Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationWed, 07 Dec 2016 11:20:37 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481106057wdvwkr3ym09h4cq.htm/, Retrieved Fri, 01 Nov 2024 03:42:15 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297967, Retrieved Fri, 01 Nov 2024 03:42:15 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact137
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [structural time s...] [2016-12-07 10:20:37] [325a18647724c80085378f2a448a1737] [Current]
Feedback Forum

Post a new message
Dataseries X:
6970
6455
8005
8115
8180
7930
7275
7865
7610
7435
8480
8850
8345
8275
8595
8430
8395
7735
7890
8435
7620
7610
8005
8935
8320
7670
8660
8485
8160
7910
7725
7555
7685
7740
7455
7850
6930
6600
7290
7625
7755
6915
6145
5985
6100
5955
5800
5905
5705
5430
6435
6025
5815
5160
4985
5585
5790
6190
6300
6340
6610
6685
7450
7410
7255
6460
6035
6745
6655
7070
7415
7720
7815
7260
7925
7825
7805
7530
7015
6575
6640
7075
6405
6720
6385
6085
6475
6555
6500
5790
5195
5680
5745
6010
5705
6310
6870
6260
7210
7090
7055
6535
6320
6010
6165
6985
6760
7220
6995
6475
7225
7325
7515
6925
7165
6895
6400
6685
6955
7550
7645
6710
7470
7355
7525
7165




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297967&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297967&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297967&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
169706970000
264556493.25147880146-25.735836139883-38.2514788014619-0.855482394997845
380057828.1222551947-5.87843168591016176.8777448053023.99287726154655
481158137.95532802875-4.49374651096817-22.95532802874910.933222168749452
581808190.89064249233-4.24044502911566-10.89064249232790.169687678143421
679307965.43841510038-5.298450489624-35.4384151003829-0.653578471723508
772757349.79192372733-8.23829955286289-74.7919237273257-1.80328843422051
878657788.56461106899-6.0984798757099276.43538893100811.32069748900802
976107652.50550172262-6.71721873617244-42.5055017226223-0.383966199924922
1074357460.10340734515-7.59702982559696-25.1034073451505-0.548597209819898
1184808361.63662133483-3.30962617154587118.3633786651712.68595733382901
1288508831.73342852353-1.0875387186152218.26657147647161.39863100077815
1383458472.5626179452813.276368790522-127.562617945275-1.24112642964198
1482758455.3502137211312.6695867385922-180.350213721133-0.0795046123180778
1585958435.0043275190112.2663352044493159.99567248099-0.0958597109926347
1684308448.4328887120312.270891401639-18.43288871203180.0034328504468755
1783958388.9071553689712.1011300693976.09284463103006-0.211970771573617
1877357790.8778357453710.5109380975453-55.877835745375-1.80099151026512
1978907936.6311560249510.8885719783106-46.63115602495440.399191664344936
2084358266.5140874256311.78752743408168.4859125743680.941566488625165
2176207726.6944020566510.2302366827087-106.69440205665-1.62818622109317
2276107688.9292259173810.0886248329444-78.9292259173834-0.141688353651008
2380057890.7142188190410.6683809828436114.2857811809590.566047857120123
2489358717.9728624876410.4804966286213217.0271375123592.40829256833877
2583208533.721544705213.4265253889657-213.721544705203-0.610087771929528
2676707950.402049755877.40243668260886-280.402049755871-1.66889431653381
2786608386.8554174446611.7720846170256273.1445825553441.2415602234403
2884858493.884567672712.2021836394081-8.884567672700480.281077271031073
2981608139.821526128511.392033929957320.1784738715035-1.0813159381742
3079108004.4600605255811.0964694077523-94.4600605255758-0.433127483178212
3177257855.0137144664810.742548406278-130.013714466482-0.473767847591092
3275557386.983207933939.63336774819724168.016792066069-1.41284701483354
3376857678.2613251326810.31499892372876.73867486732280.831199941394596
3477407822.2818582444510.6590012314369-82.28185824445450.394699933290694
3574557553.751943029610.0869404351485-98.7519430295949-0.823977962802199
3678507580.5839485483210.0598925258793269.4160514516840.0494351730946421
3769307139.0215839326513.441272973151-209.021583932647-1.36962650300409
3866006985.0086183164112.4359901368828-385.008618316408-0.480298431691726
3972907019.832228641412.6226036941506270.1677713585990.0648429115989099
4076257469.2406506074314.715932769498155.7593493925711.28702985040091
4177557686.1550487561615.204981591702868.84495124384020.596934226267509
4269157123.0708042819314.1452795966158-208.070804281926-1.7067557844333
4361456342.5479149562412.6233172393184-197.547914956243-2.34497976261034
4459855922.0559619330111.717811480374762.9440380669854-1.27804198442173
4561006056.7050989088111.99593972743143.29490109118620.362801705794059
4659556005.2275967488511.8517632852297-50.2275967488499-0.187362825264491
4758005922.605101287611.7294637375064-122.605101287599-0.278695101416553
4859055618.6241674378612.2959737173872286.375832562142-0.932761256163183
4957055809.2394006506611.5762588345125-104.2394006506570.533298439447666
5054305824.0909375992811.5896226917199-394.0909375992810.009496550343188
5164356185.4166860044613.9830098254208249.5833139955411.01527849913591
5260255989.4739745271812.982588609244135.526025472821-0.617782605583058
5358155711.1987125220312.2125898594299103.801287477965-0.859717972139794
5451605305.6960081437211.448585567617-145.696008143719-1.23287164956243
5549855127.3479452165311.111085875962-142.347945216529-0.560081109808058
5655855457.796580483411.7356408880304127.2034195166040.942333887712955
5757905693.6625985349312.210193142552796.33740146507310.661485547752675
5861906130.2319856334213.038448844292859.76801436658491.25243695498511
5963006339.3903752129813.1946608827398-39.39037521297940.578398867920731
6063406151.5321109691313.5083630150802188.467889030873-0.594088201308481
6166106618.8477340141212.500012812601-8.847734014117291.34800285683273
6266857074.8545186004813.8753202047066-389.8545186004791.29265285958722
6374507170.1414583598914.3392666623266279.8585416401140.236896230059135
6474107298.4736465251214.8599994514525111.5263534748760.335159974999656
6572557116.3205108332214.3076706725232138.679489166782-0.581365426386833
6664606666.5454664482313.4259256549895-206.545466448229-1.36974485051049
6760356299.3633845779212.7674957008955-264.36338457792-1.12321598363794
6867456573.6455010990613.2531322368555171.3544989009410.771751507339636
6966556626.9914976805513.331468657994328.0085023194520.118328186865914
7070706958.790166737213.8572597025829111.2098332628010.939729479903529
7174157339.6111449616614.040859403696875.388855038341.08214379378557
7277207586.1594178013813.7570058395982133.8405821986150.686869638398141
7378157868.0475888738313.4415795580798-53.04758887383430.793590676628232
7472607727.1421068150813.0459796971961-467.142106815084-0.451120377442535
7579257686.3352017138312.7856043522085238.664798286169-0.157024266886652
