Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 06 Dec 2016 19:03:22 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/06/t14810476112n31da42gqo3oma.htm/, Retrieved Fri, 01 Nov 2024 03:44:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297893, Retrieved Fri, 01 Nov 2024 03:44:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact131
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple regression] [2016-12-06 18:03:22] [aed32bb2e1132335210cb15bafce0db8] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	5	5	4	10
5	5	5	4	13
5	5	4	4	14
3	4	4	4	12
5	5	5	4	12
5	5	5	4	13
5	4	5	5	13
4	4	4	4	13,5
5	5	4	4	13,5
5	5	5	5	14
4	3	4	3	14
3	5	4	3	12
4	5	5	4	12
5	5	5	4	11
4	4	4	4	12
5	4	5	4	14
4	5	5	4	12
5	4	4	4	11
5	4	5	5	13,5
5	5	5	4	13
3	5	5	4	12
4	5	5	4	13
4	4	4	4	12
5	5	5	5	13,5
3	4	3	3	12
5	5	4	5	12
4	4	4	3	12
4	5	4	4	13
4	5	4	4	13
4	3	5	4	10
5	4	5	3	12
5	5	5	4	13
4	4	5	5	13,5
5	5	5	4	10
5	5	5	5	14
4	4	4	4	12
5	4	4	4	10
4	4	4	4	10
4	5	4	3	14
4	4	4	4	12
4	4	4	4	14
4	3	4	3	10
5	5	4	3	13
5	4	5	4	12
4	4	4	4	12
4	4	4	4	13,5
4	4	4	1	12
4	4	4	4	10
4	4	4	3	9
5	5	5	4	14
4	4	4	4	15
4	5	4	4	13,5
5	5	5	4	8
4	5	4	4	11
4	5	4	4	10
4	4	4	3	12
5	4	3	4	14
4	4	4	4	12
5	4	4	3	12
4	5	4	4	14
4	5	5	4	13
4	5	5	4	13
5	5	5	3	13
5	5	5	4	12
4	4	3	3	10
4	2	4	3	14
4	5	5	4	11
4	4	4	4	10
4	4	4	3	13
4	5	5	4	12
4	5	5	4	12
2	5	4	5	10,5
5	5	5	4	10,5
4	5	4	4	13,5
5	5	4	3	12
5	5	5	4	13
4	5	5	5	11
5	5	5	5	10
5	5	5	4	14
4	5	5	4	13,5
4	4	4	4	7
4	4	4	4	13,5
4	3	4	4	13
5	5	5	5	13,5
4	5	4	3	15
4	4	4	4	13
5	5	5	5	14
5	5	5	5	12
4	5	5	4	13
5	4	2	4	11
4	3	4	3	12
4	4	4	4	14
3	4	3	4	13,5
4	5	5	4	14
5	5	5	5	12
5	5	5	5	12
4	5	5	4	13
5	5	5	5	14
3	4	4	3	13
5	5	5	5	12
4	5	4	4	13,5
5	5	5	5	12
3	4	4	3	10
4	4	4	4	12
5	5	5	5	13,5
5	5	5	4	12
4	5	4	5	13,5
4	5	4	4	12
4	5	4	4	12
5	4	5	5	12
4	4	4	3	10,5
5	4	5	4	12
4	3	4	4	9
4	4	4	4	14
4	4	4	4	12
5	5	5	5	13
5	5	4	4	13,5
5	5	5	5	13
5	5	5	3	11
4	5	4	4	12
5	4	5	5	11
4	5	5	4	12
5	5	5	4	12
5	4	3	5	13,5
5	5	4	4	12
4	5	4	4	13
4	4	4	4	13,5
5	5	5	4	12
5	5	4	4	12
4	5	4	4	8
5	5	4	4	12
4	4	4	4	13
5	5	5	5	10,5
4	3	4	3	8
4	5	4	4	12
3	3	2	5	13
2	3	4	4	9
4	5	4	4	12
4	5	5	4	15
4	4	4	4	14
4	5	4	4	10,5
5	5	5	4	11
5	5	4	5	12
3	5	5	4	10
4	5	4	3	14
4	5	4	4	10
5	5	4	3	15
4	5	4	4	11
5	5	5	5	12
3	4	4	3	9
5	5	5	5	12
5	5	5	4	13
3	5	5	3	12
5	5	5	4	9
4	5	4	4	12
5	5	5	4	14
5	5	5	5	10,5
5	4	5	5	12
5	5	5	4	14
4	5	4	3	12
5	4	5	4	15
5	4	2	5	11
4	5	4	4	12
4	5	5	4	12
4	4	5	3	10,5
4	5	4	4	12
4	4	4	3	10,5
5	5	5	3	11




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297893&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297893&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297893&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.







