Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationWed, 07 Dec 2016 09:52:15 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/07/t1481100744hhkw0jk567ctnqn.htm/, Retrieved Fri, 01 Nov 2024 03:33:23 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297935, Retrieved Fri, 01 Nov 2024 03:33:23 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact134
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [] [2016-12-07 08:52:15] [bd7223969ac5b08f41438741a34686d6] [Current]
Feedback Forum

Post a new message
Dataseries X:
5350
6100
4820
5130
4060
6710
4510
5630
5200
4510
4810
4930
4720
4400
4090
4160
5020
5930
4390
4490
5760
5040
4800
4820
4620
4380
4250
4230
3800
6360
4280
4680
5070
4560
4690
4820
4370
3850
5050
4010
4570
4240
3850
4830
5400
4680
4390
4140
4300
4180
4120
3910
4300
4240
3610
3600
3970
3790
3750
3680
3970
4290
3670
3760
4160
3620
4280
4410
4500
4690
3650
3720
3770
3970
3390
3400
3130
3930
3740
3400
3620
3980
3440
3420
3740
3630
3650
3940
3540
3590
3740
3910
3670
3510
3430
3420
3630
3690
3350
3470
3380
3990
3790
3440
3580
3600
3990
3640




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time5 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297935&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]5 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297935&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297935&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
153505350000
261005457.0782462459631.114470556108831.11447077544551.47765397322123
348205360.518733390082.943983987693662.94398398769374-1.34478750999864
451305314.72281171342-5.74443891770982-5.74443891770989-0.448709187728576
540605039.38805119281-46.0900036145159-46.0900036145158-2.34974859928591
667105379.351257749983.705206076455193.705206076455343.33627272181007
745105193.52872051842-17.7734048161808-17.7734048161809-1.66660581142072
856305275.21000584193-7.72400378110111-7.724003781101130.902353078965655
952005255.29259896444-8.83543767730099-8.83543767730098-0.114940659020774
1045105103.12373608255-20.7333156545886-20.7333156545885-1.40777678659088
1148105034.56921631431-24.3769101421433-24.3769101421433-0.489624433595799
1249304999.95691609628-25.0975150398306-25.0975150398305-0.109153718083102
1347204943.89705101913-24.0018189519931264.020008233635-1.11026659252118
1444004821.06652908307-30.1731889233801-30.1731887254838-0.96041315171129
1540904665.37131856179-37.4998970348493-37.4998970348493-1.31022144986943
1641604551.54042104655-41.68126158309-41.68126158309-0.846453648724439
1750204603.28494459337-36.8608777106128-36.86087771061271.09133815696887
1859304794.06822476078-25.7616377168665-25.76163771686612.78235355535792
1943904713.02331289148-28.3163930339893-28.3163930339894-0.70313255827599
2044904659.43657826898-29.4262595242197-29.4262595242197-0.332950072258449
2157604801.12028854071-22.2660540164383-22.26605401643822.32659715890552
2250404819.61541157795-20.6371852794518-20.63718527945180.570127396928635
2348004802.0214098762-20.5208056697792-20.52080566977920.043664888391109
2448204789.61923915857-20.2230974236937-20.22309742369360.119213915429814
2546204736.81044756343-20.1427033330938221.569736559885-0.77378671944144
2643804671.21558710834-21.7661932119446-21.7661931376442-0.637055743242132
2742504596.75699387101-23.5690354524342-23.5690354524341-0.762125007718449
2842304529.71496784843-24.996473187806-24.9964731878061-0.646390528024263
2938004414.32450707971-27.8499258745375-27.8499258745374-1.377288939964
3063604647.34279851608-19.920064325028-19.92006432502754.0620509957401
3142804585.49513837326-21.1492964847663-21.1492964847664-0.665680225625956
3246804581.57862720292-20.6613032932988-20.66130329329890.278424608740814
3350704626.67905093025-18.8601466690098-18.86014666900971.07937883178473
3445604604.27139589877-18.9542446741188-18.9542446741188-0.0590652672808809
3546904600.28096332526-18.5693853851394-18.56938538513940.252406304893893
3648204612.45748098898-17.8017744199351-17.8017744199350.52481285070028
3743704556.827534604-17.7525172935598195.27769017808-0.874372493574924
3838504456.00588256921-19.8432594052585-19.8432594284127-1.36838862565603
3950504513.33991356312-17.9649454228896-17.96494542288941.29321205524632
4040104439.24943797526-19.2876336329019-19.287633632902-0.954894740456752
4145704440.03700317074-18.8289185609791-18.8289185609790.346247037136015
4242404402.17597262433-19.2510931157761-19.2510931157756-0.332317998576637
4338504323.33966449322-20.5357001376499-20.5357001376499-1.05204327593069
4448304365.74407394853-19.2154355662437-19.21543556624381.12254593682752
4554004468.73781485895-16.7186257696862-16.71862576968612.19973838774749
4646804479.67931977931-16.1676869345923-16.16768693459230.502074957439984
4743904457.07615478553-16.2927678757013-16.2927678757014-0.117717061066502
4841404409.06708646517-16.894805189684-16.8948051896839-0.584275185158455
4943004367.03576574612-16.8705447885611185.575992731812-0.57809045186366
5041804332.59902919889-17.2126775254996-17.2126776020667-0.314257587011326
5141204295.17812501484-17.595182804792-17.5951828047917-0.36552001530574
5239104238.25348260808-18.3195182976285-18.3195182976286-0.718448771149323
5343004230.89787459071-18.1228244581793-18.12282445817910.202078832855663
5442404217.79036977107-18.0350860629561-18.03508606295560.0931895503767832
5536104136.95923657931-19.1074044554151-19.1074044554151-1.17542540284573
5636004063.41476321306-20.0156317883372-20.0156317883374-1.02582018448059
5739704037.60587744773-20.1101495483022-20.1101495483021-0.109841280582143
5837903995.10865701725-20.4676179599634-20.4676179599634-0.426862680011552
5937503952.70781689845-20.8106448011641-20.8106448011642-0.420385153077069
6036803907.18427383014-21.1894787172156-21.1894787172154-0.475937833776273
