Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 07 Dec 2016 11:21:06 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481106108pc8aga2e9jgf1ma.htm/, Retrieved Fri, 01 Nov 2024 03:29:17 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297968, Retrieved Fri, 01 Nov 2024 03:29:17 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact124
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [LOESS N861] [2016-12-07 10:21:06] [fd005a509166a1985dac46f39e8d81c5] [Current]
Feedback Forum

Post a new message
Dataseries X:
6908
6694
6564
6800
6820
6752
6632
6756
6898
6844
6750
6892
7104
7022
6858
7018
7218
7134
7006
7160
7374
7276
7128
7272
7462
7366
7218
7366
7546
7464
7332
7502
7736
7628
7494
7668
7888
7774
7644
7826
8056
7990
7814
7978
8238
8138
8000
8176
8412
8332
8194
8354
8576
8500
8376
8538




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297968&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297968&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297968&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal1202
Trend2113
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 12 & 0 & 2 \tabularnewline
Trend & 21 & 1 & 3 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297968&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]12[/C][C]0[/C][C]2[/C][/ROW]
[ROW][C]Trend[/C][C]21[/C][C]1[/C][C]3[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297968&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297968&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal1202
Trend2113
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
169086975.31764434754172.8499361583716667.8324194940967.3176443475413
266946678.8140440346221.07854616675476688.10740979862-15.1859559653776
365646572.59736950776-152.9797696109236708.382400103168.59736950776369
468006877.13997054692-5.797360954619456728.657390407777.1399705469239
568206763.42786591877126.3679882861596750.20414579507-56.5721340812315
667526713.533344076918.71575474064826771.75090118245-38.4666559230973
766326619.86613533211-149.1637919019396793.29765656983-12.1338646678869
867566724.77670295316-28.29821788449856815.52151493134-31.2232970468403
968986818.57652828342139.6780984237246837.74537329285-79.4234717165773
1068446809.2308444666618.79992387897116859.96923165437-34.7691555333367
1167506754.53339699503-142.7281320779426888.194735082914.53339699503158
1268926886.28614160973-18.70638012118846916.42023851145-5.71385839026607
1371047091.83895060544171.5153074545656944.64574194-12.1610493945636
1470227043.8879692630921.40357321693226978.7084575199721.8879692630944
1568586856.26052789877-153.0317009987177012.77117309995-1.7394721012306
1670186996.69699691123-7.530885591156037046.83388867992-21.3030030887658
1772187228.43225096051128.1185421327237079.4492069067710.432250960509
1871347135.930370300620.0051045657897112.064525133611.93037030059622
1970067016.13804655014-148.8178899106047144.6798433604610.1380465501434
2071607173.46956112831-27.66346841782157174.1939072895213.469561128305
2173747403.27913907784141.0128897035857203.7079712185729.279139077843
2272767300.1389983579418.63896649443367233.2220351476324.1389983579384
2371287138.75665232319-144.0016113348377261.2449590116510.7566523231881