7678257678.9235924219112.6987938735217146.076407578087-0.0593502958276883
7778057592.3559778138412.4118071303138212.644022186159-0.29282427610513
7875307646.5522851045112.4949889081164-116.5522851045090.12332602863286
7970157385.7290044581912.0229076609433-370.729004458194-0.806641335992416
8065756590.107376951710.5889478967502-15.1073769517006-2.38356966064939
8166406633.2266438138810.64702966014286.773356186120960.0960056590254016
8270756953.216232511211.0781666546435121.7837674888040.91264303103238
8364056494.7094038532510.9189808526111-89.7094038532451-1.38472116873263
8467206593.9506846505710.8404760175864126.049315349430.260821036689849
8563856441.6083142709910.9271978716081-56.6083142709864-0.481983428515486
8660856518.3236374312311.0747996829625-433.3236374312290.192601409476696
8764756292.0680581123510.0821332449546182.931941887649-0.693151816715101
8865556375.4537535385810.3761843457033179.5462464614220.215343561705415
8965006318.3497630794710.1791824151105181.650236920525-0.198990261510643
9057905937.169414569899.36760066953354-147.169414569892-1.15504152669106
9151955506.262053106678.60019242844823-311.262053106667-1.2994475586332
9256805657.824237607768.8438867291885822.17576239224360.421936267551863
9357455767.54601416759.00797736418374-22.54601416750090.297701989921245
9460105797.661510853339.03301849933408212.3384891466750.0622639947997633
9557055810.433405945799.033997447924-105.4334059457870.0110251359175882
9663106090.190652474938.87164729562986219.8093475250730.799142669462105
9768706781.64584015588.7952061609638288.35415984419562.01363515938315
9862606699.300105053638.60942506404578-439.300105053631-0.267110421584869
9972106986.919937905449.63766376339239223.0800620945580.815951802296325
10070906927.030318836139.37794170630882162.969681163865-0.204229628488591
10170556821.328936926649.04373169550834233.671063073362-0.33924912519714
10265356641.598923566888.64029157328589-106.598923566884-0.557101045935807
10363206649.809495393728.63953434443994-329.809495393725-0.00126833895415553
10460106126.70782676767.76647116080655-116.707826767598-1.56940736006265
10561656157.857746081047.801210766114687.142253918958130.0690027135941503
10669856649.570558107248.29760582019941335.4294418927571.4273144025202
10767606883.785195478768.35078090780791-123.7851954787590.666170821106827
10872207090.967760394378.27937545459953129.0322396056320.586713816081789
10969956944.189062508558.2526464122197350.8109374914494-0.457076716653723
11064756967.545486318858.28128888574375-492.5454863188470.0442984818120736
11172256989.77861737358.32733764885374235.2213826264950.0408438874909035
11273257113.632725377528.72961600973503211.3672746224840.339355451559214
11375157224.445969044239.02145856880634290.5540309557710.300860143568511
11469257062.428946620428.64898713266761-137.428946620421-0.504717588316514
11571657321.208716974649.09345436228806-156.2087169746360.738282884893169
11668957086.292680208858.70642641260848-191.292680208846-0.720181355515253
11764006600.85412490228.03163873451871-200.8541249022-1.45808257105475
11866856424.307668904317.86454898795425260.692331095693-0.544377061282864
11969556972.778451753557.99358338026856-17.77845175354591.59407194822107
12075507319.659244142677.93848552174074230.3407558573260.99967824505417
12176457552.932436407718.0222036682408592.06756359228610.663915552813495
12267107284.385166355227.52677243940808-574.385166355217-0.811616055820737
12374707264.479997181447.44453896844146205.52000281856-0.0803736216262653
12473557186.337066871767.16599860065684168.662933128239-0.251433149603844
12575257206.09567574237.20118048633032318.9043242577020.0371051152021315
12671657321.921946274217.43976868201776-156.921946274210.320510038074664

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 6970 & 6970 & 0 & 0 & 0 \tabularnewline
2 & 6455 & 6493.25147880146 & -25.735836139883 & -38.2514788014619 & -0.855482394997845 \tabularnewline
3 & 8005 & 7828.1222551947 & -5.87843168591016 & 176.877744805302 & 3.99287726154655 \tabularnewline
4 & 8115 & 8137.95532802875 & -4.49374651096817 & -22.9553280287491 & 0.933222168749452 \tabularnewline
5 & 8180 & 8190.89064249233 & -4.24044502911566 & -10.8906424923279 & 0.169687678143421 \tabularnewline
6 & 7930 & 7965.43841510038 & -5.298450489624 & -35.4384151003829 & -0.653578471723508 \tabularnewline
7 & 7275 & 7349.79192372733 & -8.23829955286289 & -74.7919237273257 & -1.80328843422051 \tabularnewline
8 & 7865 & 7788.56461106899 & -6.09847987570992 & 76.4353889310081 & 1.32069748900802 \tabularnewline
9 & 7610 & 7652.50550172262 & -6.71721873617244 & -42.5055017226223 & -0.383966199924922 \tabularnewline
10 & 7435 & 7460.10340734515 & -7.59702982559696 & -25.1034073451505 & -0.548597209819898 \tabularnewline
11 & 8480 & 8361.63662133483 & -3.30962617154587 & 118.363378665171 & 2.68595733382901 \tabularnewline
12 & 8850 & 8831.73342852353 & -1.08753871861522 & 18.2665714764716 & 1.39863100077815 \tabularnewline
13 & 8345 & 8472.56261794528 & 13.276368790522 & -127.562617945275 & -1.24112642964198 \tabularnewline
14 & 8275 & 8455.35021372113 & 12.6695867385922 & -180.350213721133 & -0.0795046123180778 \tabularnewline
15 & 8595 & 8435.00432751901 & 12.2663352044493 & 159.99567248099 & -0.0958597109926347 \tabularnewline
16 & 8430 & 8448.43288871203 & 12.270891401639 & -18.4328887120318 & 0.0034328504468755 \tabularnewline
17 & 8395 & 8388.90715536897 & 12.101130069397 & 6.09284463103006 & -0.211970771573617 \tabularnewline
18 & 7735 & 7790.87783574537 & 10.5109380975453 & -55.877835745375 & -1.80099151026512 \tabularnewline
19 & 7890 & 7936.63115602495 & 10.8885719783106 & -46.6311560249544 & 0.399191664344936 \tabularnewline
20 & 8435 & 8266.51408742563 & 11.78752743408 & 168.485912574368 & 0.941566488625165 \tabularnewline
21 & 7620 & 7726.69440205665 & 10.2302366827087 & -106.69440205665 & -1.62818622109317 \tabularnewline
22 & 7610 & 7688.92922591738 & 10.0886248329444 & -78.9292259173834 & -0.141688353651008 \tabularnewline
23 & 8005 & 7890.71421881904 & 10.6683809828436 & 114.285781180959 & 0.566047857120123 \tabularnewline
24 & 8935 & 8717.97286248764 & 10.4804966286213 & 217.027137512359 & 2.40829256833877 \tabularnewline
25 & 8320 & 8533.7215447052 & 13.4265253889657 & -213.721544705203 & -0.610087771929528 \tabularnewline
26 & 7670 & 7950.40204975587 & 7.40243668260886 & -280.402049755871 & -1.66889431653381 \tabularnewline
27 & 8660 & 8386.85541744466 & 11.7720846170256 & 273.144582555344 & 1.2415602234403 \tabularnewline
28 & 8485 & 8493.8845676727 & 12.2021836394081 & -8.88456767270048 & 0.281077271031073 \tabularnewline
29 & 8160 & 8139.8215261285 & 11.3920339299573 & 20.1784738715035 & -1.0813159381742 \tabularnewline
