.43707367065-45.5811536555616501.392689889236-0.675024352086302
5025202704.11888930763-48.1633378154856-48.163337427477-0.42726201920433
5134803156.64581961646-44.5947699413318-44.59476994133161.12866427113991
5227402925.18599760893-45.4495221183915-45.4495221183922-0.426179511930942
5322402541.07966121947-46.625046255069-46.625046255069-0.774754803358226
5437003207.7279333826-44.4895917386682-44.48959173866851.63336587744102
5526002867.78199518767-45.312501938869-45.3125019388697-0.67682248445489
5631603040.509575401-44.7255862900442-44.72558629004360.499550183461261
5738003479.27183258863-43.445415722306-43.44541572230651.10778158148086
5834403462.94613352249-43.3742260601623-43.3742260601620.0621391133304921
5921802738.32107001117-45.1532271792901-45.1532271792899-1.5609615607828
6023002494.96875596912-45.6688757249909-45.6688757249908-0.454139716888623
6131602557.12200840671-47.3231087287292520.5541954884250.260923160249976
6218002121.01694103607-51.4965560607413-51.4965554015798-0.841863788650833
6326202414.65247008844-49.4570689284874-49.45706892848730.780286862080745
6428202652.88838030335-48.3656297955896-48.36562979559030.65673430564677
6521802390.16668728322-48.983075502213-48.9830755022131-0.490575775181636
6623002345.62674328306-48.9720312458129-48.97203124581310.0101767741982134
6725602474.55377883722-48.5604521934618-48.56045219346240.407588817823321
6828602700.85746693545-47.9455908395865-47.9455908395860.629821492313024
6926202661.4747591531-47.9267405943677-47.92674059436810.0196218847683422
7039603407.75184772883-46.1926531700265-46.19265317002621.81996060068623
7139603728.72591550604-45.3947858909473-45.39478589094720.841390459855679
7223202932.66838481987-47.0206525860841-47.0206525860838-1.72020915943158
7334002884.13643300626-47.0013848073929517.015231996317-0.00362523537763278
7426402749.40656022795-47.8065275035224-47.8065265883539-0.191597805427956
7523402521.85132038154-48.7136885289841-48.713688528984-0.407224034774955
7623402424.97978362298-48.8697603972524-48.869760397253-0.110003806665821
7719602166.83432274114-49.3849111802099-49.3849111802101-0.479078497848773
7821002135.64310096234-49.3462497484775-49.34624974847770.0416781139327263
7922802224.74958079116-49.0723205663759-49.07232056637650.317247187691281
8023202285.84071171968-48.8615085044998-48.86150850449930.252451032142519
8126602505.77353325678-48.355154148087-48.35515414808730.615995983589521
8225202520.61003929947-48.2370477966374-48.23704779663720.144818963133753
8321202299.13175918832-48.5593988455657-48.5593988455654-0.397027432807949
8418002021.57869155938-48.9842230805153-48.9842230805151-0.524800787008346
8523001860.19333416621-47.7583902547378525.342291974156-0.267922084595966
8624202194.13711747409-44.6990034896882-44.69900279451020.838923141924201
8719202043.68465689497-45.164747468797-45.1647474687968-0.239955292096565
8817201865.4238258069-45.5412212088319-45.5412212088326-0.304168789146899
8920001948.4769732493-45.2648628381774-45.26486283817760.294440457820952
9019601961.35393866833-45.1569685784833-45.15696857848350.133206510244503
9128602479.58502878375-44.1833094345173-44.18330943451781.29103938680575
9221602303.68577770424-44.4035334188938-44.4035334188933-0.301861698578763
9323602341.95111354188-44.2674364493269-44.26743644932720.189464342382074
9423002324.22016573414-44.2240822219118-44.22408222191150.0608185128772129
9523602350.76258838981-44.1089539805241-44.10895398052390.162189664839046
9622602305.20405709499-44.111305804334-44.1113058043337-0.00332229583945383
9724602107.57241884795-42.6485215559602469.133736415529-0.364192961886323
9822002168.18561330707-41.9139202338397-41.9139195700510.228061482717277
9916201860.58664883418-42.9518222621359-42.9518222621358-0.603558140302919
10017401797.85497196547-43.0014574072636-43.0014574072642-0.0452203564646177
10117201759.49673365064-42.9926029468655-42.99260294686560.0106331659999654
10224602164.59843341859-42.2545928774658-42.25459287746611.0267022940175
10318401985.56508866121-42.4644319972424-42.4644319972431-0.313457080635264
10421602090.8561693957-42.2450906272303-42.24509062722970.338638765316463
10524602307.0366360242-41.8672810773727-41.86728107737310.592300981253744
10628602627.88102594436-41.340948683176-41.34094868317560.831332146597176
10727002674.72632783375-41.2134972787863-41.21349727878610.202123419088399
10824202535.35816755741-41.3549927854572-41.3549927854568-0.224971750564911







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
12672.569673159652395.06790278966277.501770369991
22491.368007580992438.3521483887153.0158591922847
31975.411402207912481.63639398776-506.224991779853
42035.601656151062524.92063958681-489.318983435748
52005.297882516392568.20488518586-562.907002669463
62654.14760716722611.4891307849142.6584763822903
72461.458300277712654.77337638396-193.315076106243
82739.090945533852698.05762198341.0333235508466
93050.979047708482741.34186758205309.637180126426
103364.09433255912784.6261131811579.468219378
113210.936633465142827.91035878015383.026274684992
122936.619554685682871.194604379265.4249503064756
133191.980620348242914.47884997825277.501770369991
143010.778954769592957.763095577353.0158591922846
152494.82234939653001.04734117635-506.224991779853
162555.012603339653044.3315867754-489.318983435748
172524.708829704993087.61583237445-562.907002669463
183173.558554355793130.900077973542.6584763822901