6139703872.48540587785-21.1791638800189232.970802602651-0.309986353083709
6242903901.64668368738-20.3788009093962-20.37880077070230.945742910530798
6336703860.52684222644-20.700272817927-20.7002728179269-0.392760817972995
6437603833.44521227022-20.796800058643-20.7968000586432-0.121707620256863
6541603852.14067124263-20.2131848917035-20.21318489170340.758108153445135
6636203811.47525286507-20.5087539117439-20.5087539117433-0.394927665314296
6742803845.0513183688-19.7436923070038-19.74369230700381.04998653671123
6844103889.16948422297-18.8587003953024-18.85870039530251.24589616289594
6945003938.54384926372-17.9316164584301-17.93161645842981.33718189563908
7046904003.12334182946-16.8316237494649-16.8316237494651.6237030107136
7136503952.93236671495-17.2682937454469-17.268293745447-0.658977995172491
7237203915.01552081148-17.533857352465-17.5338573524648-0.409333936881053
7337703868.40963086253-17.5156131583677192.671744647612-0.66612716018372
7439703865.40315003523-17.3206664424214-17.32066632888530.281531842389976
7533903801.54298643945-17.9315551208433-17.9315551208431-0.908595594571837
7634003745.2006533722-18.4246379492827-18.4246379492828-0.754067824166012
7731303666.31327052119-19.1844625712186-19.1844625712185-1.19297143816323
7839303678.57093061957-18.7972929756462-18.79729297564560.623221081433549
7937403670.04092742018-18.6733025496003-18.67330254960030.204362150224876
8034003627.32736864423-18.9582524627722-18.9582524627724-0.480335141679562
8136203611.51893191634-18.9215798209974-18.92157982099710.0631560071691067
8239803634.31014627361-18.4442021687883-18.44420216878850.839076970459983
8334403599.7505285025-18.6256104623768-18.6256104623769-0.325138951687334
8434203566.57500082507-18.7868109179811-18.7868109179808-0.294365242706927
8537403546.47615434685-18.786113961167206.647253400216-0.0300322908470682
8636303540.27601756561-18.6396722460019-18.63967205583470.249885838738938
8736503536.84358234716-18.4665442432176-18.46654424321750.303433973651675
8839403563.71091811627-17.9610380524103-17.96103805241050.908638671749928
8935403547.00292580042-17.9473394435127-17.94733944351250.0252179318902225
9035903537.12272391188-17.8607973737319-17.86079737373130.1629585719553
9137403543.58208293125-17.6045621335225-17.60456213352240.492945243299491
9239103566.79520770271-17.1818669567743-17.18186695677450.829909276170753
9336703563.55698370713-17.0398370204232-17.03983702042290.284313618904611
9435103544.54785209233-17.0595810275836-17.0595810275838-0.0402599021977222
9534303519.37492365798-17.1396973685183-17.1396973685184-0.166270349389971
9634203495.68250638602-17.2034642262577-17.2034642262574-0.134589288821321
9736303475.0501934412-17.2018868440949189.220755147196-0.0784273031955906
9836903483.34945417142-16.9402308764031-16.940230701470.515073894468461
9933503456.2765081783-17.0420781477947-17.0420781477945-0.205515640693863
10034703444.08720881445-16.9942475691053-16.99424756910550.0987979091664282
10133803424.04760543495-17.0237091184177-17.0237091184176-0.0622132291389551
10239903467.55292615496-16.4484447879746-16.44844478797411.24040251009775
10337903486.85605785434-16.1143704805154-16.11437048051530.734734395074574
10434403469.27362925459-16.1278684564897-16.1278684564899-0.0302489281841389
10535803467.46369441209-15.9982420833944-15.99824208339420.295723322549444
10636003467.90725245616-15.8515731392591-15.85157313925930.340337788644637
10739903507.29071950407-15.3657851502651-15.36578515026521.1456634525158
10836403508.19749879762-15.2246030663942-15.2246030663940.338153433914833

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 5350 & 5350 & 0 & 0 & 0 \tabularnewline
2 & 6100 & 5457.07824624596 & 31.1144705561088 & 31.1144707754455 & 1.47765397322123 \tabularnewline
3 & 4820 & 5360.51873339008 & 2.94398398769366 & 2.94398398769374 & -1.34478750999864 \tabularnewline
4 & 5130 & 5314.72281171342 & -5.74443891770982 & -5.74443891770989 & -0.448709187728576 \tabularnewline
5 & 4060 & 5039.38805119281 & -46.0900036145159 & -46.0900036145158 & -2.34974859928591 \tabularnewline
6 & 6710 & 5379.35125774998 & 3.70520607645519 & 3.70520607645534 & 3.33627272181007 \tabularnewline
7 & 4510 & 5193.52872051842 & -17.7734048161808 & -17.7734048161809 & -1.66660581142072 \tabularnewline
8 & 5630 & 5275.21000584193 & -7.72400378110111 & -7.72400378110113 & 0.902353078965655 \tabularnewline
9 & 5200 & 5255.29259896444 & -8.83543767730099 & -8.83543767730098 & -0.114940659020774 \tabularnewline
10 & 4510 & 5103.12373608255 & -20.7333156545886 & -20.7333156545885 & -1.40777678659088 \tabularnewline
11 & 4810 & 5034.56921631431 & -24.3769101421433 & -24.3769101421433 & -0.489624433595799 \tabularnewline
12 & 4930 & 4999.95691609628 & -25.0975150398306 & -25.0975150398305 & -0.109153718083102 \tabularnewline
13 & 4720 & 4943.89705101913 & -24.0018189519931 & 264.020008233635 & -1.11026659252118 \tabularnewline
14 & 4400 & 4821.06652908307 & -30.1731889233801 & -30.1731887254838 & -0.96041315171129 \tabularnewline
15 & 4090 & 4665.37131856179 & -37.4998970348493 & -37.4998970348493 & -1.31022144986943 \tabularnewline
16 & 4160 & 4551.54042104655 & -41.68126158309 & -41.68126158309 & -0.846453648724439 \tabularnewline
17 & 5020 & 4603.28494459337 & -36.8608777106128 & -36.8608777106127 & 1.09133815696887 \tabularnewline
18 & 5930 & 4794.06822476078 & -25.7616377168665 & -25.7616377168661 & 2.78235355535792 \tabularnewline
19 & 4390 & 4713.02331289148 & -28.3163930339893 & -28.3163930339894 & -0.70313255827599 \tabularnewline
20 & 4490 & 4659.43657826898 & -29.4262595242197 & -29.4262595242197 & -0.332950072258449 \tabularnewline
21 & 5760 & 4801.12028854071 & -22.2660540164383 & -22.2660540164382 & 2.32659715890552 \tabularnewline