2472727274.19063168421-19.45851455988097289.267882875672.19063168421144
2574627436.61129307115170.0979001891647317.29080673969-25.3887069288539
2673667364.0880490329721.65806636289177346.25388460414-1.91195096703177
2772187213.92495916476-153.141921633357375.21696246859-4.07504083523872
2873667337.13012605352-9.310166386557027404.18004033304-28.8698739464808
2975467525.87285792457129.8358729083997436.29126916703-20.127142075431
3074647438.3235619311721.27394006780637468.40249800103-25.6764380688328
3173327311.96606665961-148.4797934946297500.51372683502-20.0339333403917
3275027494.15723713323-27.02843028065367536.87119314742-7.84276286676504
3377367756.4152766404142.3560638997857573.2286594598220.4152766403986
3476287627.92269091118.49118331678847609.58612577222-0.0773090890033927
3574947483.49771966616-145.2571250942867649.75940542813-10.5022803338406
3676687666.25762927775-20.19031436178897689.93268508404-1.74237072224969
3778887877.28800126573168.606033994327730.10596473995-10.7119987342703
3877747754.3711428869921.93680742199897771.69204969101-19.628857113009
3976447627.95835919801-153.2364938400737813.27813464207-16.0416408019946
4078267808.31492015712-11.1791397502457854.86421959313-17.6850798428823
4180568082.66029388942131.4990329637077897.8406731468826.6602938894166
4279908016.7190330395422.46384025983087940.8171267006326.7190330395433
4378147792.4043314998-148.1979117541757983.79358025438-21.5956685002002
4479787954.19944090728-26.40182075533088028.20237984805-23.8005590927232
4582388259.61973587282143.769084685458072.6111794417321.6197358728168
4681388140.5613463236618.41867464092758117.019979035412.56134632366047
4780007984.6400304975-146.4351050550538161.79507455755-15.3599695025005
4881768166.31807470946-20.88824478915898206.57017007969-9.68192529053522
4984128405.53021836455167.1245160336188251.34526560184-6.46978163545464
5083328345.6193374741522.22829606733378296.1523664585113.6193374741524
5181948200.35645179329-153.3159191084838340.959467315196.35645179329185
5283548335.26211055837-13.02867873024488385.76656817187-18.7378894416252
5385768588.12530396779133.1859148480788430.6887811841312.1253039677904
5485008500.7068234303523.68218237325878475.610994196390.706823430349687
5583768379.34966079133-147.8828679999788520.533207208653.34966079132573
5685388536.21348891141-25.73786837372698565.52437946231-1.78651108858685

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 6908 & 6975.31764434754 & 172.849936158371 & 6667.83241949409 & 67.3176443475413 \tabularnewline
2 & 6694 & 6678.81404403462 & 21.0785461667547 & 6688.10740979862 & -15.1859559653776 \tabularnewline
3 & 6564 & 6572.59736950776 & -152.979769610923 & 6708.38240010316 & 8.59736950776369 \tabularnewline
4 & 6800 & 6877.13997054692 & -5.79736095461945 & 6728.6573904077 & 77.1399705469239 \tabularnewline
5 & 6820 & 6763.42786591877 & 126.367988286159 & 6750.20414579507 & -56.5721340812315 \tabularnewline
6 & 6752 & 6713.5333440769 & 18.7157547406482 & 6771.75090118245 & -38.4666559230973 \tabularnewline
7 & 6632 & 6619.86613533211 & -149.163791901939 & 6793.29765656983 & -12.1338646678869 \tabularnewline
8 & 6756 & 6724.77670295316 & -28.2982178844985 & 6815.52151493134 & -31.2232970468403 \tabularnewline
9 & 6898 & 6818.57652828342 & 139.678098423724 & 6837.74537329285 & -79.4234717165773 \tabularnewline