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 2672.56967315965 & 2395.06790278966 & 277.501770369991 \tabularnewline
2 & 2491.36800758099 & 2438.35214838871 & 53.0158591922847 \tabularnewline
3 & 1975.41140220791 & 2481.63639398776 & -506.224991779853 \tabularnewline
4 & 2035.60165615106 & 2524.92063958681 & -489.318983435748 \tabularnewline
5 & 2005.29788251639 & 2568.20488518586 & -562.907002669463 \tabularnewline
6 & 2654.1476071672 & 2611.48913078491 & 42.6584763822903 \tabularnewline
7 & 2461.45830027771 & 2654.77337638396 & -193.315076106243 \tabularnewline
8 & 2739.09094553385 & 2698.057621983 & 41.0333235508466 \tabularnewline
9 & 3050.97904770848 & 2741.34186758205 & 309.637180126426 \tabularnewline
10 & 3364.0943325591 & 2784.6261131811 & 579.468219378 \tabularnewline
11 & 3210.93663346514 & 2827.91035878015 & 383.026274684992 \tabularnewline
12 & 2936.61955468568 & 2871.1946043792 & 65.4249503064756 \tabularnewline
13 & 3191.98062034824 & 2914.47884997825 & 277.501770369991 \tabularnewline
14 & 3010.77895476959 & 2957.7630955773 & 53.0158591922846 \tabularnewline
15 & 2494.8223493965 & 3001.04734117635 & -506.224991779853 \tabularnewline
16 & 2555.01260333965 & 3044.3315867754 & -489.318983435748 \tabularnewline
17 & 2524.70882970499 & 3087.61583237445 & -562.907002669463 \tabularnewline
18 & 3173.55855435579 & 3130.9000779735 & 42.6584763822901 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297977&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]2672.56967315965[/C][C]2395.06790278966[/C][C]277.501770369991[/C][/ROW]
[ROW][C]2[/C][C]2491.36800758099[/C][C]2438.35214838871[/C][C]53.0158591922847[/C][/ROW]
[ROW][C]3[/C][C]1975.41140220791[/C][C]2481.63639398776[/C][C]-506.224991779853[/C][/ROW]
[ROW][C]4[/C][C]2035.60165615106[/C][C]2524.92063958681[/C][C]-489.318983435748[/C][/ROW]
[ROW][C]5[/C][C]2005.29788251639[/C][C]2568.20488518586[/C][C]-562.907002669463[/C][/ROW]
[ROW][C]6[/C][C]2654.1476071672[/C][C]2611.48913078491[/C][C]42.6584763822903[/C][/ROW]
[ROW][C]7[/C][C]2461.45830027771[/C][C]2654.77337638396[/C][C]-193.315076106243[/C][/ROW]
[ROW][C]8[/C][C]2739.09094553385[/C][C]2698.057621983[/C][C]41.0333235508466[/C][/ROW]
[ROW][C]9[/C][C]3050.97904770848[/C][C]2741.34186758205[/C][C]309.637180126426[/C][/ROW]
[ROW][C]10[/C][C]3364.0943325591[/C][C]2784.6261131811[/C][C]579.468219378[/C][/ROW]
[ROW][C]11[/C][C]3210.93663346514[/C][C]2827.91035878015[/C][C]383.026274684992[/C][/ROW]
[ROW][C]12[/C][C]2936.61955468568[/C][C]2871.1946043792[/C][C]65.4249503064756[/C][/ROW]
[ROW][C]13[/C][C]3191.98062034824[/C][C]2914.47884997825[/C][C]277.501770369991[/C][/ROW]
[ROW][C]14[/C][C]3010.77895476959[/C][C]2957.7630955773[/C][C]53.0158591922846[/C][/ROW]
[ROW][C]15[/C][C]2494.8223493965[/C][C]3001.04734117635[/C][C]-506.224991779853[/C][/ROW]
[ROW][C]16[/C][C]2555.01260333965[/C][C]3044.3315867754[/C][C]-489.318983435748[/C][/ROW]
[ROW][C]17[/C][C]2524.70882970499[/C][C]3087.61583237445[/C][C]-562.907002669463[/C][/ROW]
[ROW][C]18[/C][C]3173.55855435579[/C][C]3130.9000779735[/C][C]42.6584763822901[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297977&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297977&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
12672.569673159652395.06790278966277.501770369991
22491.368007580992438.3521483887153.0158591922847
31975.411402207912481.63639398776-506.224991779853
42035.601656151062524.92063958681-489.318983435748
52005.297882516392568.20488518586-562.907002669463
62654.14760716722611.4891307849142.6584763822903
72461.458300277712654.77337638396-193.315076106243
82739.090945533852698.05762198341.0333235508466
93050.979047708482741.34186758205309.637180126426
103364.09433255912784.6261131811579.468219378
113210.936633465142827.91035878015383.026274684992
122936.619554685682871.194604379265.4249503064756
133191.980620348242914.47884997825277.501770369991
143010.778954769592957.763095577353.0158591922846
152494.82234939653001.04734117635-506.224991779853
162555.012603339653044.3315867754-489.318983435748
172524.708829704993087.61583237445-562.907002669463
183173.558554355793130.900077973542.6584763822901



Parameters (Session):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')