30 & 7910 & 8004.46006052558 & 11.0964694077523 & -94.4600605255758 & -0.433127483178212 \tabularnewline
31 & 7725 & 7855.01371446648 & 10.742548406278 & -130.013714466482 & -0.473767847591092 \tabularnewline
32 & 7555 & 7386.98320793393 & 9.63336774819724 & 168.016792066069 & -1.41284701483354 \tabularnewline
33 & 7685 & 7678.26132513268 & 10.3149989237287 & 6.7386748673228 & 0.831199941394596 \tabularnewline
34 & 7740 & 7822.28185824445 & 10.6590012314369 & -82.2818582444545 & 0.394699933290694 \tabularnewline
35 & 7455 & 7553.7519430296 & 10.0869404351485 & -98.7519430295949 & -0.823977962802199 \tabularnewline
36 & 7850 & 7580.58394854832 & 10.0598925258793 & 269.416051451684 & 0.0494351730946421 \tabularnewline
37 & 6930 & 7139.02158393265 & 13.441272973151 & -209.021583932647 & -1.36962650300409 \tabularnewline
38 & 6600 & 6985.00861831641 & 12.4359901368828 & -385.008618316408 & -0.480298431691726 \tabularnewline
39 & 7290 & 7019.8322286414 & 12.6226036941506 & 270.167771358599 & 0.0648429115989099 \tabularnewline
40 & 7625 & 7469.24065060743 & 14.715932769498 & 155.759349392571 & 1.28702985040091 \tabularnewline
41 & 7755 & 7686.15504875616 & 15.2049815917028 & 68.8449512438402 & 0.596934226267509 \tabularnewline
42 & 6915 & 7123.07080428193 & 14.1452795966158 & -208.070804281926 & -1.7067557844333 \tabularnewline
43 & 6145 & 6342.54791495624 & 12.6233172393184 & -197.547914956243 & -2.34497976261034 \tabularnewline
44 & 5985 & 5922.05596193301 & 11.7178114803747 & 62.9440380669854 & -1.27804198442173 \tabularnewline
45 & 6100 & 6056.70509890881 & 11.995939727431 & 43.2949010911862 & 0.362801705794059 \tabularnewline
46 & 5955 & 6005.22759674885 & 11.8517632852297 & -50.2275967488499 & -0.187362825264491 \tabularnewline
47 & 5800 & 5922.6051012876 & 11.7294637375064 & -122.605101287599 & -0.278695101416553 \tabularnewline
48 & 5905 & 5618.62416743786 & 12.2959737173872 & 286.375832562142 & -0.932761256163183 \tabularnewline
49 & 5705 & 5809.23940065066 & 11.5762588345125 & -104.239400650657 & 0.533298439447666 \tabularnewline
50 & 5430 & 5824.09093759928 & 11.5896226917199 & -394.090937599281 & 0.009496550343188 \tabularnewline
51 & 6435 & 6185.41668600446 & 13.9830098254208 & 249.583313995541 & 1.01527849913591 \tabularnewline
52 & 6025 & 5989.47397452718 & 12.9825886092441 & 35.526025472821 & -0.617782605583058 \tabularnewline
53 & 5815 & 5711.19871252203 & 12.2125898594299 & 103.801287477965 & -0.859717972139794 \tabularnewline
54 & 5160 & 5305.69600814372 & 11.448585567617 & -145.696008143719 & -1.23287164956243 \tabularnewline
55 & 4985 & 5127.34794521653 & 11.111085875962 & -142.347945216529 & -0.560081109808058 \tabularnewline
56 & 5585 & 5457.7965804834 & 11.7356408880304 & 127.203419516604 & 0.942333887712955 \tabularnewline
57 & 5790 & 5693.66259853493 & 12.2101931425527 & 96.3374014650731 & 0.661485547752675 \tabularnewline
58 & 6190 & 6130.23198563342 & 13.0384488442928 & 59.7680143665849 & 1.25243695498511 \tabularnewline
59 & 6300 & 6339.39037521298 & 13.1946608827398 & -39.3903752129794 & 0.578398867920731 \tabularnewline
60 & 6340 & 6151.53211096913 & 13.5083630150802 & 188.467889030873 & -0.594088201308481 \tabularnewline
61 & 6610 & 6618.84773401412 & 12.500012812601 & -8.84773401411729 & 1.34800285683273 \tabularnewline
62 & 6685 & 7074.85451860048 & 13.8753202047066 & -389.854518600479 & 1.29265285958722 \tabularnewline
63 & 7450 & 7170.14145835989 & 14.3392666623266 & 279.858541640114 & 0.236896230059135 \tabularnewline
64 & 7410 & 7298.47364652512 & 14.8599994514525 & 111.526353474876 & 0.335159974999656 \tabularnewline
65 & 7255 & 7116.32051083322 & 14.3076706725232 & 138.679489166782 & -0.581365426386833 \tabularnewline
66 & 6460 & 6666.54546644823 & 13.4259256549895 & -206.545466448229 & -1.36974485051049 \tabularnewline
67 & 6035 & 6299.36338457792 & 12.7674957008955 & -264.36338457792 & -1.12321598363794 \tabularnewline
68 & 6745 & 6573.64550109906 & 13.2531322368555 & 171.354498900941 & 0.771751507339636 \tabularnewline
69 & 6655 & 6626.99149768055 & 13.3314686579943 & 28.008502319452 & 0.118328186865914 \tabularnewline
70 & 7070 & 6958.7901667372 & 13.8572597025829 & 111.209833262801 & 0.939729479903529 \tabularnewline
71 & 7415 & 7339.61114496166 & 14.0408594036968 & 75.38885503834 & 1.08214379378557 \tabularnewline
72 & 7720 & 7586.15941780138 & 13.7570058395982 & 133.840582198615 & 0.686869638398141 \tabularnewline
73 & 7815 & 7868.04758887383 & 13.4415795580798 & -53.0475888738343 & 0.793590676628232 \tabularnewline
74 & 7260 & 7727.14210681508 & 13.0459796971961 & -467.142106815084 & -0.451120377442535 \tabularnewline
75 & 7925 & 7686.33520171383 & 12.7856043522085 & 238.664798286169 & -0.157024266886652 \tabularnewline
76 & 7825 & 7678.92359242191 & 12.6987938735217 & 146.076407578087 & -0.0593502958276883 \tabularnewline
77 & 7805 & 7592.35597781384 & 12.4118071303138 & 212.644022186159 & -0.29282427610513 \tabularnewline
78 & 7530 & 7646.55228510451 & 12.4949889081164 & -116.552285104509 & 0.12332602863286 \tabularnewline
79 & 7015 & 7385.72900445819 & 12.0229076609433 & -370.729004458194 & -0.806641335992416 \tabularnewline
80 & 6575 & 6590.1073769517 & 10.5889478967502 & -15.1073769517006 & -2.38356966064939 \tabularnewline
81 & 6640 & 6633.22664381388 & 10.6470296601428 & 6.77335618612096 & 0.0960056590254016 \tabularnewline
82 & 7075 & 6953.2162325112 & 11.0781666546435 & 121.783767488804 & 0.91264303103238 \tabularnewline
83 & 6405 & 6494.70940385325 & 10.9189808526111 & -89.7094038532451 & -1.38472116873263 \tabularnewline
84 & 6720 & 6593.95068465057 & 10.8404760175864 & 126.04931534943 & 0.260821036689849 \tabularnewline
85 & 6385 & 6441.60831427099 & 10.9271978716081 & -56.6083142709864 & -0.481983428515486 \tabularnewline
86 & 6085 & 6518.32363743123 & 11.0747996829625 & -433.323637431229 & 0.192601409476696 \tabularnewline
87 & 6475 & 6292.06805811235 & 10.0821332449546 & 182.931941887649 & -0.693151816715101 \tabularnewline
88 & 6555 & 6375.45375353858 & 10.3761843457033 & 179.546246461422 & 0.215343561705415 \tabularnewline
89 & 6500 & 6318.34976307947 & 10.1791824151105 & 181.650236920525 & -0.198990261510643 \tabularnewline
90 & 5790 & 5937.16941456989 & 9.36760066953354 & -147.169414569892 & -1.15504152669106 \tabularnewline
91 & 5195 & 5506.26205310667 & 8.60019242844823 & -311.262053106667 & -1.2994475586332 \tabularnewline
92 & 5680 & 5657.82423760776 & 8.84388672918858 & 22.1757623922436 & 0.421936267551863 \tabularnewline
93 & 5745 & 5767.5460141675 & 9.00797736418374 & -22.5460141675009 & 0.297701989921245 \tabularnewline
94 & 6010 & 5797.66151085333 & 9.03301849933408 & 212.338489146675 & 0.0622639947997633 \tabularnewline
95 & 5705 & 5810.43340594579 & 9.033997447924 & -105.433405945787 & 0.0110251359175882 \tabularnewline