Multiple Linear Regression - Estimated Regression Equation
TVDCSUM [t] = + 9.68026 + 0.333494IK1[t] + 0.257622IK2[t] -0.12786IK3[t] + 0.103724IK4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDCSUM

[t] =  +  9.68026 +  0.333494IK1[t] +  0.257622IK2[t] -0.12786IK3[t] +  0.103724IK4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297893&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDCSUM

[t] =  +  9.68026 +  0.333494IK1[t] +  0.257622IK2[t] -0.12786IK3[t] +  0.103724IK4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297893&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297893&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDCSUM [t] = + 9.68026 + 0.333494IK1[t] + 0.257622IK2[t] -0.12786IK3[t] + 0.103724IK4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+9.68 1.136+8.5210e+00 1.012e-14 5.058e-15
IK1+0.3335 0.2035+1.6390e+00 0.1032 0.05161
IK2+0.2576 0.2133+1.2080e+00 0.2289 0.1144
IK3-0.1279 0.2152-5.9430e-01 0.5531 0.2766
IK4+0.1037 0.1922+5.3960e-01 0.5902 0.2951

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +9.68 &  1.136 & +8.5210e+00 &  1.012e-14 &  5.058e-15 \tabularnewline
IK1 & +0.3335 &  0.2035 & +1.6390e+00 &  0.1032 &  0.05161 \tabularnewline
IK2 & +0.2576 &  0.2133 & +1.2080e+00 &  0.2289 &  0.1144 \tabularnewline
IK3 & -0.1279 &  0.2152 & -5.9430e-01 &  0.5531 &  0.2766 \tabularnewline
IK4 & +0.1037 &  0.1922 & +5.3960e-01 &  0.5902 &  0.2951 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297893&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+9.68[/C][C] 1.136[/C][C]+8.5210e+00[/C][C] 1.012e-14[/C][C] 5.058e-15[/C][/ROW]
[ROW][C]IK1[/C][C]+0.3335[/C][C] 0.2035[/C][C]+1.6390e+00[/C][C] 0.1032[/C][C] 0.05161[/C][/ROW]
[ROW][C]IK2[/C][C]+0.2576[/C][C] 0.2133[/C][C]+1.2080e+00[/C][C] 0.2289[/C][C] 0.1144[/C][/ROW]
[ROW][C]IK3[/C][C]-0.1279[/C][C] 0.2152[/C][C]-5.9430e-01[/C][C] 0.5531[/C][C] 0.2766[/C][/ROW]
[ROW][C]IK4[/C][C]+0.1037[/C][C] 0.1922[/C][C]+5.3960e-01[/C][C] 0.5902[/C][C] 0.2951[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297893&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297893&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+9.68 1.136+8.5210e+00 1.012e-14 5.058e-15
IK1+0.3335 0.2035+1.6390e+00 0.1032 0.05161
IK2+0.2576 0.2133+1.2080e+00 0.2289 0.1144
IK3-0.1279 0.2152-5.9430e-01 0.5531 0.2766
IK4+0.1037 0.1922+5.3960e-01 0.5902 0.2951







Multiple Linear Regression - Regression Statistics
Multiple R 0.1993
R-squared 0.03974
Adjusted R-squared 0.01617
F-TEST (value) 1.686
F-TEST (DF numerator)4
F-TEST (DF denominator)163
p-value 0.1556
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.525
Sum Squared Residuals 379.1

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.1993 \tabularnewline
R-squared &  0.03974 \tabularnewline
Adjusted R-squared &  0.01617 \tabularnewline
