| library(psychometric)x <- x[!is.na(y)]
 y <- y[!is.na(y)]
 y <- y[!is.na(x)]
 x <- x[!is.na(x)]
 bitmap(file='test1.png')
 histx <- hist(x, plot=FALSE)
 histy <- hist(y, plot=FALSE)
 maxcounts <- max(c(histx$counts, histx$counts))
 xrange <- c(min(x),max(x))
 yrange <- c(min(y),max(y))
 nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
 par(mar=c(4,4,1,1))
 plot(x, y, xlim=xrange, ylim=yrange, xlab=xlab, ylab=ylab, sub=main)
 par(mar=c(0,4,1,1))
 barplot(histx$counts, axes=FALSE, ylim=c(0, maxcounts), space=0)
 par(mar=c(4,0,1,1))
 barplot(histy$counts, axes=FALSE, xlim=c(0, maxcounts), space=0, horiz=TRUE)
 dev.off()
 lx = length(x)
 makebiased = (lx-1)/lx
 varx = var(x)*makebiased
 vary = var(y)*makebiased
 corxy <- cor.test(x,y,method='pearson', na.rm = T)
 cxy <- as.matrix(corxy$estimate)[1,1]
 load(file='createtable')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Pearson Product Moment Correlation - Ungrouped Data',3,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Statistic',1,TRUE)
 a<-table.element(a,'Variable X',1,TRUE)
 a<-table.element(a,'Variable Y',1,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Mean',header=TRUE)
 a<-table.element(a,mean(x))
 a<-table.element(a,mean(y))
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Biased Variance',header=TRUE)
 a<-table.element(a,varx)
 a<-table.element(a,vary)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Biased Standard Deviation',header=TRUE)
 a<-table.element(a,sqrt(varx))
 a<-table.element(a,sqrt(vary))
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Covariance',header=TRUE)
 a<-table.element(a,cov(x,y),2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Correlation',header=TRUE)
 a<-table.element(a,cxy,2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Determination',header=TRUE)
 a<-table.element(a,cxy*cxy,2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'T-Test',header=TRUE)
 a<-table.element(a,as.matrix(corxy$statistic)[1,1],2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'p-value (2 sided)',header=TRUE)
 a<-table.element(a,(p2 <- as.matrix(corxy$p.value)[1,1]),2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'p-value (1 sided)',header=TRUE)
 a<-table.element(a,p2/2,2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'95% CI of Correlation',header=TRUE)
 a<-table.element(a,paste('[',CIr(r=cxy, n = lx, level = .95)[1],', ', CIr(r=cxy, n = lx, level = .95)[2],']',sep=''),2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Degrees of Freedom',header=TRUE)
 a<-table.element(a,lx-2,2)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Number of Observations',header=TRUE)
 a<-table.element(a,lx,2)
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable.tab')
 library(moments)
 library(nortest)
 jarque.x <- jarque.test(x)
 jarque.y <- jarque.test(y)
 if(lx>7) {
 ad.x <- ad.test(x)
 ad.y <- ad.test(y)
 }
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Normality Tests',1,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,paste('
 ',RC.texteval('jarque.x'),'',sep=''))a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,paste('
 ',RC.texteval('jarque.y'),'',sep=''))a<-table.row.end(a)
 if(lx>7) {
 a<-table.row.start(a)
 a<-table.element(a,paste('
 ',RC.texteval('ad.x'),'',sep=''))a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,paste('
 ',RC.texteval('ad.y'),'',sep=''))a<-table.row.end(a)
 }
 a<-table.end(a)
 table.save(a,file='mytable1.tab')
 library(car)
 bitmap(file='test2.png')
 qqPlot(x,main='QQplot of variable x')
 dev.off()
 bitmap(file='test3.png')
 qqPlot(y,main='QQplot of variable y')
 dev.off()
 
 |