96 & 6310 & 6090.19065247493 & 8.87164729562986 & 219.809347525073 & 0.799142669462105 \tabularnewline
97 & 6870 & 6781.6458401558 & 8.79520616096382 & 88.3541598441956 & 2.01363515938315 \tabularnewline
98 & 6260 & 6699.30010505363 & 8.60942506404578 & -439.300105053631 & -0.267110421584869 \tabularnewline
99 & 7210 & 6986.91993790544 & 9.63766376339239 & 223.080062094558 & 0.815951802296325 \tabularnewline
100 & 7090 & 6927.03031883613 & 9.37794170630882 & 162.969681163865 & -0.204229628488591 \tabularnewline
101 & 7055 & 6821.32893692664 & 9.04373169550834 & 233.671063073362 & -0.33924912519714 \tabularnewline
102 & 6535 & 6641.59892356688 & 8.64029157328589 & -106.598923566884 & -0.557101045935807 \tabularnewline
103 & 6320 & 6649.80949539372 & 8.63953434443994 & -329.809495393725 & -0.00126833895415553 \tabularnewline
104 & 6010 & 6126.7078267676 & 7.76647116080655 & -116.707826767598 & -1.56940736006265 \tabularnewline
105 & 6165 & 6157.85774608104 & 7.80121076611468 & 7.14225391895813 & 0.0690027135941503 \tabularnewline
106 & 6985 & 6649.57055810724 & 8.29760582019941 & 335.429441892757 & 1.4273144025202 \tabularnewline
107 & 6760 & 6883.78519547876 & 8.35078090780791 & -123.785195478759 & 0.666170821106827 \tabularnewline
108 & 7220 & 7090.96776039437 & 8.27937545459953 & 129.032239605632 & 0.586713816081789 \tabularnewline
109 & 6995 & 6944.18906250855 & 8.25264641221973 & 50.8109374914494 & -0.457076716653723 \tabularnewline
110 & 6475 & 6967.54548631885 & 8.28128888574375 & -492.545486318847 & 0.0442984818120736 \tabularnewline
111 & 7225 & 6989.7786173735 & 8.32733764885374 & 235.221382626495 & 0.0408438874909035 \tabularnewline
112 & 7325 & 7113.63272537752 & 8.72961600973503 & 211.367274622484 & 0.339355451559214 \tabularnewline
113 & 7515 & 7224.44596904423 & 9.02145856880634 & 290.554030955771 & 0.300860143568511 \tabularnewline
114 & 6925 & 7062.42894662042 & 8.64898713266761 & -137.428946620421 & -0.504717588316514 \tabularnewline
115 & 7165 & 7321.20871697464 & 9.09345436228806 & -156.208716974636 & 0.738282884893169 \tabularnewline
116 & 6895 & 7086.29268020885 & 8.70642641260848 & -191.292680208846 & -0.720181355515253 \tabularnewline
117 & 6400 & 6600.8541249022 & 8.03163873451871 & -200.8541249022 & -1.45808257105475 \tabularnewline
118 & 6685 & 6424.30766890431 & 7.86454898795425 & 260.692331095693 & -0.544377061282864 \tabularnewline
119 & 6955 & 6972.77845175355 & 7.99358338026856 & -17.7784517535459 & 1.59407194822107 \tabularnewline
120 & 7550 & 7319.65924414267 & 7.93848552174074 & 230.340755857326 & 0.99967824505417 \tabularnewline
121 & 7645 & 7552.93243640771 & 8.02220366824085 & 92.0675635922861 & 0.663915552813495 \tabularnewline
122 & 6710 & 7284.38516635522 & 7.52677243940808 & -574.385166355217 & -0.811616055820737 \tabularnewline
123 & 7470 & 7264.47999718144 & 7.44453896844146 & 205.52000281856 & -0.0803736216262653 \tabularnewline
124 & 7355 & 7186.33706687176 & 7.16599860065684 & 168.662933128239 & -0.251433149603844 \tabularnewline
125 & 7525 & 7206.0956757423 & 7.20118048633032 & 318.904324257702 & 0.0371051152021315 \tabularnewline
126 & 7165 & 7321.92194627421 & 7.43976868201776 & -156.92194627421 & 0.320510038074664 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297967&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]6970[/C][C]6970[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]6455[/C][C]6493.25147880146[/C][C]-25.735836139883[/C][C]-38.2514788014619[/C][C]-0.855482394997845[/C][/ROW]
[ROW][C]3[/C][C]8005[/C][C]7828.1222551947[/C][C]-5.87843168591016[/C][C]176.877744805302[/C][C]3.99287726154655[/C][/ROW]
[ROW][C]4[/C][C]8115[/C][C]8137.95532802875[/C][C]-4.49374651096817[/C][C]-22.9553280287491[/C][C]0.933222168749452[/C][/ROW]
[ROW][C]5[/C][C]8180[/C][C]8190.89064249233[/C][C]-4.24044502911566[/C][C]-10.8906424923279[/C][C]0.169687678143421[/C][/ROW]
[ROW][C]6[/C][C]7930[/C][C]7965.43841510038[/C][C]-5.298450489624[/C][C]-35.4384151003829[/C][C]-0.653578471723508[/C][/ROW]
[ROW][C]7[/C][C]7275[/C][C]7349.79192372733[/C][C]-8.23829955286289[/C][C]-74.7919237273257[/C][C]-1.80328843422051[/C][/ROW]
[ROW][C]8[/C][C]7865[/C][C]7788.56461106899[/C][C]-6.09847987570992[/C][C]76.4353889310081[/C][C]1.32069748900802[/C][/ROW]
[ROW][C]9[/C][C]7610[/C][C]7652.50550172262[/C][C]-6.71721873617244[/C][C]-42.5055017226223[/C][C]-0.383966199924922[/C][/ROW]
[ROW][C]10[/C][C]7435[/C][C]7460.10340734515[/C][C]-7.59702982559696[/C][C]-25.1034073451505[/C][C]-0.548597209819898[/C][/ROW]
[ROW][C]11[/C][C]8480[/C][C]8361.63662133483[/C][C]-3.30962617154587[/C][C]118.363378665171[/C][C]2.68595733382901[/C][/ROW]
[ROW][C]12[/C][C]8850[/C][C]8831.73342852353[/C][C]-1.08753871861522[/C][C]18.2665714764716[/C][C]1.39863100077815[/C][/ROW]
[ROW][C]13[/C][C]8345[/C][C]8472.56261794528[/C][C]13.276368790522[/C][C]-127.562617945275[/C][C]-1.24112642964198[/C][/ROW]
[ROW][C]14[/C][C]8275[/C][C]8455.35021372113[/C][C]12.6695867385922[/C][C]-180.350213721133[/C][C]-0.0795046123180778[/C][/ROW]
[ROW][C]15[/C][C]8595[/C][C]8435.00432751901[/C][C]12.2663352044493[/C][C]159.99567248099[/C][C]-0.0958597109926347[/C][/ROW]
[ROW][C]16[/C][C]8430[/C][C]8448.43288871203[/C][C]12.270891401639[/C][C]-18.4328887120318[/C][C]0.0034328504468755[/C][/ROW]
[ROW][C]17[/C][C]8395[/C][C]8388.90715536897[/C][C]12.101130069397[/C][C]6.09284463103006[/C][C]-0.211970771573617[/C][/ROW]
[ROW][C]18[/C][C]7735[/C][C]7790.87783574537[/C][C]10.5109380975453[/C][C]-55.877835745375[/C][C]-1.80099151026512[/C][/ROW]
[ROW][C]19[/C][C]7890[/C][C]7936.63115602495[/C][C]10.8885719783106[/C][C]-46.6311560249544[/C][C]0.399191664344936[/C][/ROW]
[ROW][C]20[/C][C]8435[/C][C]8266.51408742563[/C][C]11.78752743408[/C][C]168.485912574368[/C][C]0.941566488625165[/C][/ROW]
[ROW][C]21[/C][C]7620[/C][C]7726.69440205665[/C][C]10.2302366827087[/C][C]-106.69440205665[/C][C]-1.62818622109317[/C][/ROW]
[ROW][C]22[/C][C]7610[/C][C]7688.92922591738[/C][C]10.0886248329444[/C][C]-78.9292259173834[/C][C]-0.141688353651008[/C][/ROW]
[ROW][C]23[/C][C]8005[/C][C]7890.71421881904[/C][C]10.6683809828436[/C][C]114.285781180959[/C][C]0.566047857120123[/C][/ROW]
[ROW][C]24[/C][C]8935[/C][C]8717.97286248764[/C][C]10.4804966286213[/C][C]217.027137512359[/C][C]2.40829256833877[/C][/ROW]
[ROW][C]25[/C][C]8320[/C][C]8533.7215447052[/C][C]13.4265253889657[/C][C]-213.721544705203[/C][C]-0.610087771929528[/C][/ROW]
[ROW][C]26[/C][C]7670[/C][C]7950.40204975587[/C][C]7.40243668260886[/C][C]-280.402049755871[/C][C]-1.66889431653381[/C][/ROW]
[ROW][C]27[/C][C]8660[/C][C]8386.85541744466[/C][C]11.7720846170256[/C][C]273.144582555344[/C][C]1.2415602234403[/C][/ROW]
[ROW][C]28[/C][C]8485[/C][C]8493.8845676727[/C][C]12.2021836394081[/C][C]-8.88456767270048[/C][C]0.281077271031073[/C][/ROW]