F-TEST (value) &  1.686 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 163 \tabularnewline
p-value &  0.1556 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.525 \tabularnewline
Sum Squared Residuals &  379.1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297893&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.1993[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.03974[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.01617[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.686[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]163[/C][/ROW]
[ROW][C]p-value[/C][C] 0.1556[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.525[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 379.1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297893&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297893&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.1993
R-squared 0.03974
Adjusted R-squared 0.01617
F-TEST (value) 1.686
F-TEST (DF numerator)4
F-TEST (DF denominator)163
p-value 0.1556
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.525
Sum Squared Residuals 379.1







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 10 12.08-2.078
2 13 12.41 0.5886
3 14 12.54 1.461
4 12 11.61 0.3853
5 12 12.41-0.4114
6 13 12.41 0.5886
7 13 12.26 0.7425
8 13.5 11.95 1.552
9 13.5 12.54 0.9607
10 14 12.52 1.485
11 14 11.59 2.413
12 12 11.77 0.2314
13 12 12.08-0.07795
14 11 12.41-1.411
15 12 11.95 0.05181
16 14 12.15 1.846
17 12 12.08-0.07795
18 11 12.28-1.282
19 13.5 12.26 1.242
20 13 12.41 0.5886
21 12 11.74 0.2555
22 13 12.08 0.9221
23 12 11.95 0.05181
24 13.5 12.52 0.9848
25 12 11.64 0.3612
26 12 12.64-0.643
27 12 11.84 0.1555
28 13 12.21 0.7942
29 13 12.21 0.7942
30 10 11.56-1.563
31 12 12.05-0.0501
32 13 12.41 0.5886
33 13.5 11.92 1.576
34 10 12.41-2.411
35 14 12.52 1.485
36 12 11.95 0.05181
37 10 12.28-2.282
38 10 11.95-1.948
39 14 12.1 1.898
40 12 11.95 0.05181
41 14 11.95 2.052
42 10 11.59-1.587
43 13 12.44 0.5644
44 12 12.15-0.1538
45 12 11.95 0.05181
46 13.5 11.95 1.552
47 12 11.64 0.363
48 10 11.95-1.948
49 9 11.84-2.844
50 14 12.41 1.589
51 15 11.95 3.052
52 13.5 12.21 1.294
53 8 12.41-4.411
54 11 12.21-1.206
55 10 12.21-2.206
56 12 11.84 0.1555
57 14 12.41 1.59
58 12 11.95 0.05181
59 12 12.18-0.178
60 14 12.21 1.794
61 13 12.08 0.9221
62 13 12.08 0.9221
63 13 12.31 0.6923
64 12 12.41-0.4114
65 10 11.97-1.972
66 14 11.33 2.671
67 11 12.08-1.078
68 10 11.95-1.948
69 13 11.84 1.156
70 12 12.08-0.07795
71 12 12.08-0.07795
72 10.5 11.64-1.143
73 10.5 12.41-1.911
74 13.5 12.21 1.294
75 12 12.44-0.4356
76 13 12.41 0.5886
77 11 12.18-1.182
78 10 12.52-2.515
79 14 12.41 1.589
80 13.5 12.08 1.422
81 7 11.95-4.948
82 13.5 11.95 1.552
83 13 11.69 1.309
84 13.5 12.52 0.9848
85 15 12.1 2.898
86 13 11.95 1.052
87 14 12.52 1.485
88 12 12.52-0.5152
89 13 12.08 0.9221
90 11 12.54-1.537