22 & 5040 & 4819.61541157795 & -20.6371852794518 & -20.6371852794518 & 0.570127396928635 \tabularnewline
23 & 4800 & 4802.0214098762 & -20.5208056697792 & -20.5208056697792 & 0.043664888391109 \tabularnewline
24 & 4820 & 4789.61923915857 & -20.2230974236937 & -20.2230974236936 & 0.119213915429814 \tabularnewline
25 & 4620 & 4736.81044756343 & -20.1427033330938 & 221.569736559885 & -0.77378671944144 \tabularnewline
26 & 4380 & 4671.21558710834 & -21.7661932119446 & -21.7661931376442 & -0.637055743242132 \tabularnewline
27 & 4250 & 4596.75699387101 & -23.5690354524342 & -23.5690354524341 & -0.762125007718449 \tabularnewline
28 & 4230 & 4529.71496784843 & -24.996473187806 & -24.9964731878061 & -0.646390528024263 \tabularnewline
29 & 3800 & 4414.32450707971 & -27.8499258745375 & -27.8499258745374 & -1.377288939964 \tabularnewline
30 & 6360 & 4647.34279851608 & -19.920064325028 & -19.9200643250275 & 4.0620509957401 \tabularnewline
31 & 4280 & 4585.49513837326 & -21.1492964847663 & -21.1492964847664 & -0.665680225625956 \tabularnewline
32 & 4680 & 4581.57862720292 & -20.6613032932988 & -20.6613032932989 & 0.278424608740814 \tabularnewline
33 & 5070 & 4626.67905093025 & -18.8601466690098 & -18.8601466690097 & 1.07937883178473 \tabularnewline
34 & 4560 & 4604.27139589877 & -18.9542446741188 & -18.9542446741188 & -0.0590652672808809 \tabularnewline
35 & 4690 & 4600.28096332526 & -18.5693853851394 & -18.5693853851394 & 0.252406304893893 \tabularnewline
36 & 4820 & 4612.45748098898 & -17.8017744199351 & -17.801774419935 & 0.52481285070028 \tabularnewline
37 & 4370 & 4556.827534604 & -17.7525172935598 & 195.27769017808 & -0.874372493574924 \tabularnewline
38 & 3850 & 4456.00588256921 & -19.8432594052585 & -19.8432594284127 & -1.36838862565603 \tabularnewline
39 & 5050 & 4513.33991356312 & -17.9649454228896 & -17.9649454228894 & 1.29321205524632 \tabularnewline
40 & 4010 & 4439.24943797526 & -19.2876336329019 & -19.287633632902 & -0.954894740456752 \tabularnewline
41 & 4570 & 4440.03700317074 & -18.8289185609791 & -18.828918560979 & 0.346247037136015 \tabularnewline
42 & 4240 & 4402.17597262433 & -19.2510931157761 & -19.2510931157756 & -0.332317998576637 \tabularnewline
43 & 3850 & 4323.33966449322 & -20.5357001376499 & -20.5357001376499 & -1.05204327593069 \tabularnewline
44 & 4830 & 4365.74407394853 & -19.2154355662437 & -19.2154355662438 & 1.12254593682752 \tabularnewline
45 & 5400 & 4468.73781485895 & -16.7186257696862 & -16.7186257696861 & 2.19973838774749 \tabularnewline
46 & 4680 & 4479.67931977931 & -16.1676869345923 & -16.1676869345923 & 0.502074957439984 \tabularnewline
47 & 4390 & 4457.07615478553 & -16.2927678757013 & -16.2927678757014 & -0.117717061066502 \tabularnewline
48 & 4140 & 4409.06708646517 & -16.894805189684 & -16.8948051896839 & -0.584275185158455 \tabularnewline
49 & 4300 & 4367.03576574612 & -16.8705447885611 & 185.575992731812 & -0.57809045186366 \tabularnewline
50 & 4180 & 4332.59902919889 & -17.2126775254996 & -17.2126776020667 & -0.314257587011326 \tabularnewline
51 & 4120 & 4295.17812501484 & -17.595182804792 & -17.5951828047917 & -0.36552001530574 \tabularnewline
52 & 3910 & 4238.25348260808 & -18.3195182976285 & -18.3195182976286 & -0.718448771149323 \tabularnewline
53 & 4300 & 4230.89787459071 & -18.1228244581793 & -18.1228244581791 & 0.202078832855663 \tabularnewline
54 & 4240 & 4217.79036977107 & -18.0350860629561 & -18.0350860629556 & 0.0931895503767832 \tabularnewline
55 & 3610 & 4136.95923657931 & -19.1074044554151 & -19.1074044554151 & -1.17542540284573 \tabularnewline
56 & 3600 & 4063.41476321306 & -20.0156317883372 & -20.0156317883374 & -1.02582018448059 \tabularnewline
57 & 3970 & 4037.60587744773 & -20.1101495483022 & -20.1101495483021 & -0.109841280582143 \tabularnewline
58 & 3790 & 3995.10865701725 & -20.4676179599634 & -20.4676179599634 & -0.426862680011552 \tabularnewline
59 & 3750 & 3952.70781689845 & -20.8106448011641 & -20.8106448011642 & -0.420385153077069 \tabularnewline
60 & 3680 & 3907.18427383014 & -21.1894787172156 & -21.1894787172154 & -0.475937833776273 \tabularnewline
61 & 3970 & 3872.48540587785 & -21.1791638800189 & 232.970802602651 & -0.309986353083709 \tabularnewline
62 & 4290 & 3901.64668368738 & -20.3788009093962 & -20.3788007707023 & 0.945742910530798 \tabularnewline
63 & 3670 & 3860.52684222644 & -20.700272817927 & -20.7002728179269 & -0.392760817972995 \tabularnewline
64 & 3760 & 3833.44521227022 & -20.796800058643 & -20.7968000586432 & -0.121707620256863 \tabularnewline
65 & 4160 & 3852.14067124263 & -20.2131848917035 & -20.2131848917034 & 0.758108153445135 \tabularnewline
66 & 3620 & 3811.47525286507 & -20.5087539117439 & -20.5087539117433 & -0.394927665314296 \tabularnewline
67 & 4280 & 3845.0513183688 & -19.7436923070038 & -19.7436923070038 & 1.04998653671123 \tabularnewline
68 & 4410 & 3889.16948422297 & -18.8587003953024 & -18.8587003953025 & 1.24589616289594 \tabularnewline
69 & 4500 & 3938.54384926372 & -17.9316164584301 & -17.9316164584298 & 1.33718189563908 \tabularnewline
70 & 4690 & 4003.12334182946 & -16.8316237494649 & -16.831623749465 & 1.6237030107136 \tabularnewline
71 & 3650 & 3952.93236671495 & -17.2682937454469 & -17.268293745447 & -0.658977995172491 \tabularnewline
72 & 3720 & 3915.01552081148 & -17.533857352465 & -17.5338573524648 & -0.409333936881053 \tabularnewline
73 & 3770 & 3868.40963086253 & -17.5156131583677 & 192.671744647612 & -0.66612716018372 \tabularnewline
74 & 3970 & 3865.40315003523 & -17.3206664424214 & -17.3206663288853 & 0.281531842389976 \tabularnewline
75 & 3390 & 3801.54298643945 & -17.9315551208433 & -17.9315551208431 & -0.908595594571837 \tabularnewline
76 & 3400 & 3745.2006533722 & -18.4246379492827 & -18.4246379492828 & -0.754067824166012 \tabularnewline