[ROW][C]29[/C][C]8160[/C][C]8139.8215261285[/C][C]11.3920339299573[/C][C]20.1784738715035[/C][C]-1.0813159381742[/C][/ROW]
[ROW][C]30[/C][C]7910[/C][C]8004.46006052558[/C][C]11.0964694077523[/C][C]-94.4600605255758[/C][C]-0.433127483178212[/C][/ROW]
[ROW][C]31[/C][C]7725[/C][C]7855.01371446648[/C][C]10.742548406278[/C][C]-130.013714466482[/C][C]-0.473767847591092[/C][/ROW]
[ROW][C]32[/C][C]7555[/C][C]7386.98320793393[/C][C]9.63336774819724[/C][C]168.016792066069[/C][C]-1.41284701483354[/C][/ROW]
[ROW][C]33[/C][C]7685[/C][C]7678.26132513268[/C][C]10.3149989237287[/C][C]6.7386748673228[/C][C]0.831199941394596[/C][/ROW]
[ROW][C]34[/C][C]7740[/C][C]7822.28185824445[/C][C]10.6590012314369[/C][C]-82.2818582444545[/C][C]0.394699933290694[/C][/ROW]
[ROW][C]35[/C][C]7455[/C][C]7553.7519430296[/C][C]10.0869404351485[/C][C]-98.7519430295949[/C][C]-0.823977962802199[/C][/ROW]
[ROW][C]36[/C][C]7850[/C][C]7580.58394854832[/C][C]10.0598925258793[/C][C]269.416051451684[/C][C]0.0494351730946421[/C][/ROW]
[ROW][C]37[/C][C]6930[/C][C]7139.02158393265[/C][C]13.441272973151[/C][C]-209.021583932647[/C][C]-1.36962650300409[/C][/ROW]
[ROW][C]38[/C][C]6600[/C][C]6985.00861831641[/C][C]12.4359901368828[/C][C]-385.008618316408[/C][C]-0.480298431691726[/C][/ROW]
[ROW][C]39[/C][C]7290[/C][C]7019.8322286414[/C][C]12.6226036941506[/C][C]270.167771358599[/C][C]0.0648429115989099[/C][/ROW]
[ROW][C]40[/C][C]7625[/C][C]7469.24065060743[/C][C]14.715932769498[/C][C]155.759349392571[/C][C]1.28702985040091[/C][/ROW]
[ROW][C]41[/C][C]7755[/C][C]7686.15504875616[/C][C]15.2049815917028[/C][C]68.8449512438402[/C][C]0.596934226267509[/C][/ROW]
[ROW][C]42[/C][C]6915[/C][C]7123.07080428193[/C][C]14.1452795966158[/C][C]-208.070804281926[/C][C]-1.7067557844333[/C][/ROW]
[ROW][C]43[/C][C]6145[/C][C]6342.54791495624[/C][C]12.6233172393184[/C][C]-197.547914956243[/C][C]-2.34497976261034[/C][/ROW]
[ROW][C]44[/C][C]5985[/C][C]5922.05596193301[/C][C]11.7178114803747[/C][C]62.9440380669854[/C][C]-1.27804198442173[/C][/ROW]
[ROW][C]45[/C][C]6100[/C][C]6056.70509890881[/C][C]11.995939727431[/C][C]43.2949010911862[/C][C]0.362801705794059[/C][/ROW]
[ROW][C]46[/C][C]5955[/C][C]6005.22759674885[/C][C]11.8517632852297[/C][C]-50.2275967488499[/C][C]-0.187362825264491[/C][/ROW]
[ROW][C]47[/C][C]5800[/C][C]5922.6051012876[/C][C]11.7294637375064[/C][C]-122.605101287599[/C][C]-0.278695101416553[/C][/ROW]
[ROW][C]48[/C][C]5905[/C][C]5618.62416743786[/C][C]12.2959737173872[/C][C]286.375832562142[/C][C]-0.932761256163183[/C][/ROW]
[ROW][C]49[/C][C]5705[/C][C]5809.23940065066[/C][C]11.5762588345125[/C][C]-104.239400650657[/C][C]0.533298439447666[/C][/ROW]
[ROW][C]50[/C][C]5430[/C][C]5824.09093759928[/C][C]11.5896226917199[/C][C]-394.090937599281[/C][C]0.009496550343188[/C][/ROW]
[ROW][C]51[/C][C]6435[/C][C]6185.41668600446[/C][C]13.9830098254208[/C][C]249.583313995541[/C][C]1.01527849913591[/C][/ROW]
[ROW][C]52[/C][C]6025[/C][C]5989.47397452718[/C][C]12.9825886092441[/C][C]35.526025472821[/C][C]-0.617782605583058[/C][/ROW]
[ROW][C]53[/C][C]5815[/C][C]5711.19871252203[/C][C]12.2125898594299[/C][C]103.801287477965[/C][C]-0.859717972139794[/C][/ROW]
[ROW][C]54[/C][C]5160[/C][C]5305.69600814372[/C][C]11.448585567617[/C][C]-145.696008143719[/C][C]-1.23287164956243[/C][/ROW]
[ROW][C]55[/C][C]4985[/C][C]5127.34794521653[/C][C]11.111085875962[/C][C]-142.347945216529[/C][C]-0.560081109808058[/C][/ROW]
[ROW][C]56[/C][C]5585[/C][C]5457.7965804834[/C][C]11.7356408880304[/C][C]127.203419516604[/C][C]0.942333887712955[/C][/ROW]
[ROW][C]57[/C][C]5790[/C][C]5693.66259853493[/C][C]12.2101931425527[/C][C]96.3374014650731[/C][C]0.661485547752675[/C][/ROW]
[ROW][C]58[/C][C]6190[/C][C]6130.23198563342[/C][C]13.0384488442928[/C][C]59.7680143665849[/C][C]1.25243695498511[/C][/ROW]
[ROW][C]59[/C][C]6300[/C][C]6339.39037521298[/C][C]13.1946608827398[/C][C]-39.3903752129794[/C][C]0.578398867920731[/C][/ROW]
[ROW][C]60[/C][C]6340[/C][C]6151.53211096913[/C][C]13.5083630150802[/C][C]188.467889030873[/C][C]-0.594088201308481[/C][/ROW]
[ROW][C]61[/C][C]6610[/C][C]6618.84773401412[/C][C]12.500012812601[/C][C]-8.84773401411729[/C][C]1.34800285683273[/C][/ROW]
[ROW][C]62[/C][C]6685[/C][C]7074.85451860048[/C][C]13.8753202047066[/C][C]-389.854518600479[/C][C]1.29265285958722[/C][/ROW]
[ROW][C]63[/C][C]7450[/C][C]7170.14145835989[/C][C]14.3392666623266[/C][C]279.858541640114[/C][C]0.236896230059135[/C][/ROW]
[ROW][C]64[/C][C]7410[/C][C]7298.47364652512[/C][C]14.8599994514525[/C][C]111.526353474876[/C][C]0.335159974999656[/C][/ROW]
[ROW][C]65[/C][C]7255[/C][C]7116.32051083322[/C][C]14.3076706725232[/C][C]138.679489166782[/C][C]-0.581365426386833[/C][/ROW]
[ROW][C]66[/C][C]6460[/C][C]6666.54546644823[/C][C]13.4259256549895[/C][C]-206.545466448229[/C][C]-1.36974485051049[/C][/ROW]
[ROW][C]67[/C][C]6035[/C][C]6299.36338457792[/C][C]12.7674957008955[/C][C]-264.36338457792[/C][C]-1.12321598363794[/C][/ROW]
[ROW][C]68[/C][C]6745[/C][C]6573.64550109906[/C][C]13.2531322368555[/C][C]171.354498900941[/C][C]0.771751507339636[/C][/ROW]
[ROW][C]69[/C][C]6655[/C][C]6626.99149768055[/C][C]13.3314686579943[/C][C]28.008502319452[/C][C]0.118328186865914[/C][/ROW]
[ROW][C]70[/C][C]7070[/C][C]6958.7901667372[/C][C]13.8572597025829[/C][C]111.209833262801[/C][C]0.939729479903529[/C][/ROW]
[ROW][C]71[/C][C]7415[/C][C]7339.61114496166[/C][C]14.0408594036968[/C][C]75.38885503834[/C][C]1.08214379378557[/C][/ROW]
[ROW][C]72[/C][C]7720[/C][C]7586.15941780138[/C][C]13.7570058395982[/C][C]133.840582198615[/C][C]0.686869638398141[/C][/ROW]
[ROW][C]73[/C][C]7815[/C][C]7868.04758887383[/C][C]13.4415795580798[/C][C]-53.0475888738343[/C][C]0.793590676628232[/C][/ROW]
[ROW][C]74[/C][C]7260[/C][C]7727.14210681508[/C][C]13.0459796971961[/C][C]-467.142106815084[/C][C]-0.451120377442535[/C][/ROW]
[ROW][C]75[/C][C]7925[/C][C]7686.33520171383[/C][C]12.7856043522085[/C][C]238.664798286169[/C][C]-0.157024266886652[/C][/ROW]
[ROW][C]76[/C][C]7825[/C][C]7678.92359242191[/C][C]12.6987938735217[/C][C]146.076407578087[/C][C]-0.0593502958276883[/C][/ROW]
[ROW][C]77[/C][C]7805[/C][C]7592.35597781384[/C][C]12.4118071303138[/C][C]212.644022186159[/C][C]-0.29282427610513[/C][/ROW]
[ROW][C]78[/C][C]7530[/C][C]7646.55228510451[/C][C]12.4949889081164[/C][C]-116.552285104509[/C][C]0.12332602863286[/C][/ROW]
[ROW][C]79[/C][C]7015[/C][C]7385.72900445819[/C][C]12.0229076609433[/C][C]-370.729004458194[/C][C]-0.806641335992416[/C][/ROW]
[ROW][C]80[/C][C]6575[/C][C]6590.1073769517[/C][C]10.5889478967502[/C][C]-15.1073769517006[/C][C]-2.38356966064939[/C][/ROW]
[ROW][C]81[/C][C]6640[/C][C]6633.22664381388[/C][C]10.6470296601428[/C][C]6.77335618612096[/C][C]0.0960056590254016[/C][/ROW]
[ROW][C]82[/C][C]7075[/C][C]6953.2162325112[/C][C]11.0781666546435[/C][C]121.783767488804[/C][C]0.91264303103238[/C][/ROW]