91 12 11.59 0.4132
92 14 11.95 2.052
93 13.5 11.74 1.757
94 14 12.08 1.922
95 12 12.52-0.5152
96 12 12.52-0.5152
97 13 12.08 0.9221
98 14 12.52 1.485
99 13 11.51 1.489
100 12 12.52-0.5152
101 13.5 12.21 1.294
102 12 12.52-0.5152
103 10 11.51-1.511
104 12 11.95 0.05181
105 13.5 12.52 0.9848
106 12 12.41-0.4114
107 13.5 12.31 1.19
108 12 12.21-0.2058
109 12 12.21-0.2058
110 12 12.26-0.2575
111 10.5 11.84-1.344
112 12 12.15-0.1538
113 9 11.69-2.691
114 14 11.95 2.052
115 12 11.95 0.05181
116 13 12.52 0.4848
117 13.5 12.54 0.9607
118 13 12.52 0.4848
119 11 12.31-1.308
120 12 12.21-0.2058
121 11 12.26-1.258
122 12 12.08-0.07795
123 12 12.41-0.4114
124 13.5 12.51 0.9867
125 12 12.54-0.5393
126 13 12.21 0.7942
127 13.5 11.95 1.552
128 12 12.41-0.4114
129 12 12.54-0.5393
130 8 12.21-4.206
131 12 12.54-0.5393
132 13 11.95 1.052
133 10.5 12.52-2.015
134 8 11.59-3.587
135 12 12.21-0.2058
136 13 11.72 1.283
137 9 11.02-2.024
138 12 12.21-0.2058
139 15 12.08 2.922
140 14 11.95 2.052
141 10.5 12.21-1.706
142 11 12.41-1.411
143 12 12.64-0.643
144 10 11.74-1.744
145 14 12.1 1.898
146 10 12.21-2.206
147 15 12.44 2.564
148 11 12.21-1.206
149 12 12.52-0.5152
150 9 11.51-2.511
151 12 12.52-0.5152
152 13 12.41 0.5886
153 12 11.64 0.3593
154 9 12.41-3.411
155 12 12.21-0.2058
156 14 12.41 1.589
157 10.5 12.52-2.015
158 12 12.26-0.2575
159 14 12.41 1.589
160 12 12.1-0.1021
161 15 12.15 2.846
162 11 12.64-1.641
163 12 12.21-0.2058
164 12 12.08-0.07795
165 10.5 11.72-1.217
166 12 12.21-0.2058
167 10.5 11.84-1.344
168 11 12.31-1.308

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  10 &  12.08 & -2.078 \tabularnewline
2 &  13 &  12.41 &  0.5886 \tabularnewline
3 &  14 &  12.54 &  1.461 \tabularnewline
4 &  12 &  11.61 &  0.3853 \tabularnewline
5 &  12 &  12.41 & -0.4114 \tabularnewline
6 &  13 &  12.41 &  0.5886 \tabularnewline
7 &  13 &  12.26 &  0.7425 \tabularnewline
8 &  13.5 &  11.95 &  1.552 \tabularnewline
9 &  13.5 &  12.54 &  0.9607 \tabularnewline
10 &  14 &  12.52 &  1.485 \tabularnewline
11 &  14 &  11.59 &  2.413 \tabularnewline
12 &  12 &  11.77 &  0.2314 \tabularnewline
13 &  12 &  12.08 & -0.07795 \tabularnewline
14 &  11 &  12.41 & -1.411 \tabularnewline
15 &  12 &  11.95 &  0.05181 \tabularnewline
16 &  14 &  12.15 &  1.846 \tabularnewline
17 &  12 &  12.08 & -0.07795 \tabularnewline
18 &  11 &  12.28 & -1.282 \tabularnewline
19 &  13.5 &  12.26 &  1.242 \tabularnewline
20 &  13 &  12.41 &  0.5886 \tabularnewline
21 &  12 &  11.74 &  0.2555 \tabularnewline
22 &  13 &  12.08 &  0.9221 \tabularnewline
23 &  12 &  11.95 &  0.05181 \tabularnewline
24 &  13.5 &  12.52 &  0.9848 \tabularnewline
25 &  12 &  11.64 &  0.3612 \tabularnewline
26 &  12 &  12.64 & -0.643 \tabularnewline
27 &  12 &  11.84 &  0.1555 \tabularnewline
28 &  13 &  12.21 &  0.7942 \tabularnewline
29 &  13 &  12.21 &  0.7942 \tabularnewline