77 & 3130 & 3666.31327052119 & -19.1844625712186 & -19.1844625712185 & -1.19297143816323 \tabularnewline
78 & 3930 & 3678.57093061957 & -18.7972929756462 & -18.7972929756456 & 0.623221081433549 \tabularnewline
79 & 3740 & 3670.04092742018 & -18.6733025496003 & -18.6733025496003 & 0.204362150224876 \tabularnewline
80 & 3400 & 3627.32736864423 & -18.9582524627722 & -18.9582524627724 & -0.480335141679562 \tabularnewline
81 & 3620 & 3611.51893191634 & -18.9215798209974 & -18.9215798209971 & 0.0631560071691067 \tabularnewline
82 & 3980 & 3634.31014627361 & -18.4442021687883 & -18.4442021687885 & 0.839076970459983 \tabularnewline
83 & 3440 & 3599.7505285025 & -18.6256104623768 & -18.6256104623769 & -0.325138951687334 \tabularnewline
84 & 3420 & 3566.57500082507 & -18.7868109179811 & -18.7868109179808 & -0.294365242706927 \tabularnewline
85 & 3740 & 3546.47615434685 & -18.786113961167 & 206.647253400216 & -0.0300322908470682 \tabularnewline
86 & 3630 & 3540.27601756561 & -18.6396722460019 & -18.6396720558347 & 0.249885838738938 \tabularnewline
87 & 3650 & 3536.84358234716 & -18.4665442432176 & -18.4665442432175 & 0.303433973651675 \tabularnewline
88 & 3940 & 3563.71091811627 & -17.9610380524103 & -17.9610380524105 & 0.908638671749928 \tabularnewline
89 & 3540 & 3547.00292580042 & -17.9473394435127 & -17.9473394435125 & 0.0252179318902225 \tabularnewline
90 & 3590 & 3537.12272391188 & -17.8607973737319 & -17.8607973737313 & 0.1629585719553 \tabularnewline
91 & 3740 & 3543.58208293125 & -17.6045621335225 & -17.6045621335224 & 0.492945243299491 \tabularnewline
92 & 3910 & 3566.79520770271 & -17.1818669567743 & -17.1818669567745 & 0.829909276170753 \tabularnewline
93 & 3670 & 3563.55698370713 & -17.0398370204232 & -17.0398370204229 & 0.284313618904611 \tabularnewline
94 & 3510 & 3544.54785209233 & -17.0595810275836 & -17.0595810275838 & -0.0402599021977222 \tabularnewline
95 & 3430 & 3519.37492365798 & -17.1396973685183 & -17.1396973685184 & -0.166270349389971 \tabularnewline
96 & 3420 & 3495.68250638602 & -17.2034642262577 & -17.2034642262574 & -0.134589288821321 \tabularnewline
97 & 3630 & 3475.0501934412 & -17.2018868440949 & 189.220755147196 & -0.0784273031955906 \tabularnewline
98 & 3690 & 3483.34945417142 & -16.9402308764031 & -16.94023070147 & 0.515073894468461 \tabularnewline
99 & 3350 & 3456.2765081783 & -17.0420781477947 & -17.0420781477945 & -0.205515640693863 \tabularnewline
100 & 3470 & 3444.08720881445 & -16.9942475691053 & -16.9942475691055 & 0.0987979091664282 \tabularnewline
101 & 3380 & 3424.04760543495 & -17.0237091184177 & -17.0237091184176 & -0.0622132291389551 \tabularnewline
102 & 3990 & 3467.55292615496 & -16.4484447879746 & -16.4484447879741 & 1.24040251009775 \tabularnewline
103 & 3790 & 3486.85605785434 & -16.1143704805154 & -16.1143704805153 & 0.734734395074574 \tabularnewline
104 & 3440 & 3469.27362925459 & -16.1278684564897 & -16.1278684564899 & -0.0302489281841389 \tabularnewline
105 & 3580 & 3467.46369441209 & -15.9982420833944 & -15.9982420833942 & 0.295723322549444 \tabularnewline
106 & 3600 & 3467.90725245616 & -15.8515731392591 & -15.8515731392593 & 0.340337788644637 \tabularnewline
107 & 3990 & 3507.29071950407 & -15.3657851502651 & -15.3657851502652 & 1.1456634525158 \tabularnewline
108 & 3640 & 3508.19749879762 & -15.2246030663942 & -15.224603066394 & 0.338153433914833 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297935&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]5350[/C][C]5350[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]6100[/C][C]5457.07824624596[/C][C]31.1144705561088[/C][C]31.1144707754455[/C][C]1.47765397322123[/C][/ROW]
[ROW][C]3[/C][C]4820[/C][C]5360.51873339008[/C][C]2.94398398769366[/C][C]2.94398398769374[/C][C]-1.34478750999864[/C][/ROW]
[ROW][C]4[/C][C]5130[/C][C]5314.72281171342[/C][C]-5.74443891770982[/C][C]-5.74443891770989[/C][C]-0.448709187728576[/C][/ROW]
[ROW][C]5[/C][C]4060[/C][C]5039.38805119281[/C][C]-46.0900036145159[/C][C]-46.0900036145158[/C][C]-2.34974859928591[/C][/ROW]
[ROW][C]6[/C][C]6710[/C][C]5379.35125774998[/C][C]3.70520607645519[/C][C]3.70520607645534[/C][C]3.33627272181007[/C][/ROW]
[ROW][C]7[/C][C]4510[/C][C]5193.52872051842[/C][C]-17.7734048161808[/C][C]-17.7734048161809[/C][C]-1.66660581142072[/C][/ROW]
[ROW][C]8[/C][C]5630[/C][C]5275.21000584193[/C][C]-7.72400378110111[/C][C]-7.72400378110113[/C][C]0.902353078965655[/C][/ROW]
[ROW][C]9[/C][C]5200[/C][C]5255.29259896444[/C][C]-8.83543767730099[/C][C]-8.83543767730098[/C][C]-0.114940659020774[/C][/ROW]
[ROW][C]10[/C][C]4510[/C][C]5103.12373608255[/C][C]-20.7333156545886[/C][C]-20.7333156545885[/C][C]-1.40777678659088[/C][/ROW]
[ROW][C]11[/C][C]4810[/C][C]5034.56921631431[/C][C]-24.3769101421433[/C][C]-24.3769101421433[/C][C]-0.489624433595799[/C][/ROW]
[ROW][C]12[/C][C]4930[/C][C]4999.95691609628[/C][C]-25.0975150398306[/C][C]-25.0975150398305[/C][C]-0.109153718083102[/C][/ROW]
[ROW][C]13[/C][C]4720[/C][C]4943.89705101913[/C][C]-24.0018189519931[/C][C]264.020008233635[/C][C]-1.11026659252118[/C][/ROW]
[ROW][C]14[/C][C]4400[/C][C]4821.06652908307[/C][C]-30.1731889233801[/C][C]-30.1731887254838[/C][C]-0.96041315171129[/C][/ROW]
[ROW][C]15[/C][C]4090[/C][C]4665.37131856179[/C][C]-37.4998970348493[/C][C]-37.4998970348493[/C][C]-1.31022144986943[/C][/ROW]
[ROW][C]16[/C][C]4160[/C][C]4551.54042104655[/C][C]-41.68126158309[/C][C]-41.68126158309[/C][C]-0.846453648724439[/C][/ROW]
[ROW][C]17[/C][C]5020[/C][C]4603.28494459337[/C][C]-36.8608777106128[/C][C]-36.8608777106127[/C][C]1.09133815696887[/C][/ROW]
[ROW][C]18[/C][C]5930[/C][C]4794.06822476078[/C][C]-25.7616377168665[/C][C]-25.7616377168661[/C][C]2.78235355535792[/C][/ROW]
[ROW][C]19[/C][C]4390[/C][C]4713.02331289148[/C][C]-28.3163930339893[/C][C]-28.3163930339894[/C][C]-0.70313255827599[/C][/ROW]