[ROW][C]83[/C][C]6405[/C][C]6494.70940385325[/C][C]10.9189808526111[/C][C]-89.7094038532451[/C][C]-1.38472116873263[/C][/ROW]
[ROW][C]84[/C][C]6720[/C][C]6593.95068465057[/C][C]10.8404760175864[/C][C]126.04931534943[/C][C]0.260821036689849[/C][/ROW]
[ROW][C]85[/C][C]6385[/C][C]6441.60831427099[/C][C]10.9271978716081[/C][C]-56.6083142709864[/C][C]-0.481983428515486[/C][/ROW]
[ROW][C]86[/C][C]6085[/C][C]6518.32363743123[/C][C]11.0747996829625[/C][C]-433.323637431229[/C][C]0.192601409476696[/C][/ROW]
[ROW][C]87[/C][C]6475[/C][C]6292.06805811235[/C][C]10.0821332449546[/C][C]182.931941887649[/C][C]-0.693151816715101[/C][/ROW]
[ROW][C]88[/C][C]6555[/C][C]6375.45375353858[/C][C]10.3761843457033[/C][C]179.546246461422[/C][C]0.215343561705415[/C][/ROW]
[ROW][C]89[/C][C]6500[/C][C]6318.34976307947[/C][C]10.1791824151105[/C][C]181.650236920525[/C][C]-0.198990261510643[/C][/ROW]
[ROW][C]90[/C][C]5790[/C][C]5937.16941456989[/C][C]9.36760066953354[/C][C]-147.169414569892[/C][C]-1.15504152669106[/C][/ROW]
[ROW][C]91[/C][C]5195[/C][C]5506.26205310667[/C][C]8.60019242844823[/C][C]-311.262053106667[/C][C]-1.2994475586332[/C][/ROW]
[ROW][C]92[/C][C]5680[/C][C]5657.82423760776[/C][C]8.84388672918858[/C][C]22.1757623922436[/C][C]0.421936267551863[/C][/ROW]
[ROW][C]93[/C][C]5745[/C][C]5767.5460141675[/C][C]9.00797736418374[/C][C]-22.5460141675009[/C][C]0.297701989921245[/C][/ROW]
[ROW][C]94[/C][C]6010[/C][C]5797.66151085333[/C][C]9.03301849933408[/C][C]212.338489146675[/C][C]0.0622639947997633[/C][/ROW]
[ROW][C]95[/C][C]5705[/C][C]5810.43340594579[/C][C]9.033997447924[/C][C]-105.433405945787[/C][C]0.0110251359175882[/C][/ROW]
[ROW][C]96[/C][C]6310[/C][C]6090.19065247493[/C][C]8.87164729562986[/C][C]219.809347525073[/C][C]0.799142669462105[/C][/ROW]
[ROW][C]97[/C][C]6870[/C][C]6781.6458401558[/C][C]8.79520616096382[/C][C]88.3541598441956[/C][C]2.01363515938315[/C][/ROW]
[ROW][C]98[/C][C]6260[/C][C]6699.30010505363[/C][C]8.60942506404578[/C][C]-439.300105053631[/C][C]-0.267110421584869[/C][/ROW]
[ROW][C]99[/C][C]7210[/C][C]6986.91993790544[/C][C]9.63766376339239[/C][C]223.080062094558[/C][C]0.815951802296325[/C][/ROW]
[ROW][C]100[/C][C]7090[/C][C]6927.03031883613[/C][C]9.37794170630882[/C][C]162.969681163865[/C][C]-0.204229628488591[/C][/ROW]
[ROW][C]101[/C][C]7055[/C][C]6821.32893692664[/C][C]9.04373169550834[/C][C]233.671063073362[/C][C]-0.33924912519714[/C][/ROW]
[ROW][C]102[/C][C]6535[/C][C]6641.59892356688[/C][C]8.64029157328589[/C][C]-106.598923566884[/C][C]-0.557101045935807[/C][/ROW]
[ROW][C]103[/C][C]6320[/C][C]6649.80949539372[/C][C]8.63953434443994[/C][C]-329.809495393725[/C][C]-0.00126833895415553[/C][/ROW]
[ROW][C]104[/C][C]6010[/C][C]6126.7078267676[/C][C]7.76647116080655[/C][C]-116.707826767598[/C][C]-1.56940736006265[/C][/ROW]
[ROW][C]105[/C][C]6165[/C][C]6157.85774608104[/C][C]7.80121076611468[/C][C]7.14225391895813[/C][C]0.0690027135941503[/C][/ROW]
[ROW][C]106[/C][C]6985[/C][C]6649.57055810724[/C][C]8.29760582019941[/C][C]335.429441892757[/C][C]1.4273144025202[/C][/ROW]
[ROW][C]107[/C][C]6760[/C][C]6883.78519547876[/C][C]8.35078090780791[/C][C]-123.785195478759[/C][C]0.666170821106827[/C][/ROW]
[ROW][C]108[/C][C]7220[/C][C]7090.96776039437[/C][C]8.27937545459953[/C][C]129.032239605632[/C][C]0.586713816081789[/C][/ROW]
[ROW][C]109[/C][C]6995[/C][C]6944.18906250855[/C][C]8.25264641221973[/C][C]50.8109374914494[/C][C]-0.457076716653723[/C][/ROW]
[ROW][C]110[/C][C]6475[/C][C]6967.54548631885[/C][C]8.28128888574375[/C][C]-492.545486318847[/C][C]0.0442984818120736[/C][/ROW]
[ROW][C]111[/C][C]7225[/C][C]6989.7786173735[/C][C]8.32733764885374[/C][C]235.221382626495[/C][C]0.0408438874909035[/C][/ROW]
[ROW][C]112[/C][C]7325[/C][C]7113.63272537752[/C][C]8.72961600973503[/C][C]211.367274622484[/C][C]0.339355451559214[/C][/ROW]
[ROW][C]113[/C][C]7515[/C][C]7224.44596904423[/C][C]9.02145856880634[/C][C]290.554030955771[/C][C]0.300860143568511[/C][/ROW]
[ROW][C]114[/C][C]6925[/C][C]7062.42894662042[/C][C]8.64898713266761[/C][C]-137.428946620421[/C][C]-0.504717588316514[/C][/ROW]
[ROW][C]115[/C][C]7165[/C][C]7321.20871697464[/C][C]9.09345436228806[/C][C]-156.208716974636[/C][C]0.738282884893169[/C][/ROW]
[ROW][C]116[/C][C]6895[/C][C]7086.29268020885[/C][C]8.70642641260848[/C][C]-191.292680208846[/C][C]-0.720181355515253[/C][/ROW]
[ROW][C]117[/C][C]6400[/C][C]6600.8541249022[/C][C]8.03163873451871[/C][C]-200.8541249022[/C][C]-1.45808257105475[/C][/ROW]
[ROW][C]118[/C][C]6685[/C][C]6424.30766890431[/C][C]7.86454898795425[/C][C]260.692331095693[/C][C]-0.544377061282864[/C][/ROW]
[ROW][C]119[/C][C]6955[/C][C]6972.77845175355[/C][C]7.99358338026856[/C][C]-17.7784517535459[/C][C]1.59407194822107[/C][/ROW]
[ROW][C]120[/C][C]7550[/C][C]7319.65924414267[/C][C]7.93848552174074[/C][C]230.340755857326[/C][C]0.99967824505417[/C][/ROW]
[ROW][C]121[/C][C]7645[/C][C]7552.93243640771[/C][C]8.02220366824085[/C][C]92.0675635922861[/C][C]0.663915552813495[/C][/ROW]
[ROW][C]122[/C][C]6710[/C][C]7284.38516635522[/C][C]7.52677243940808[/C][C]-574.385166355217[/C][C]-0.811616055820737[/C][/ROW]
[ROW][C]123[/C][C]7470[/C][C]7264.47999718144[/C][C]7.44453896844146[/C][C]205.52000281856[/C][C]-0.0803736216262653[/C][/ROW]
[ROW][C]124[/C][C]7355[/C][C]7186.33706687176[/C][C]7.16599860065684[/C][C]168.662933128239[/C][C]-0.251433149603844[/C][/ROW]
[ROW][C]125[/C][C]7525[/C][C]7206.0956757423[/C][C]7.20118048633032[/C][C]318.904324257702[/C][C]0.0371051152021315[/C][/ROW]
[ROW][C]126[/C][C]7165[/C][C]7321.92194627421[/C][C]7.43976868201776[/C][C]-156.92194627421[/C][C]0.320510038074664[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297967&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297967&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
169706970000
264556493.25147880146-25.735836139883-38.2514788014619-0.855482394997845
380057828.1222551947-5.87843168591016176.8777448053023.99287726154655
481158137.95532802875-4.49374651096817-22.95532802874910.933222168749452
581808190.89064249233-4.24044502911566-10.89064249232790.169687678143421
679307965.43841510038-5.298450489624-35.4384151003829-0.653578471723508
772757349.79192372733-8.23829955286289-74.7919237273257-1.80328843422051
878657788.56461106899-6.0984798757099276.43538893100811.32069748900802
976107652.50550172262-6.71721873617244-42.5055017226223-0.383966199924922
1074357460.10340734515-7.59702982559696-25.1034073451505-0.548597209819898
1184808361.63662133483-3.30962617154587118.3633786651712.68595733382901
1288508831.73342852353-1.0875387186152218.26657147647161.39863100077815
1383458472.5626179452813.276368790522-127.562617945275-1.24112642964198
1482758455.3502137211312.6695867385922-180.350213721133-0.0795046123180778