30 &  10 &  11.56 & -1.563 \tabularnewline
31 &  12 &  12.05 & -0.0501 \tabularnewline
32 &  13 &  12.41 &  0.5886 \tabularnewline
33 &  13.5 &  11.92 &  1.576 \tabularnewline
34 &  10 &  12.41 & -2.411 \tabularnewline
35 &  14 &  12.52 &  1.485 \tabularnewline
36 &  12 &  11.95 &  0.05181 \tabularnewline
37 &  10 &  12.28 & -2.282 \tabularnewline
38 &  10 &  11.95 & -1.948 \tabularnewline
39 &  14 &  12.1 &  1.898 \tabularnewline
40 &  12 &  11.95 &  0.05181 \tabularnewline
41 &  14 &  11.95 &  2.052 \tabularnewline
42 &  10 &  11.59 & -1.587 \tabularnewline
43 &  13 &  12.44 &  0.5644 \tabularnewline
44 &  12 &  12.15 & -0.1538 \tabularnewline
45 &  12 &  11.95 &  0.05181 \tabularnewline
46 &  13.5 &  11.95 &  1.552 \tabularnewline
47 &  12 &  11.64 &  0.363 \tabularnewline
48 &  10 &  11.95 & -1.948 \tabularnewline
49 &  9 &  11.84 & -2.844 \tabularnewline
50 &  14 &  12.41 &  1.589 \tabularnewline
51 &  15 &  11.95 &  3.052 \tabularnewline
52 &  13.5 &  12.21 &  1.294 \tabularnewline
53 &  8 &  12.41 & -4.411 \tabularnewline
54 &  11 &  12.21 & -1.206 \tabularnewline
55 &  10 &  12.21 & -2.206 \tabularnewline
56 &  12 &  11.84 &  0.1555 \tabularnewline
57 &  14 &  12.41 &  1.59 \tabularnewline
58 &  12 &  11.95 &  0.05181 \tabularnewline
59 &  12 &  12.18 & -0.178 \tabularnewline
60 &  14 &  12.21 &  1.794 \tabularnewline
61 &  13 &  12.08 &  0.9221 \tabularnewline
62 &  13 &  12.08 &  0.9221 \tabularnewline
63 &  13 &  12.31 &  0.6923 \tabularnewline
64 &  12 &  12.41 & -0.4114 \tabularnewline
65 &  10 &  11.97 & -1.972 \tabularnewline
66 &  14 &  11.33 &  2.671 \tabularnewline
67 &  11 &  12.08 & -1.078 \tabularnewline
68 &  10 &  11.95 & -1.948 \tabularnewline
69 &  13 &  11.84 &  1.156 \tabularnewline
70 &  12 &  12.08 & -0.07795 \tabularnewline
71 &  12 &  12.08 & -0.07795 \tabularnewline
72 &  10.5 &  11.64 & -1.143 \tabularnewline
73 &  10.5 &  12.41 & -1.911 \tabularnewline
74 &  13.5 &  12.21 &  1.294 \tabularnewline
75 &  12 &  12.44 & -0.4356 \tabularnewline
76 &  13 &  12.41 &  0.5886 \tabularnewline
77 &  11 &  12.18 & -1.182 \tabularnewline
78 &  10 &  12.52 & -2.515 \tabularnewline
79 &  14 &  12.41 &  1.589 \tabularnewline
80 &  13.5 &  12.08 &  1.422 \tabularnewline
81 &  7 &  11.95 & -4.948 \tabularnewline
82 &  13.5 &  11.95 &  1.552 \tabularnewline
83 &  13 &  11.69 &  1.309 \tabularnewline
84 &  13.5 &  12.52 &  0.9848 \tabularnewline
85 &  15 &  12.1 &  2.898 \tabularnewline
86 &  13 &  11.95 &  1.052 \tabularnewline
87 &  14 &  12.52 &  1.485 \tabularnewline
88 &  12 &  12.52 & -0.5152 \tabularnewline
89 &  13 &  12.08 &  0.9221 \tabularnewline
90 &  11 &  12.54 & -1.537 \tabularnewline
91 &  12 &  11.59 &  0.4132 \tabularnewline
92 &  14 &  11.95 &  2.052 \tabularnewline
93 &  13.5 &  11.74 &  1.757 \tabularnewline
94 &  14 &  12.08 &  1.922 \tabularnewline
95 &  12 &  12.52 & -0.5152 \tabularnewline