10 & 6844 & 6809.23084446666 & 18.7999238789711 & 6859.96923165437 & -34.7691555333367 \tabularnewline
11 & 6750 & 6754.53339699503 & -142.728132077942 & 6888.19473508291 & 4.53339699503158 \tabularnewline
12 & 6892 & 6886.28614160973 & -18.7063801211884 & 6916.42023851145 & -5.71385839026607 \tabularnewline
13 & 7104 & 7091.83895060544 & 171.515307454565 & 6944.64574194 & -12.1610493945636 \tabularnewline
14 & 7022 & 7043.88796926309 & 21.4035732169322 & 6978.70845751997 & 21.8879692630944 \tabularnewline
15 & 6858 & 6856.26052789877 & -153.031700998717 & 7012.77117309995 & -1.7394721012306 \tabularnewline
16 & 7018 & 6996.69699691123 & -7.53088559115603 & 7046.83388867992 & -21.3030030887658 \tabularnewline
17 & 7218 & 7228.43225096051 & 128.118542132723 & 7079.44920690677 & 10.432250960509 \tabularnewline
18 & 7134 & 7135.9303703006 & 20.005104565789 & 7112.06452513361 & 1.93037030059622 \tabularnewline
19 & 7006 & 7016.13804655014 & -148.817889910604 & 7144.67984336046 & 10.1380465501434 \tabularnewline
20 & 7160 & 7173.46956112831 & -27.6634684178215 & 7174.19390728952 & 13.469561128305 \tabularnewline
21 & 7374 & 7403.27913907784 & 141.012889703585 & 7203.70797121857 & 29.279139077843 \tabularnewline
22 & 7276 & 7300.13899835794 & 18.6389664944336 & 7233.22203514763 & 24.1389983579384 \tabularnewline
23 & 7128 & 7138.75665232319 & -144.001611334837 & 7261.24495901165 & 10.7566523231881 \tabularnewline
24 & 7272 & 7274.19063168421 & -19.4585145598809 & 7289.26788287567 & 2.19063168421144 \tabularnewline
25 & 7462 & 7436.61129307115 & 170.097900189164 & 7317.29080673969 & -25.3887069288539 \tabularnewline
26 & 7366 & 7364.08804903297 & 21.6580663628917 & 7346.25388460414 & -1.91195096703177 \tabularnewline
27 & 7218 & 7213.92495916476 & -153.14192163335 & 7375.21696246859 & -4.07504083523872 \tabularnewline
28 & 7366 & 7337.13012605352 & -9.31016638655702 & 7404.18004033304 & -28.8698739464808 \tabularnewline
29 & 7546 & 7525.87285792457 & 129.835872908399 & 7436.29126916703 & -20.127142075431 \tabularnewline
30 & 7464 & 7438.32356193117 & 21.2739400678063 & 7468.40249800103 & -25.6764380688328 \tabularnewline
31 & 7332 & 7311.96606665961 & -148.479793494629 & 7500.51372683502 & -20.0339333403917 \tabularnewline
32 & 7502 & 7494.15723713323 & -27.0284302806536 & 7536.87119314742 & -7.84276286676504 \tabularnewline
33 & 7736 & 7756.4152766404 & 142.356063899785 & 7573.22865945982 & 20.4152766403986 \tabularnewline
34 & 7628 & 7627.922690911 & 18.4911833167884 & 7609.58612577222 & -0.0773090890033927 \tabularnewline
35 & 7494 & 7483.49771966616 & -145.257125094286 & 7649.75940542813 & -10.5022803338406 \tabularnewline
36 & 7668 & 7666.25762927775 & -20.1903143617889 & 7689.93268508404 & -1.74237072224969 \tabularnewline
37 & 7888 & 7877.28800126573 & 168.60603399432 & 7730.10596473995 & -10.7119987342703 \tabularnewline
38 & 7774 & 7754.37114288699 & 21.9368074219989 & 7771.69204969101 & -19.628857113009 \tabularnewline
39 & 7644 & 7627.95835919801 & -153.236493840073 & 7813.27813464207 & -16.0416408019946 \tabularnewline
40 & 7826 & 7808.31492015712 & -11.179139750245 & 7854.86421959313 & -17.6850798428823 \tabularnewline