1585958435.0043275190112.2663352044493159.99567248099-0.0958597109926347
1684308448.4328887120312.270891401639-18.43288871203180.0034328504468755
1783958388.9071553689712.1011300693976.09284463103006-0.211970771573617
1877357790.8778357453710.5109380975453-55.877835745375-1.80099151026512
1978907936.6311560249510.8885719783106-46.63115602495440.399191664344936
2084358266.5140874256311.78752743408168.4859125743680.941566488625165
2176207726.6944020566510.2302366827087-106.69440205665-1.62818622109317
2276107688.9292259173810.0886248329444-78.9292259173834-0.141688353651008
2380057890.7142188190410.6683809828436114.2857811809590.566047857120123
2489358717.9728624876410.4804966286213217.0271375123592.40829256833877
2583208533.721544705213.4265253889657-213.721544705203-0.610087771929528
2676707950.402049755877.40243668260886-280.402049755871-1.66889431653381
2786608386.8554174446611.7720846170256273.1445825553441.2415602234403
2884858493.884567672712.2021836394081-8.884567672700480.281077271031073
2981608139.821526128511.392033929957320.1784738715035-1.0813159381742
3079108004.4600605255811.0964694077523-94.4600605255758-0.433127483178212
3177257855.0137144664810.742548406278-130.013714466482-0.473767847591092
3275557386.983207933939.63336774819724168.016792066069-1.41284701483354
3376857678.2613251326810.31499892372876.73867486732280.831199941394596
3477407822.2818582444510.6590012314369-82.28185824445450.394699933290694
3574557553.751943029610.0869404351485-98.7519430295949-0.823977962802199
3678507580.5839485483210.0598925258793269.4160514516840.0494351730946421
3769307139.0215839326513.441272973151-209.021583932647-1.36962650300409
3866006985.0086183164112.4359901368828-385.008618316408-0.480298431691726
3972907019.832228641412.6226036941506270.1677713585990.0648429115989099
4076257469.2406506074314.715932769498155.7593493925711.28702985040091
4177557686.1550487561615.204981591702868.84495124384020.596934226267509
4269157123.0708042819314.1452795966158-208.070804281926-1.7067557844333
4361456342.5479149562412.6233172393184-197.547914956243-2.34497976261034
4459855922.0559619330111.717811480374762.9440380669854-1.27804198442173
4561006056.7050989088111.99593972743143.29490109118620.362801705794059
4659556005.2275967488511.8517632852297-50.2275967488499-0.187362825264491
4758005922.605101287611.7294637375064-122.605101287599-0.278695101416553
4859055618.6241674378612.2959737173872286.375832562142-0.932761256163183
4957055809.2394006506611.5762588345125-104.2394006506570.533298439447666
5054305824.0909375992811.5896226917199-394.0909375992810.009496550343188
5164356185.4166860044613.9830098254208249.5833139955411.01527849913591
5260255989.4739745271812.982588609244135.526025472821-0.617782605583058
5358155711.1987125220312.2125898594299103.801287477965-0.859717972139794
5451605305.6960081437211.448585567617-145.696008143719-1.23287164956243
5549855127.3479452165311.111085875962-142.347945216529-0.560081109808058
5655855457.796580483411.7356408880304127.2034195166040.942333887712955
5757905693.6625985349312.210193142552796.33740146507310.661485547752675
5861906130.2319856334213.038448844292859.76801436658491.25243695498511
5963006339.3903752129813.1946608827398-39.39037521297940.578398867920731
6063406151.5321109691313.5083630150802188.467889030873-0.594088201308481
6166106618.8477340141212.500012812601-8.847734014117291.34800285683273
6266857074.8545186004813.8753202047066-389.8545186004791.29265285958722
6374507170.1414583598914.3392666623266279.8585416401140.236896230059135
6474107298.4736465251214.8599994514525111.5263534748760.335159974999656
6572557116.3205108332214.3076706725232138.679489166782-0.581365426386833
6664606666.5454664482313.4259256549895-206.545466448229-1.36974485051049
6760356299.3633845779212.7674957008955-264.36338457792-1.12321598363794
6867456573.6455010990613.2531322368555171.3544989009410.771751507339636
6966556626.9914976805513.331468657994328.0085023194520.118328186865914
7070706958.790166737213.8572597025829111.2098332628010.939729479903529
7174157339.6111449616614.040859403696875.388855038341.08214379378557
7277207586.1594178013813.7570058395982133.8405821986150.686869638398141
7378157868.0475888738313.4415795580798-53.04758887383430.793590676628232
7472607727.1421068150813.0459796971961-467.142106815084-0.451120377442535
7579257686.3352017138312.7856043522085238.664798286169-0.157024266886652
7678257678.9235924219112.6987938735217146.076407578087-0.0593502958276883
7778057592.3559778138412.4118071303138212.644022186159-0.29282427610513
7875307646.5522851045112.4949889081164-116.5522851045090.12332602863286
7970157385.7290044581912.0229076609433-370.729004458194-0.806641335992416
8065756590.107376951710.5889478967502-15.1073769517006-2.38356966064939
8166406633.2266438138810.64702966014286.773356186120960.0960056590254016
8270756953.216232511211.0781666546435121.7837674888040.91264303103238
8364056494.7094038532510.9189808526111-89.7094038532451-1.38472116873263
8467206593.9506846505710.8404760175864126.049315349430.260821036689849
8563856441.6083142709910.9271978716081-56.6083142709864-0.481983428515486
8660856518.3236374312311.0747996829625-433.3236374312290.192601409476696
8764756292.0680581123510.0821332449546182.931941887649-0.693151816715101
8865556375.4537535385810.3761843457033179.5462464614220.215343561705415
8965006318.3497630794710.1791824151105181.650236920525-0.198990261510643
9057905937.169414569899.36760066953354-147.169414569892-1.15504152669106
9151955506.262053106678.60019242844823-311.262053106667-1.2994475586332
9256805657.824237607768.8438867291885822.17576239224360.421936267551863
9357455767.54601416759.00797736418374-22.54601416750090.297701989921245
9460105797.661510853339.03301849933408212.3384891466750.0622639947997633
9557055810.433405945799.033997447924-105.4334059457870.0110251359175882
9663106090.190652474938.87164729562986219.8093475250730.799142669462105
9768706781.64584015588.7952061609638288.35415984419562.01363515938315
9862606699.300105053638.60942506404578-439.300105053631-0.267110421584869
9972106986.919937905449.63766376339239223.0800620945580.815951802296325
10070906927.030318836139.37794170630882162.969681163865-0.204229628488591
10170556821.328936926649.04373169550834233.671063073362-0.33924912519714
10265356641.598923566888.64029157328589-106.598923566884-0.557101045935807
10363206649.809495393728.63953434443994-329.809495393725-0.00126833895415553
10460106126.70782676767.76647116080655-116.707826767598-1.56940736006265
10561656157.857746081047.801210766114687.142253918958130.0690027135941503
10669856649.570558107248.29760582019941335.4294418927571.4273144025202
10767606883.785195478768.35078090780791-123.7851954787590.666170821106827
10872207090.967760394378.27937545459953129.0322396056320.586713816081789