96 &  12 &  12.52 & -0.5152 \tabularnewline
97 &  13 &  12.08 &  0.9221 \tabularnewline
98 &  14 &  12.52 &  1.485 \tabularnewline
99 &  13 &  11.51 &  1.489 \tabularnewline
100 &  12 &  12.52 & -0.5152 \tabularnewline
101 &  13.5 &  12.21 &  1.294 \tabularnewline
102 &  12 &  12.52 & -0.5152 \tabularnewline
103 &  10 &  11.51 & -1.511 \tabularnewline
104 &  12 &  11.95 &  0.05181 \tabularnewline
105 &  13.5 &  12.52 &  0.9848 \tabularnewline
106 &  12 &  12.41 & -0.4114 \tabularnewline
107 &  13.5 &  12.31 &  1.19 \tabularnewline
108 &  12 &  12.21 & -0.2058 \tabularnewline
109 &  12 &  12.21 & -0.2058 \tabularnewline
110 &  12 &  12.26 & -0.2575 \tabularnewline
111 &  10.5 &  11.84 & -1.344 \tabularnewline
112 &  12 &  12.15 & -0.1538 \tabularnewline
113 &  9 &  11.69 & -2.691 \tabularnewline
114 &  14 &  11.95 &  2.052 \tabularnewline
115 &  12 &  11.95 &  0.05181 \tabularnewline
116 &  13 &  12.52 &  0.4848 \tabularnewline
117 &  13.5 &  12.54 &  0.9607 \tabularnewline
118 &  13 &  12.52 &  0.4848 \tabularnewline
119 &  11 &  12.31 & -1.308 \tabularnewline
120 &  12 &  12.21 & -0.2058 \tabularnewline
121 &  11 &  12.26 & -1.258 \tabularnewline
122 &  12 &  12.08 & -0.07795 \tabularnewline
123 &  12 &  12.41 & -0.4114 \tabularnewline
124 &  13.5 &  12.51 &  0.9867 \tabularnewline
125 &  12 &  12.54 & -0.5393 \tabularnewline
126 &  13 &  12.21 &  0.7942 \tabularnewline
127 &  13.5 &  11.95 &  1.552 \tabularnewline
128 &  12 &  12.41 & -0.4114 \tabularnewline
129 &  12 &  12.54 & -0.5393 \tabularnewline
130 &  8 &  12.21 & -4.206 \tabularnewline
131 &  12 &  12.54 & -0.5393 \tabularnewline
132 &  13 &  11.95 &  1.052 \tabularnewline
133 &  10.5 &  12.52 & -2.015 \tabularnewline
134 &  8 &  11.59 & -3.587 \tabularnewline
135 &  12 &  12.21 & -0.2058 \tabularnewline
136 &  13 &  11.72 &  1.283 \tabularnewline
137 &  9 &  11.02 & -2.024 \tabularnewline
138 &  12 &  12.21 & -0.2058 \tabularnewline
139 &  15 &  12.08 &  2.922 \tabularnewline
140 &  14 &  11.95 &  2.052 \tabularnewline
141 &  10.5 &  12.21 & -1.706 \tabularnewline
142 &  11 &  12.41 & -1.411 \tabularnewline
143 &  12 &  12.64 & -0.643 \tabularnewline
144 &  10 &  11.74 & -1.744 \tabularnewline
145 &  14 &  12.1 &  1.898 \tabularnewline
146 &  10 &  12.21 & -2.206 \tabularnewline
147 &  15 &  12.44 &  2.564 \tabularnewline
148 &  11 &  12.21 & -1.206 \tabularnewline
149 &  12 &  12.52 & -0.5152 \tabularnewline
150 &  9 &  11.51 & -2.511 \tabularnewline
151 &  12 &  12.52 & -0.5152 \tabularnewline
152 &  13 &  12.41 &  0.5886 \tabularnewline
153 &  12 &  11.64 &  0.3593 \tabularnewline
154 &  9 &  12.41 & -3.411 \tabularnewline
155 &  12 &  12.21 & -0.2058 \tabularnewline
156 &  14 &  12.41 &  1.589 \tabularnewline
157 &  10.5 &  12.52 & -2.015 \tabularnewline
158 &  12 &  12.26 & -0.2575 \tabularnewline
159 &  14 &  12.41 &  1.589 \tabularnewline