41 & 8056 & 8082.66029388942 & 131.499032963707 & 7897.84067314688 & 26.6602938894166 \tabularnewline
42 & 7990 & 8016.71903303954 & 22.4638402598308 & 7940.81712670063 & 26.7190330395433 \tabularnewline
43 & 7814 & 7792.4043314998 & -148.197911754175 & 7983.79358025438 & -21.5956685002002 \tabularnewline
44 & 7978 & 7954.19944090728 & -26.4018207553308 & 8028.20237984805 & -23.8005590927232 \tabularnewline
45 & 8238 & 8259.61973587282 & 143.76908468545 & 8072.61117944173 & 21.6197358728168 \tabularnewline
46 & 8138 & 8140.56134632366 & 18.4186746409275 & 8117.01997903541 & 2.56134632366047 \tabularnewline
47 & 8000 & 7984.6400304975 & -146.435105055053 & 8161.79507455755 & -15.3599695025005 \tabularnewline
48 & 8176 & 8166.31807470946 & -20.8882447891589 & 8206.57017007969 & -9.68192529053522 \tabularnewline
49 & 8412 & 8405.53021836455 & 167.124516033618 & 8251.34526560184 & -6.46978163545464 \tabularnewline
50 & 8332 & 8345.61933747415 & 22.2282960673337 & 8296.15236645851 & 13.6193374741524 \tabularnewline
51 & 8194 & 8200.35645179329 & -153.315919108483 & 8340.95946731519 & 6.35645179329185 \tabularnewline
52 & 8354 & 8335.26211055837 & -13.0286787302448 & 8385.76656817187 & -18.7378894416252 \tabularnewline
53 & 8576 & 8588.12530396779 & 133.185914848078 & 8430.68878118413 & 12.1253039677904 \tabularnewline
54 & 8500 & 8500.70682343035 & 23.6821823732587 & 8475.61099419639 & 0.706823430349687 \tabularnewline
55 & 8376 & 8379.34966079133 & -147.882867999978 & 8520.53320720865 & 3.34966079132573 \tabularnewline
56 & 8538 & 8536.21348891141 & -25.7378683737269 & 8565.52437946231 & -1.78651108858685 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297968&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]6908[/C][C]6975.31764434754[/C][C]172.849936158371[/C][C]6667.83241949409[/C][C]67.3176443475413[/C][/ROW]
[ROW][C]2[/C][C]6694[/C][C]6678.81404403462[/C][C]21.0785461667547[/C][C]6688.10740979862[/C][C]-15.1859559653776[/C][/ROW]
[ROW][C]3[/C][C]6564[/C][C]6572.59736950776[/C][C]-152.979769610923[/C][C]6708.38240010316[/C][C]8.59736950776369[/C][/ROW]
[ROW][C]4[/C][C]6800[/C][C]6877.13997054692[/C][C]-5.79736095461945[/C][C]6728.6573904077[/C][C]77.1399705469239[/C][/ROW]
[ROW][C]5[/C][C]6820[/C][C]6763.42786591877[/C][C]126.367988286159[/C][C]6750.20414579507[/C][C]-56.5721340812315[/C][/ROW]
[ROW][C]6[/C][C]6752[/C][C]6713.5333440769[/C][C]18.7157547406482[/C][C]6771.75090118245[/C][C]-38.4666559230973[/C][/ROW]
[ROW][C]7[/C][C]6632[/C][C]6619.86613533211[/C][C]-149.163791901939[/C][C]6793.29765656983[/C][C]-12.1338646678869[/C][/ROW]
[ROW][C]8[/C][C]6756[/C][C]6724.77670295316[/C][C]-28.2982178844985[/C][C]6815.52151493134[/C][C]-31.2232970468403[/C][/ROW]
[ROW][C]9[/C][C]6898[/C][C]6818.57652828342[/C][C]139.678098423724[/C][C]6837.74537329285[/C][C]-79.4234717165773[/C][/ROW]
[ROW][C]10[/C][C]6844[/C][C]6809.23084446666[/C][C]18.7999238789711[/C][C]6859.96923165437[/C][C]-34.7691555333367[/C][/ROW]
[ROW][C]11[/C][C]6750[/C][C]6754.53339699503[/C][C]-142.728132077942[/C][C]6888.19473508291[/C][C]4.53339699503158[/C][/ROW]
[ROW][C]12[/C][C]6892[/C][C]6886.28614160973[/C][C]-18.7063801211884[/C][C]6916.42023851145[/C][C]-5.71385839026607[/C][/ROW]
[ROW][C]13[/C][C]7104[/C][C]7091.83895060544[/C][C]171.515307454565[/C][C]6944.64574194[/C][C]-12.1610493945636[/C][/ROW]