[ROW][C]20[/C][C]4490[/C][C]4659.43657826898[/C][C]-29.4262595242197[/C][C]-29.4262595242197[/C][C]-0.332950072258449[/C][/ROW]
[ROW][C]21[/C][C]5760[/C][C]4801.12028854071[/C][C]-22.2660540164383[/C][C]-22.2660540164382[/C][C]2.32659715890552[/C][/ROW]
[ROW][C]22[/C][C]5040[/C][C]4819.61541157795[/C][C]-20.6371852794518[/C][C]-20.6371852794518[/C][C]0.570127396928635[/C][/ROW]
[ROW][C]23[/C][C]4800[/C][C]4802.0214098762[/C][C]-20.5208056697792[/C][C]-20.5208056697792[/C][C]0.043664888391109[/C][/ROW]
[ROW][C]24[/C][C]4820[/C][C]4789.61923915857[/C][C]-20.2230974236937[/C][C]-20.2230974236936[/C][C]0.119213915429814[/C][/ROW]
[ROW][C]25[/C][C]4620[/C][C]4736.81044756343[/C][C]-20.1427033330938[/C][C]221.569736559885[/C][C]-0.77378671944144[/C][/ROW]
[ROW][C]26[/C][C]4380[/C][C]4671.21558710834[/C][C]-21.7661932119446[/C][C]-21.7661931376442[/C][C]-0.637055743242132[/C][/ROW]
[ROW][C]27[/C][C]4250[/C][C]4596.75699387101[/C][C]-23.5690354524342[/C][C]-23.5690354524341[/C][C]-0.762125007718449[/C][/ROW]
[ROW][C]28[/C][C]4230[/C][C]4529.71496784843[/C][C]-24.996473187806[/C][C]-24.9964731878061[/C][C]-0.646390528024263[/C][/ROW]
[ROW][C]29[/C][C]3800[/C][C]4414.32450707971[/C][C]-27.8499258745375[/C][C]-27.8499258745374[/C][C]-1.377288939964[/C][/ROW]
[ROW][C]30[/C][C]6360[/C][C]4647.34279851608[/C][C]-19.920064325028[/C][C]-19.9200643250275[/C][C]4.0620509957401[/C][/ROW]
[ROW][C]31[/C][C]4280[/C][C]4585.49513837326[/C][C]-21.1492964847663[/C][C]-21.1492964847664[/C][C]-0.665680225625956[/C][/ROW]
[ROW][C]32[/C][C]4680[/C][C]4581.57862720292[/C][C]-20.6613032932988[/C][C]-20.6613032932989[/C][C]0.278424608740814[/C][/ROW]
[ROW][C]33[/C][C]5070[/C][C]4626.67905093025[/C][C]-18.8601466690098[/C][C]-18.8601466690097[/C][C]1.07937883178473[/C][/ROW]
[ROW][C]34[/C][C]4560[/C][C]4604.27139589877[/C][C]-18.9542446741188[/C][C]-18.9542446741188[/C][C]-0.0590652672808809[/C][/ROW]
[ROW][C]35[/C][C]4690[/C][C]4600.28096332526[/C][C]-18.5693853851394[/C][C]-18.5693853851394[/C][C]0.252406304893893[/C][/ROW]
[ROW][C]36[/C][C]4820[/C][C]4612.45748098898[/C][C]-17.8017744199351[/C][C]-17.801774419935[/C][C]0.52481285070028[/C][/ROW]
[ROW][C]37[/C][C]4370[/C][C]4556.827534604[/C][C]-17.7525172935598[/C][C]195.27769017808[/C][C]-0.874372493574924[/C][/ROW]
[ROW][C]38[/C][C]3850[/C][C]4456.00588256921[/C][C]-19.8432594052585[/C][C]-19.8432594284127[/C][C]-1.36838862565603[/C][/ROW]
[ROW][C]39[/C][C]5050[/C][C]4513.33991356312[/C][C]-17.9649454228896[/C][C]-17.9649454228894[/C][C]1.29321205524632[/C][/ROW]
[ROW][C]40[/C][C]4010[/C][C]4439.24943797526[/C][C]-19.2876336329019[/C][C]-19.287633632902[/C][C]-0.954894740456752[/C][/ROW]
[ROW][C]41[/C][C]4570[/C][C]4440.03700317074[/C][C]-18.8289185609791[/C][C]-18.828918560979[/C][C]0.346247037136015[/C][/ROW]
[ROW][C]42[/C][C]4240[/C][C]4402.17597262433[/C][C]-19.2510931157761[/C][C]-19.2510931157756[/C][C]-0.332317998576637[/C][/ROW]
[ROW][C]43[/C][C]3850[/C][C]4323.33966449322[/C][C]-20.5357001376499[/C][C]-20.5357001376499[/C][C]-1.05204327593069[/C][/ROW]
[ROW][C]44[/C][C]4830[/C][C]4365.74407394853[/C][C]-19.2154355662437[/C][C]-19.2154355662438[/C][C]1.12254593682752[/C][/ROW]
[ROW][C]45[/C][C]5400[/C][C]4468.73781485895[/C][C]-16.7186257696862[/C][C]-16.7186257696861[/C][C]2.19973838774749[/C][/ROW]
[ROW][C]46[/C][C]4680[/C][C]4479.67931977931[/C][C]-16.1676869345923[/C][C]-16.1676869345923[/C][C]0.502074957439984[/C][/ROW]
[ROW][C]47[/C][C]4390[/C][C]4457.07615478553[/C][C]-16.2927678757013[/C][C]-16.2927678757014[/C][C]-0.117717061066502[/C][/ROW]
[ROW][C]48[/C][C]4140[/C][C]4409.06708646517[/C][C]-16.894805189684[/C][C]-16.8948051896839[/C][C]-0.584275185158455[/C][/ROW]
[ROW][C]49[/C][C]4300[/C][C]4367.03576574612[/C][C]-16.8705447885611[/C][C]185.575992731812[/C][C]-0.57809045186366[/C][/ROW]
[ROW][C]50[/C][C]4180[/C][C]4332.59902919889[/C][C]-17.2126775254996[/C][C]-17.2126776020667[/C][C]-0.314257587011326[/C][/ROW]
[ROW][C]51[/C][C]4120[/C][C]4295.17812501484[/C][C]-17.595182804792[/C][C]-17.5951828047917[/C][C]-0.36552001530574[/C][/ROW]
[ROW][C]52[/C][C]3910[/C][C]4238.25348260808[/C][C]-18.3195182976285[/C][C]-18.3195182976286[/C][C]-0.718448771149323[/C][/ROW]
[ROW][C]53[/C][C]4300[/C][C]4230.89787459071[/C][C]-18.1228244581793[/C][C]-18.1228244581791[/C][C]0.202078832855663[/C][/ROW]
[ROW][C]54[/C][C]4240[/C][C]4217.79036977107[/C][C]-18.0350860629561[/C][C]-18.0350860629556[/C][C]0.0931895503767832[/C][/ROW]
[ROW][C]55[/C][C]3610[/C][C]4136.95923657931[/C][C]-19.1074044554151[/C][C]-19.1074044554151[/C][C]-1.17542540284573[/C][/ROW]
[ROW][C]56[/C][C]3600[/C][C]4063.41476321306[/C][C]-20.0156317883372[/C][C]-20.0156317883374[/C][C]-1.02582018448059[/C][/ROW]
[ROW][C]57[/C][C]3970[/C][C]4037.60587744773[/C][C]-20.1101495483022[/C][C]-20.1101495483021[/C][C]-0.109841280582143[/C][/ROW]
[ROW][C]58[/C][C]3790[/C][C]3995.10865701725[/C][C]-20.4676179599634[/C][C]-20.4676179599634[/C][C]-0.426862680011552[/C][/ROW]
[ROW][C]59[/C][C]3750[/C][C]3952.70781689845[/C][C]-20.8106448011641[/C][C]-20.8106448011642[/C][C]-0.420385153077069[/C][/ROW]
[ROW][C]60[/C][C]3680[/C][C]3907.18427383014[/C][C]-21.1894787172156[/C][C]-21.1894787172154[/C][C]-0.475937833776273[/C][/ROW]
[ROW][C]61[/C][C]3970[/C][C]3872.48540587785[/C][C]-21.1791638800189[/C][C]232.970802602651[/C][C]-0.309986353083709[/C][/ROW]
[ROW][C]62[/C][C]4290[/C][C]3901.64668368738[/C][C]-20.3788009093962[/C][C]-20.3788007707023[/C][C]0.945742910530798[/C][/ROW]
[ROW][C]63[/C][C]3670[/C][C]3860.52684222644[/C][C]-20.700272817927[/C][C]-20.7002728179269[/C][C]-0.392760817972995[/C][/ROW]
[ROW][C]64[/C][C]3760[/C][C]3833.44521227022[/C][C]-20.796800058643[/C][C]-20.7968000586432[/C][C]-0.121707620256863[/C][/ROW]