10969956944.189062508558.2526464122197350.8109374914494-0.457076716653723
11064756967.545486318858.28128888574375-492.5454863188470.0442984818120736
11172256989.77861737358.32733764885374235.2213826264950.0408438874909035
11273257113.632725377528.72961600973503211.3672746224840.339355451559214
11375157224.445969044239.02145856880634290.5540309557710.300860143568511
11469257062.428946620428.64898713266761-137.428946620421-0.504717588316514
11571657321.208716974649.09345436228806-156.2087169746360.738282884893169
11668957086.292680208858.70642641260848-191.292680208846-0.720181355515253
11764006600.85412490228.03163873451871-200.8541249022-1.45808257105475
11866856424.307668904317.86454898795425260.692331095693-0.544377061282864
11969556972.778451753557.99358338026856-17.77845175354591.59407194822107
12075507319.659244142677.93848552174074230.3407558573260.99967824505417
12176457552.932436407718.0222036682408592.06756359228610.663915552813495
12267107284.385166355227.52677243940808-574.385166355217-0.811616055820737
12374707264.479997181447.44453896844146205.52000281856-0.0803736216262653
12473557186.337066871767.16599860065684168.662933128239-0.251433149603844
12575257206.09567574237.20118048633032318.9043242577020.0371051152021315
12671657321.921946274217.43976868201776-156.921946274210.320510038074664







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
16938.528101277477195.45882262666-256.930721349188
26822.976178574937196.67764268594-373.701464111003
36671.996684838947197.89646274522-525.899777906271
47091.468302062527199.11528280449-107.646980741976
57062.377244995847200.33410286377-137.956857867936
67501.998428212217201.55292292305300.445505289164
77551.024028455187202.77174298233348.252285472856
86828.172461258427203.99056304161-375.818101783189
97642.901830908587205.20938310088437.692447807694
107562.592772715887206.42820316016356.164569555713
117635.788043032867207.64702321944428.141019813418
127116.123919099447208.86584327872-92.741924179282
136953.153941988817210.084663338-256.930721349188
146837.602019286277211.30348339728-373.701464111003
156686.622525550287212.52230345655-525.899777906271
167106.094142773867213.74112351583-107.646980741976
177077.003085707177214.95994357511-137.956857867936
187516.624268923557216.17876363439300.445505289164

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 6938.52810127747 & 7195.45882262666 & -256.930721349188 \tabularnewline
2 & 6822.97617857493 & 7196.67764268594 & -373.701464111003 \tabularnewline
3 & 6671.99668483894 & 7197.89646274522 & -525.899777906271 \tabularnewline
4 & 7091.46830206252 & 7199.11528280449 & -107.646980741976 \tabularnewline
5 & 7062.37724499584 & 7200.33410286377 & -137.956857867936 \tabularnewline
6 & 7501.99842821221 & 7201.55292292305 & 300.445505289164 \tabularnewline
7 & 7551.02402845518 & 7202.77174298233 & 348.252285472856 \tabularnewline
8 & 6828.17246125842 & 7203.99056304161 & -375.818101783189 \tabularnewline
9 & 7642.90183090858 & 7205.20938310088 & 437.692447807694 \tabularnewline
10 & 7562.59277271588 & 7206.42820316016 & 356.164569555713 \tabularnewline
11 & 7635.78804303286 & 7207.64702321944 & 428.141019813418 \tabularnewline
12 & 7116.12391909944 & 7208.86584327872 & -92.741924179282 \tabularnewline
13 & 6953.15394198881 & 7210.084663338 & -256.930721349188 \tabularnewline
14 & 6837.60201928627 & 7211.30348339728 & -373.701464111003 \tabularnewline
15 & 6686.62252555028 & 7212.52230345655 & -525.899777906271 \tabularnewline
16 & 7106.09414277386 & 7213.74112351583 & -107.646980741976 \tabularnewline
17 & 7077.00308570717 & 7214.95994357511 & -137.956857867936 \tabularnewline
18 & 7516.62426892355 & 7216.17876363439 & 300.445505289164 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297967&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]6938.52810127747[/C][C]7195.45882262666[/C][C]-256.930721349188[/C][/ROW]
[ROW][C]2[/C][C]6822.97617857493[/C][C]7196.67764268594[/C][C]-373.701464111003[/C][/ROW]
[ROW][C]3[/C][C]6671.99668483894[/C][C]7197.89646274522[/C][C]-525.899777906271[/C][/ROW]
[ROW][C]4[/C][C]7091.46830206252[/C][C]7199.11528280449[/C][C]-107.646980741976[/C][/ROW]
[ROW][C]5[/C][C]7062.37724499584[/C][C]7200.33410286377[/C][C]-137.956857867936[/C][/ROW]
[ROW][C]6[/C][C]7501.99842821221[/C][C]7201.55292292305[/C][C]300.445505289164[/C][/ROW]
[ROW][C]7[/C][C]7551.02402845518[/C][C]7202.77174298233[/C][C]348.252285472856[/C][/ROW]
[ROW][C]8[/C][C]6828.17246125842[/C][C]7203.99056304161[/C][C]-375.818101783189[/C][/ROW]
[ROW][C]9[/C][C]7642.90183090858[/C][C]7205.20938310088[/C][C]437.692447807694[/C][/ROW]
[ROW][C]10[/C][C]7562.59277271588[/C][C]7206.42820316016[/C][C]356.164569555713[/C][/ROW]
[ROW][C]11[/C][C]7635.78804303286[/C][C]7207.64702321944[/C][C]428.141019813418[/C][/ROW]
[ROW][C]12[/C][C]7116.12391909944[/C][C]7208.86584327872[/C][C]-92.741924179282[/C][/ROW]
[ROW][C]13[/C][C]6953.15394198881[/C][C]7210.084663338[/C][C]-256.930721349188[/C][/ROW]
[ROW][C]14[/C][C]6837.60201928627[/C][C]7211.30348339728[/C][C]-373.701464111003[/C][/ROW]
[ROW][C]15[/C][C]6686.62252555028[/C][C]7212.52230345655[/C][C]-525.899777906271[/C][/ROW]
[ROW][C]16[/C][C]7106.09414277386[/C][C]7213.74112351583[/C][C]-107.646980741976[/C][/ROW]
[ROW][C]17[/C][C]7077.00308570717[/C][C]7214.95994357511[/C][C]-137.956857867936[/C][/ROW]
[ROW][C]18[/C][C]7516.62426892355[/C][C]7216.17876363439[/C][C]300.445505289164[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297967&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297967&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
16938.528101277477195.45882262666-256.930721349188
26822.976178574937196.67764268594-373.701464111003
36671.996684838947197.89646274522-525.899777906271
47091.468302062527199.11528280449-107.646980741976
57062.377244995847200.33410286377-137.956857867936
67501.998428212217201.55292292305300.445505289164
77551.024028455187202.77174298233348.252285472856
86828.172461258427203.99056304161-375.818101783189
97642.901830908587205.20938310088437.692447807694
107562.592772715887206.42820316016356.164569555713
117635.788043032867207.64702321944428.141019813418
127116.123919099447208.86584327872-92.741924179282
136953.153941988817210.084663338-256.930721349188
146837.602019286277211.30348339728-373.701464111003
156686.622525550287212.52230345655-525.899777906271
167106.094142773867213.74112351583-107.646980741976
177077.003085707177214.95994357511-137.956857867936
187516.624268923557216.17876363439300.445505289164



Parameters (Session):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
R code (references can be found in the software module):
par3 <- 'BFGS'
par2 <- '12'
par1 <- '12'
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')