[ROW][C]14[/C][C]7022[/C][C]7043.88796926309[/C][C]21.4035732169322[/C][C]6978.70845751997[/C][C]21.8879692630944[/C][/ROW]
[ROW][C]15[/C][C]6858[/C][C]6856.26052789877[/C][C]-153.031700998717[/C][C]7012.77117309995[/C][C]-1.7394721012306[/C][/ROW]
[ROW][C]16[/C][C]7018[/C][C]6996.69699691123[/C][C]-7.53088559115603[/C][C]7046.83388867992[/C][C]-21.3030030887658[/C][/ROW]
[ROW][C]17[/C][C]7218[/C][C]7228.43225096051[/C][C]128.118542132723[/C][C]7079.44920690677[/C][C]10.432250960509[/C][/ROW]
[ROW][C]18[/C][C]7134[/C][C]7135.9303703006[/C][C]20.005104565789[/C][C]7112.06452513361[/C][C]1.93037030059622[/C][/ROW]
[ROW][C]19[/C][C]7006[/C][C]7016.13804655014[/C][C]-148.817889910604[/C][C]7144.67984336046[/C][C]10.1380465501434[/C][/ROW]
[ROW][C]20[/C][C]7160[/C][C]7173.46956112831[/C][C]-27.6634684178215[/C][C]7174.19390728952[/C][C]13.469561128305[/C][/ROW]
[ROW][C]21[/C][C]7374[/C][C]7403.27913907784[/C][C]141.012889703585[/C][C]7203.70797121857[/C][C]29.279139077843[/C][/ROW]
[ROW][C]22[/C][C]7276[/C][C]7300.13899835794[/C][C]18.6389664944336[/C][C]7233.22203514763[/C][C]24.1389983579384[/C][/ROW]
[ROW][C]23[/C][C]7128[/C][C]7138.75665232319[/C][C]-144.001611334837[/C][C]7261.24495901165[/C][C]10.7566523231881[/C][/ROW]
[ROW][C]24[/C][C]7272[/C][C]7274.19063168421[/C][C]-19.4585145598809[/C][C]7289.26788287567[/C][C]2.19063168421144[/C][/ROW]
[ROW][C]25[/C][C]7462[/C][C]7436.61129307115[/C][C]170.097900189164[/C][C]7317.29080673969[/C][C]-25.3887069288539[/C][/ROW]
[ROW][C]26[/C][C]7366[/C][C]7364.08804903297[/C][C]21.6580663628917[/C][C]7346.25388460414[/C][C]-1.91195096703177[/C][/ROW]
[ROW][C]27[/C][C]7218[/C][C]7213.92495916476[/C][C]-153.14192163335[/C][C]7375.21696246859[/C][C]-4.07504083523872[/C][/ROW]
[ROW][C]28[/C][C]7366[/C][C]7337.13012605352[/C][C]-9.31016638655702[/C][C]7404.18004033304[/C][C]-28.8698739464808[/C][/ROW]
[ROW][C]29[/C][C]7546[/C][C]7525.87285792457[/C][C]129.835872908399[/C][C]7436.29126916703[/C][C]-20.127142075431[/C][/ROW]
[ROW][C]30[/C][C]7464[/C][C]7438.32356193117[/C][C]21.2739400678063[/C][C]7468.40249800103[/C][C]-25.6764380688328[/C][/ROW]
[ROW][C]31[/C][C]7332[/C][C]7311.96606665961[/C][C]-148.479793494629[/C][C]7500.51372683502[/C][C]-20.0339333403917[/C][/ROW]
[ROW][C]32[/C][C]7502[/C][C]7494.15723713323[/C][C]-27.0284302806536[/C][C]7536.87119314742[/C][C]-7.84276286676504[/C][/ROW]
[ROW][C]33[/C][C]7736[/C][C]7756.4152766404[/C][C]142.356063899785[/C][C]7573.22865945982[/C][C]20.4152766403986[/C][/ROW]
[ROW][C]34[/C][C]7628[/C][C]7627.922690911[/C][C]18.4911833167884[/C][C]7609.58612577222[/C][C]-0.0773090890033927[/C][/ROW]
[ROW][C]35[/C][C]7494[/C][C]7483.49771966616[/C][C]-145.257125094286[/C][C]7649.75940542813[/C][C]-10.5022803338406[/C][/ROW]
[ROW][C]36[/C][C]7668[/C][C]7666.25762927775[/C][C]-20.1903143617889[/C][C]7689.93268508404[/C][C]-1.74237072224969[/C][/ROW]
[ROW][C]37[/C][C]7888[/C][C]7877.28800126573[/C][C]168.60603399432[/C][C]7730.10596473995[/C][C]-10.7119987342703[/C][/ROW]
[ROW][C]38[/C][C]7774[/C][C]7754.37114288699[/C][C]21.9368074219989[/C][C]7771.69204969101[/C][C]-19.628857113009[/C][/ROW]
[ROW][C]39[/C][C]7644[/C][C]7627.95835919801[/C][C]-153.236493840073[/C][C]7813.27813464207[/C][C]-16.0416408019946[/C][/ROW]