[ROW][C]65[/C][C]4160[/C][C]3852.14067124263[/C][C]-20.2131848917035[/C][C]-20.2131848917034[/C][C]0.758108153445135[/C][/ROW]
[ROW][C]66[/C][C]3620[/C][C]3811.47525286507[/C][C]-20.5087539117439[/C][C]-20.5087539117433[/C][C]-0.394927665314296[/C][/ROW]
[ROW][C]67[/C][C]4280[/C][C]3845.0513183688[/C][C]-19.7436923070038[/C][C]-19.7436923070038[/C][C]1.04998653671123[/C][/ROW]
[ROW][C]68[/C][C]4410[/C][C]3889.16948422297[/C][C]-18.8587003953024[/C][C]-18.8587003953025[/C][C]1.24589616289594[/C][/ROW]
[ROW][C]69[/C][C]4500[/C][C]3938.54384926372[/C][C]-17.9316164584301[/C][C]-17.9316164584298[/C][C]1.33718189563908[/C][/ROW]
[ROW][C]70[/C][C]4690[/C][C]4003.12334182946[/C][C]-16.8316237494649[/C][C]-16.831623749465[/C][C]1.6237030107136[/C][/ROW]
[ROW][C]71[/C][C]3650[/C][C]3952.93236671495[/C][C]-17.2682937454469[/C][C]-17.268293745447[/C][C]-0.658977995172491[/C][/ROW]
[ROW][C]72[/C][C]3720[/C][C]3915.01552081148[/C][C]-17.533857352465[/C][C]-17.5338573524648[/C][C]-0.409333936881053[/C][/ROW]
[ROW][C]73[/C][C]3770[/C][C]3868.40963086253[/C][C]-17.5156131583677[/C][C]192.671744647612[/C][C]-0.66612716018372[/C][/ROW]
[ROW][C]74[/C][C]3970[/C][C]3865.40315003523[/C][C]-17.3206664424214[/C][C]-17.3206663288853[/C][C]0.281531842389976[/C][/ROW]
[ROW][C]75[/C][C]3390[/C][C]3801.54298643945[/C][C]-17.9315551208433[/C][C]-17.9315551208431[/C][C]-0.908595594571837[/C][/ROW]
[ROW][C]76[/C][C]3400[/C][C]3745.2006533722[/C][C]-18.4246379492827[/C][C]-18.4246379492828[/C][C]-0.754067824166012[/C][/ROW]
[ROW][C]77[/C][C]3130[/C][C]3666.31327052119[/C][C]-19.1844625712186[/C][C]-19.1844625712185[/C][C]-1.19297143816323[/C][/ROW]
[ROW][C]78[/C][C]3930[/C][C]3678.57093061957[/C][C]-18.7972929756462[/C][C]-18.7972929756456[/C][C]0.623221081433549[/C][/ROW]
[ROW][C]79[/C][C]3740[/C][C]3670.04092742018[/C][C]-18.6733025496003[/C][C]-18.6733025496003[/C][C]0.204362150224876[/C][/ROW]
[ROW][C]80[/C][C]3400[/C][C]3627.32736864423[/C][C]-18.9582524627722[/C][C]-18.9582524627724[/C][C]-0.480335141679562[/C][/ROW]
[ROW][C]81[/C][C]3620[/C][C]3611.51893191634[/C][C]-18.9215798209974[/C][C]-18.9215798209971[/C][C]0.0631560071691067[/C][/ROW]
[ROW][C]82[/C][C]3980[/C][C]3634.31014627361[/C][C]-18.4442021687883[/C][C]-18.4442021687885[/C][C]0.839076970459983[/C][/ROW]
[ROW][C]83[/C][C]3440[/C][C]3599.7505285025[/C][C]-18.6256104623768[/C][C]-18.6256104623769[/C][C]-0.325138951687334[/C][/ROW]
[ROW][C]84[/C][C]3420[/C][C]3566.57500082507[/C][C]-18.7868109179811[/C][C]-18.7868109179808[/C][C]-0.294365242706927[/C][/ROW]
[ROW][C]85[/C][C]3740[/C][C]3546.47615434685[/C][C]-18.786113961167[/C][C]206.647253400216[/C][C]-0.0300322908470682[/C][/ROW]
[ROW][C]86[/C][C]3630[/C][C]3540.27601756561[/C][C]-18.6396722460019[/C][C]-18.6396720558347[/C][C]0.249885838738938[/C][/ROW]
[ROW][C]87[/C][C]3650[/C][C]3536.84358234716[/C][C]-18.4665442432176[/C][C]-18.4665442432175[/C][C]0.303433973651675[/C][/ROW]
[ROW][C]88[/C][C]3940[/C][C]3563.71091811627[/C][C]-17.9610380524103[/C][C]-17.9610380524105[/C][C]0.908638671749928[/C][/ROW]
[ROW][C]89[/C][C]3540[/C][C]3547.00292580042[/C][C]-17.9473394435127[/C][C]-17.9473394435125[/C][C]0.0252179318902225[/C][/ROW]
[ROW][C]90[/C][C]3590[/C][C]3537.12272391188[/C][C]-17.8607973737319[/C][C]-17.8607973737313[/C][C]0.1629585719553[/C][/ROW]
[ROW][C]91[/C][C]3740[/C][C]3543.58208293125[/C][C]-17.6045621335225[/C][C]-17.6045621335224[/C][C]0.492945243299491[/C][/ROW]
[ROW][C]92[/C][C]3910[/C][C]3566.79520770271[/C][C]-17.1818669567743[/C][C]-17.1818669567745[/C][C]0.829909276170753[/C][/ROW]
[ROW][C]93[/C][C]3670[/C][C]3563.55698370713[/C][C]-17.0398370204232[/C][C]-17.0398370204229[/C][C]0.284313618904611[/C][/ROW]
[ROW][C]94[/C][C]3510[/C][C]3544.54785209233[/C][C]-17.0595810275836[/C][C]-17.0595810275838[/C][C]-0.0402599021977222[/C][/ROW]
[ROW][C]95[/C][C]3430[/C][C]3519.37492365798[/C][C]-17.1396973685183[/C][C]-17.1396973685184[/C][C]-0.166270349389971[/C][/ROW]
[ROW][C]96[/C][C]3420[/C][C]3495.68250638602[/C][C]-17.2034642262577[/C][C]-17.2034642262574[/C][C]-0.134589288821321[/C][/ROW]
[ROW][C]97[/C][C]3630[/C][C]3475.0501934412[/C][C]-17.2018868440949[/C][C]189.220755147196[/C][C]-0.0784273031955906[/C][/ROW]
[ROW][C]98[/C][C]3690[/C][C]3483.34945417142[/C][C]-16.9402308764031[/C][C]-16.94023070147[/C][C]0.515073894468461[/C][/ROW]
[ROW][C]99[/C][C]3350[/C][C]3456.2765081783[/C][C]-17.0420781477947[/C][C]-17.0420781477945[/C][C]-0.205515640693863[/C][/ROW]
[ROW][C]100[/C][C]3470[/C][C]3444.08720881445[/C][C]-16.9942475691053[/C][C]-16.9942475691055[/C][C]0.0987979091664282[/C][/ROW]
[ROW][C]101[/C][C]3380[/C][C]3424.04760543495[/C][C]-17.0237091184177[/C][C]-17.0237091184176[/C][C]-0.0622132291389551[/C][/ROW]
[ROW][C]102[/C][C]3990[/C][C]3467.55292615496[/C][C]-16.4484447879746[/C][C]-16.4484447879741[/C][C]1.24040251009775[/C][/ROW]
[ROW][C]103[/C][C]3790[/C][C]3486.85605785434[/C][C]-16.1143704805154[/C][C]-16.1143704805153[/C][C]0.734734395074574[/C][/ROW]
[ROW][C]104[/C][C]3440[/C][C]3469.27362925459[/C][C]-16.1278684564897[/C][C]-16.1278684564899[/C][C]-0.0302489281841389[/C][/ROW]
[ROW][C]105[/C][C]3580[/C][C]3467.46369441209[/C][C]-15.9982420833944[/C][C]-15.9982420833942[/C][C]0.295723322549444[/C][/ROW]
[ROW][C]106[/C][C]3600[/C][C]3467.90725245616[/C][C]-15.8515731392591[/C][C]-15.8515731392593[/C][C]0.340337788644637[/C][/ROW]
[ROW][C]107[/C][C]3990[/C][C]3507.29071950407[/C][C]-15.3657851502651[/C][C]-15.3657851502652[/C][C]1.1456634525158[/C][/ROW]
[ROW][C]108[/C][C]3640[/C][C]3508.19749879762[/C][C]-15.2246030663942[/C][C]-15.224603066394[/C][C]0.338153433914833[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297935&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297935&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
153505350000
261005457.0782462459631.114470556108831.11447077544551.47765397322123
348205360.518733390082.943983987693662.94398398769374-1.34478750999864
451305314.72281171342-5.74443891770982-5.74443891770989-0.448709187728576
540605039.38805119281-46.0900036145159-46.0900036145158-2.34974859928591
667105379.351257749983.705206076455193.705206076455343.33627272181007
745105193.52872051842-17.7734048161808-17.7734048161809-1.66660581142072
856305275.21000584193-7.72400378110111-7.724003781101130.902353078965655
952005255.29259896444-8.83543767730099-8.83543767730098-0.114940659020774
1045105103.12373608255-20.7333156545886-20.7333156545885-1.40777678659088
1148105034.56921631431-24.3769101421433-24.3769101421433-0.489624433595799
1249304999.95691609628-25.0975150398306-25.0975150398305-0.109153718083102
1347204943.89705101913-24.0018189519931264.020008233635-1.11026659252118
1444004821.06652908307-30.1731889233801-30.1731887254838-0.96041315171129
1540904665.37131856179-37.4998970348493-37.4998970348493-1.31022144986943
1641604551.54042104655-41.68126158309-41.68126158309-0.846453648724439
1750204603.28494459337-36.8608777106128-36.86087771061271.09133815696887
1859304794.06822476078-25.7616377168665-25.76163771686612.78235355535792
1943904713.02331289148-28.3163930339893-28.3163930339894-0.70313255827599
2044904659.43657826898-29.4262595242197-29.4262595242197-0.332950072258449
2157604801.12028854071-22.2660540164383-22.26605401643822.32659715890552
2250404819.61541157795-20.6371852794518-20.63718527945180.570127396928635
2348004802.0214098762-20.5208056697792-20.52080566977920.043664888391109
2448204789.61923915857-20.2230974236937-20.22309742369360.119213915429814
2546204736.81044756343-20.1427033330938221.569736559885-0.77378671944144
2643804671.21558710834-21.7661932119446-21.7661931376442-0.637055743242132
2742504596.75699387101-23.5690354524342-23.5690354524341-0.762125007718449
2842304529.71496784843-24.996473187806-24.9964731878061-0.646390528024263
2938004414.32450707971-27.8499258745375-27.8499258745374-1.377288939964
3063604647.34279851608-19.920064325028-19.92006432502754.0620509957401
3142804585.49513837326-21.1492964847663-21.1492964847664-0.665680225625956
3246804581.57862720292-20.6613032932988-20.66130329329890.278424608740814
3350704626.67905093025-18.8601466690098-18.86014666900971.07937883178473
3445604604.27139589877-18.9542446741188-18.9542446741188-0.0590652672808809
3546904600.28096332526-18.5693853851394-18.56938538513940.252406304893893
3648204612.45748098898-17.8017744199351-17.8017744199350.52481285070028
3743704556.827534604-17.7525172935598195.27769017808-0.874372493574924
3838504456.00588256921-19.8432594052585-19.8432594284127-1.36838862565603
3950504513.33991356312-17.9649454228896-17.96494542288941.29321205524632
4040104439.24943797526-19.2876336329019-19.287633632902-0.954894740456752
4145704440.03700317074-18.8289185609791-18.8289185609790.346247037136015
4242404402.17597262433-19.2510931157761-19.2510931157756-0.332317998576637
4338504323.33966449322-20.5357001376499-20.5357001376499-1.05204327593069
4448304365.74407394853-19.2154355662437-19.21543556624381.12254593682752
4554004468.73781485895-16.7186257696862-16.71862576968612.19973838774749
4646804479.67931977931-16.1676869345923-16.16768693459230.502074957439984
4743904457.07615478553-16.2927678757013-16.2927678757014-0.117717061066502
4841404409.06708646517-16.894805189684-16.8948051896839-0.584275185158455
4943004367.03576574612-16.8705447885611185.575992731812-0.57809045186366
5041804332.59902919889-17.2126775254996-17.2126776020667-0.314257587011326
5141204295.17812501484-17.595182804792-17.5951828047917-0.36552001530574
5239104238.25348260808-18.3195182976285-18.3195182976286-0.718448771149323
5343004230.89787459071-18.1228244581793-18.12282445817910.202078832855663
5442404217.79036977107-18.0350860629561-18.03508606295560.0931895503767832
5536104136.95923657931-19.1074044554151-19.1074044554151-1.17542540284573
5636004063.41476321306-20.0156317883372-20.0156317883374-1.02582018448059
5739704037.60587744773-20.1101495483022-20.1101495483021-0.109841280582143
5837903995.10865701725-20.4676179599634-20.4676179599634-0.426862680011552
5937503952.70781689845-20.8106448011641-20.8106448011642-0.420385153077069
6036803907.18427383014-21.1894787172156-21.1894787172154-0.475937833776273
6139703872.48540587785-21.1791638800189232.970802602651-0.309986353083709
6242903901.64668368738-20.3788009093962-20.37880077070230.945742910530798
6336703860.52684222644-20.700272817927-20.7002728179269-0.392760817972995
6437603833.44521227022-20.796800058643-20.7968000586432-0.121707620256863
6541603852.14067124263-20.2131848917035-20.21318489170340.758108153445135
6636203811.47525286507-20.5087539117439-20.5087539117433-0.394927665314296
6742803845.0513183688-19.7436923070038-19.74369230700381.04998653671123
6844103889.16948422297-18.8587003953024-18.85870039530251.24589616289594
6945003938.54384926372-17.9316164584301-17.93161645842981.33718189563908
7046904003.12334182946-16.8316237494649-16.8316237494651.6237030107136
7136503952.93236671495-17.2682937454469-17.268293745447-0.658977995172491
7237203915.01552081148-17.533857352465-17.5338573524648-0.409333936881053
7337703868.40963086253-17.5156131583677192.671744647612-0.66612716018372
7439703865.40315003523-17.3206664424214-17.32066632888530.281531842389976
7533903801.54298643945-17.9315551208433-17.9315551208431-0.908595594571837
7634003745.2006533722-18.4246379492827-18.4246379492828-0.754067824166012
7731303666.31327052119-19.1844625712186-19.1844625712185-1.19297143816323
7839303678.57093061957-18.7972929756462-18.79729297564560.623221081433549
7937403670.04092742018-18.6733025496003-18.67330254960030.204362150224876