[ROW][C]40[/C][C]7826[/C][C]7808.31492015712[/C][C]-11.179139750245[/C][C]7854.86421959313[/C][C]-17.6850798428823[/C][/ROW]
[ROW][C]41[/C][C]8056[/C][C]8082.66029388942[/C][C]131.499032963707[/C][C]7897.84067314688[/C][C]26.6602938894166[/C][/ROW]
[ROW][C]42[/C][C]7990[/C][C]8016.71903303954[/C][C]22.4638402598308[/C][C]7940.81712670063[/C][C]26.7190330395433[/C][/ROW]
[ROW][C]43[/C][C]7814[/C][C]7792.4043314998[/C][C]-148.197911754175[/C][C]7983.79358025438[/C][C]-21.5956685002002[/C][/ROW]
[ROW][C]44[/C][C]7978[/C][C]7954.19944090728[/C][C]-26.4018207553308[/C][C]8028.20237984805[/C][C]-23.8005590927232[/C][/ROW]
[ROW][C]45[/C][C]8238[/C][C]8259.61973587282[/C][C]143.76908468545[/C][C]8072.61117944173[/C][C]21.6197358728168[/C][/ROW]
[ROW][C]46[/C][C]8138[/C][C]8140.56134632366[/C][C]18.4186746409275[/C][C]8117.01997903541[/C][C]2.56134632366047[/C][/ROW]
[ROW][C]47[/C][C]8000[/C][C]7984.6400304975[/C][C]-146.435105055053[/C][C]8161.79507455755[/C][C]-15.3599695025005[/C][/ROW]
[ROW][C]48[/C][C]8176[/C][C]8166.31807470946[/C][C]-20.8882447891589[/C][C]8206.57017007969[/C][C]-9.68192529053522[/C][/ROW]
[ROW][C]49[/C][C]8412[/C][C]8405.53021836455[/C][C]167.124516033618[/C][C]8251.34526560184[/C][C]-6.46978163545464[/C][/ROW]
[ROW][C]50[/C][C]8332[/C][C]8345.61933747415[/C][C]22.2282960673337[/C][C]8296.15236645851[/C][C]13.6193374741524[/C][/ROW]
[ROW][C]51[/C][C]8194[/C][C]8200.35645179329[/C][C]-153.315919108483[/C][C]8340.95946731519[/C][C]6.35645179329185[/C][/ROW]
[ROW][C]52[/C][C]8354[/C][C]8335.26211055837[/C][C]-13.0286787302448[/C][C]8385.76656817187[/C][C]-18.7378894416252[/C][/ROW]
[ROW][C]53[/C][C]8576[/C][C]8588.12530396779[/C][C]133.185914848078[/C][C]8430.68878118413[/C][C]12.1253039677904[/C][/ROW]
[ROW][C]54[/C][C]8500[/C][C]8500.70682343035[/C][C]23.6821823732587[/C][C]8475.61099419639[/C][C]0.706823430349687[/C][/ROW]
[ROW][C]55[/C][C]8376[/C][C]8379.34966079133[/C][C]-147.882867999978[/C][C]8520.53320720865[/C][C]3.34966079132573[/C][/ROW]
[ROW][C]56[/C][C]8538[/C][C]8536.21348891141[/C][C]-25.7378683737269[/C][C]8565.52437946231[/C][C]-1.78651108858685[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297968&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297968&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
169086975.31764434754172.8499361583716667.8324194940967.3176443475413
266946678.8140440346221.07854616675476688.10740979862-15.1859559653776
365646572.59736950776-152.9797696109236708.382400103168.59736950776369
468006877.13997054692-5.797360954619456728.657390407777.1399705469239
568206763.42786591877126.3679882861596750.20414579507-56.5721340812315
667526713.533344076918.71575474064826771.75090118245-38.4666559230973
766326619.86613533211-149.1637919019396793.29765656983-12.1338646678869
867566724.77670295316-28.29821788449856815.52151493134-31.2232970468403
968986818.57652828342139.6780984237246837.74537329285-79.4234717165773
1068446809.2308444666618.79992387897116859.96923165437-34.7691555333367
1167506754.53339699503-142.7281320779426888.194735082914.53339699503158
1268926886.28614160973-18.70638012118846916.42023851145-5.71385839026607
1371047091.83895060544171.5153074545656944.64574194-12.1610493945636
1470227043.8879692630921.40357321693226978.7084575199721.8879692630944