8034003627.32736864423-18.9582524627722-18.9582524627724-0.480335141679562
8136203611.51893191634-18.9215798209974-18.92157982099710.0631560071691067
8239803634.31014627361-18.4442021687883-18.44420216878850.839076970459983
8334403599.7505285025-18.6256104623768-18.6256104623769-0.325138951687334
8434203566.57500082507-18.7868109179811-18.7868109179808-0.294365242706927
8537403546.47615434685-18.786113961167206.647253400216-0.0300322908470682
8636303540.27601756561-18.6396722460019-18.63967205583470.249885838738938
8736503536.84358234716-18.4665442432176-18.46654424321750.303433973651675
8839403563.71091811627-17.9610380524103-17.96103805241050.908638671749928
8935403547.00292580042-17.9473394435127-17.94733944351250.0252179318902225
9035903537.12272391188-17.8607973737319-17.86079737373130.1629585719553
9137403543.58208293125-17.6045621335225-17.60456213352240.492945243299491
9239103566.79520770271-17.1818669567743-17.18186695677450.829909276170753
9336703563.55698370713-17.0398370204232-17.03983702042290.284313618904611
9435103544.54785209233-17.0595810275836-17.0595810275838-0.0402599021977222
9534303519.37492365798-17.1396973685183-17.1396973685184-0.166270349389971
9634203495.68250638602-17.2034642262577-17.2034642262574-0.134589288821321
9736303475.0501934412-17.2018868440949189.220755147196-0.0784273031955906
9836903483.34945417142-16.9402308764031-16.940230701470.515073894468461
9933503456.2765081783-17.0420781477947-17.0420781477945-0.205515640693863
10034703444.08720881445-16.9942475691053-16.99424756910550.0987979091664282
10133803424.04760543495-17.0237091184177-17.0237091184176-0.0622132291389551
10239903467.55292615496-16.4484447879746-16.44844478797411.24040251009775
10337903486.85605785434-16.1143704805154-16.11437048051530.734734395074574
10434403469.27362925459-16.1278684564897-16.1278684564899-0.0302489281841389
10535803467.46369441209-15.9982420833944-15.99824208339420.295723322549444
10636003467.90725245616-15.8515731392591-15.85157313925930.340337788644637
10739903507.29071950407-15.3657851502651-15.36578515026521.1456634525158
10836403508.19749879762-15.2246030663942-15.2246030663940.338153433914833







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
13620.380715568713664.03498549878-43.6542699300621
23712.394557608073646.4085017522365.9860558558361
33400.814008915413628.78201800568-227.968009090275
43517.002570034893611.15553425914-94.1529642242455
53332.184452718733593.52905051259-261.344597793861
63838.638867488823575.90256676604262.736300722775
73723.691923513153558.2760830195165.415840493658
83496.341581403313540.64959927295-44.3080178696336
93581.194230555333523.023115526458.1711150289324
103496.637027024513505.39663177985-8.7596047553476
113709.302023634283487.77014803331221.53187560097
123376.489940248013470.14366428676-93.6537240387472

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 3620.38071556871 & 3664.03498549878 & -43.6542699300621 \tabularnewline
2 & 3712.39455760807 & 3646.40850175223 & 65.9860558558361 \tabularnewline
3 & 3400.81400891541 & 3628.78201800568 & -227.968009090275 \tabularnewline
4 & 3517.00257003489 & 3611.15553425914 & -94.1529642242455 \tabularnewline
5 & 3332.18445271873 & 3593.52905051259 & -261.344597793861 \tabularnewline
6 & 3838.63886748882 & 3575.90256676604 & 262.736300722775 \tabularnewline
7 & 3723.69192351315 & 3558.2760830195 & 165.415840493658 \tabularnewline
8 & 3496.34158140331 & 3540.64959927295 & -44.3080178696336 \tabularnewline
9 & 3581.19423055533 & 3523.0231155264 & 58.1711150289324 \tabularnewline
10 & 3496.63702702451 & 3505.39663177985 & -8.7596047553476 \tabularnewline
11 & 3709.30202363428 & 3487.77014803331 & 221.53187560097 \tabularnewline
12 & 3376.48994024801 & 3470.14366428676 & -93.6537240387472 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297935&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]3620.38071556871[/C][C]3664.03498549878[/C][C]-43.6542699300621[/C][/ROW]
[ROW][C]2[/C][C]3712.39455760807[/C][C]3646.40850175223[/C][C]65.9860558558361[/C][/ROW]
[ROW][C]3[/C][C]3400.81400891541[/C][C]3628.78201800568[/C][C]-227.968009090275[/C][/ROW]
[ROW][C]4[/C][C]3517.00257003489[/C][C]3611.15553425914[/C][C]-94.1529642242455[/C][/ROW]
[ROW][C]5[/C][C]3332.18445271873[/C][C]3593.52905051259[/C][C]-261.344597793861[/C][/ROW]
[ROW][C]6[/C][C]3838.63886748882[/C][C]3575.90256676604[/C][C]262.736300722775[/C][/ROW]
[ROW][C]7[/C][C]3723.69192351315[/C][C]3558.2760830195[/C][C]165.415840493658[/C][/ROW]
[ROW][C]8[/C][C]3496.34158140331[/C][C]3540.64959927295[/C][C]-44.3080178696336[/C][/ROW]
[ROW][C]9[/C][C]3581.19423055533[/C][C]3523.0231155264[/C][C]58.1711150289324[/C][/ROW]
[ROW][C]10[/C][C]3496.63702702451[/C][C]3505.39663177985[/C][C]-8.7596047553476[/C][/ROW]
[ROW][C]11[/C][C]3709.30202363428[/C][C]3487.77014803331[/C][C]221.53187560097[/C][/ROW]
[ROW][C]12[/C][C]3376.48994024801[/C][C]3470.14366428676[/C][C]-93.6537240387472[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297935&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297935&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
13620.380715568713664.03498549878-43.6542699300621
23712.394557608073646.4085017522365.9860558558361
33400.814008915413628.78201800568-227.968009090275
43517.002570034893611.15553425914-94.1529642242455
53332.184452718733593.52905051259-261.344597793861
63838.638867488823575.90256676604262.736300722775
73723.691923513153558.2760830195165.415840493658
83496.341581403313540.64959927295-44.3080178696336
93581.194230555333523.023115526458.1711150289324
103496.637027024513505.39663177985-8.7596047553476
113709.302023634283487.77014803331221.53187560097
123376.489940248013470.14366428676-93.6537240387472



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')