1568586856.26052789877-153.0317009987177012.77117309995-1.7394721012306
1670186996.69699691123-7.530885591156037046.83388867992-21.3030030887658
1772187228.43225096051128.1185421327237079.4492069067710.432250960509
1871347135.930370300620.0051045657897112.064525133611.93037030059622
1970067016.13804655014-148.8178899106047144.6798433604610.1380465501434
2071607173.46956112831-27.66346841782157174.1939072895213.469561128305
2173747403.27913907784141.0128897035857203.7079712185729.279139077843
2272767300.1389983579418.63896649443367233.2220351476324.1389983579384
2371287138.75665232319-144.0016113348377261.2449590116510.7566523231881
2472727274.19063168421-19.45851455988097289.267882875672.19063168421144
2574627436.61129307115170.0979001891647317.29080673969-25.3887069288539
2673667364.0880490329721.65806636289177346.25388460414-1.91195096703177
2772187213.92495916476-153.141921633357375.21696246859-4.07504083523872
2873667337.13012605352-9.310166386557027404.18004033304-28.8698739464808
2975467525.87285792457129.8358729083997436.29126916703-20.127142075431
3074647438.3235619311721.27394006780637468.40249800103-25.6764380688328
3173327311.96606665961-148.4797934946297500.51372683502-20.0339333403917
3275027494.15723713323-27.02843028065367536.87119314742-7.84276286676504
3377367756.4152766404142.3560638997857573.2286594598220.4152766403986
3476287627.92269091118.49118331678847609.58612577222-0.0773090890033927
3574947483.49771966616-145.2571250942867649.75940542813-10.5022803338406
3676687666.25762927775-20.19031436178897689.93268508404-1.74237072224969
3778887877.28800126573168.606033994327730.10596473995-10.7119987342703
3877747754.3711428869921.93680742199897771.69204969101-19.628857113009
3976447627.95835919801-153.2364938400737813.27813464207-16.0416408019946
4078267808.31492015712-11.1791397502457854.86421959313-17.6850798428823
4180568082.66029388942131.4990329637077897.8406731468826.6602938894166
4279908016.7190330395422.46384025983087940.8171267006326.7190330395433
4378147792.4043314998-148.1979117541757983.79358025438-21.5956685002002
4479787954.19944090728-26.40182075533088028.20237984805-23.8005590927232
4582388259.61973587282143.769084685458072.6111794417321.6197358728168
4681388140.5613463236618.41867464092758117.019979035412.56134632366047
4780007984.6400304975-146.4351050550538161.79507455755-15.3599695025005
4881768166.31807470946-20.88824478915898206.57017007969-9.68192529053522
4984128405.53021836455167.1245160336188251.34526560184-6.46978163545464
5083328345.6193374741522.22829606733378296.1523664585113.6193374741524
5181948200.35645179329-153.3159191084838340.959467315196.35645179329185
5283548335.26211055837-13.02867873024488385.76656817187-18.7378894416252
5385768588.12530396779133.1859148480788430.6887811841312.1253039677904
5485008500.7068234303523.68218237325878475.610994196390.706823430349687
5583768379.34966079133-147.8828679999788520.533207208653.34966079132573
5685388536.21348891141-25.73786837372698565.52437946231-1.78651108858685



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par8 <- 'FALSE'
par7 <- '1'
par6 <- ''
par5 <- '1'
par4 <- ''
par3 <- '0'
par2 <- '12'
par1 <- 'additive'
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')