160 &  12 &  12.1 & -0.1021 \tabularnewline
161 &  15 &  12.15 &  2.846 \tabularnewline
162 &  11 &  12.64 & -1.641 \tabularnewline
163 &  12 &  12.21 & -0.2058 \tabularnewline
164 &  12 &  12.08 & -0.07795 \tabularnewline
165 &  10.5 &  11.72 & -1.217 \tabularnewline
166 &  12 &  12.21 & -0.2058 \tabularnewline
167 &  10.5 &  11.84 & -1.344 \tabularnewline
168 &  11 &  12.31 & -1.308 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297893&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 10[/C][C] 12.08[/C][C]-2.078[/C][/ROW]
[ROW][C]2[/C][C] 13[/C][C] 12.41[/C][C] 0.5886[/C][/ROW]
[ROW][C]3[/C][C] 14[/C][C] 12.54[/C][C] 1.461[/C][/ROW]
[ROW][C]4[/C][C] 12[/C][C] 11.61[/C][C] 0.3853[/C][/ROW]
[ROW][C]5[/C][C] 12[/C][C] 12.41[/C][C]-0.4114[/C][/ROW]
[ROW][C]6[/C][C] 13[/C][C] 12.41[/C][C] 0.5886[/C][/ROW]
[ROW][C]7[/C][C] 13[/C][C] 12.26[/C][C] 0.7425[/C][/ROW]
[ROW][C]8[/C][C] 13.5[/C][C] 11.95[/C][C] 1.552[/C][/ROW]
[ROW][C]9[/C][C] 13.5[/C][C] 12.54[/C][C] 0.9607[/C][/ROW]
[ROW][C]10[/C][C] 14[/C][C] 12.52[/C][C] 1.485[/C][/ROW]
[ROW][C]11[/C][C] 14[/C][C] 11.59[/C][C] 2.413[/C][/ROW]
[ROW][C]12[/C][C] 12[/C][C] 11.77[/C][C] 0.2314[/C][/ROW]
[ROW][C]13[/C][C] 12[/C][C] 12.08[/C][C]-0.07795[/C][/ROW]
[ROW][C]14[/C][C] 11[/C][C] 12.41[/C][C]-1.411[/C][/ROW]
[ROW][C]15[/C][C] 12[/C][C] 11.95[/C][C] 0.05181[/C][/ROW]
[ROW][C]16[/C][C] 14[/C][C] 12.15[/C][C] 1.846[/C][/ROW]
[ROW][C]17[/C][C] 12[/C][C] 12.08[/C][C]-0.07795[/C][/ROW]
[ROW][C]18[/C][C] 11[/C][C] 12.28[/C][C]-1.282[/C][/ROW]
[ROW][C]19[/C][C] 13.5[/C][C] 12.26[/C][C] 1.242[/C][/ROW]
[ROW][C]20[/C][C] 13[/C][C] 12.41[/C][C] 0.5886[/C][/ROW]
[ROW][C]21[/C][C] 12[/C][C] 11.74[/C][C] 0.2555[/C][/ROW]
[ROW][C]22[/C][C] 13[/C][C] 12.08[/C][C] 0.9221[/C][/ROW]
[ROW][C]23[/C][C] 12[/C][C] 11.95[/C][C] 0.05181[/C][/ROW]
[ROW][C]24[/C][C] 13.5[/C][C] 12.52[/C][C] 0.9848[/C][/ROW]
[ROW][C]25[/C][C] 12[/C][C] 11.64[/C][C] 0.3612[/C][/ROW]
[ROW][C]26[/C][C] 12[/C][C] 12.64[/C][C]-0.643[/C][/ROW]
[ROW][C]27[/C][C] 12[/C][C] 11.84[/C][C] 0.1555[/C][/ROW]
[ROW][C]28[/C][C] 13[/C][C] 12.21[/C][C] 0.7942[/C][/ROW]
[ROW][C]29[/C][C] 13[/C][C] 12.21[/C][C] 0.7942[/C][/ROW]
[ROW][C]30[/C][C] 10[/C][C] 11.56[/C][C]-1.563[/C][/ROW]
[ROW][C]31[/C][C] 12[/C][C] 12.05[/C][C]-0.0501[/C][/ROW]
[ROW][C]32[/C][C] 13[/C][C] 12.41[/C][C] 0.5886[/C][/ROW]
[ROW][C]33[/C][C] 13.5[/C][C] 11.92[/C][C] 1.576[/C][/ROW]
[ROW][C]34[/C][C] 10[/C][C] 12.41[/C][C]-2.411[/C][/ROW]
[ROW][C]35[/C][C] 14[/C][C] 12.52[/C][C] 1.485[/C][/ROW]
[ROW][C]36[/C][C] 12[/C][C] 11.95[/C][C] 0.05181[/C][/ROW]
[ROW][C]37[/C][C] 10[/C][C] 12.28[/C][C]-2.282[/C][/ROW]
[ROW][C]38[/C][C] 10[/C][C] 11.95[/C][C]-1.948[/C][/ROW]
[ROW][C]39[/C][C] 14[/C][C] 12.1[/C][C] 1.898[/C][/ROW]
[ROW][C]40[/C][C] 12[/C][C] 11.95[/C][C] 0.05181[/C][/ROW]
[ROW][C]41[/C][C] 14[/C][C] 11.95[/C][C] 2.052[/C][/ROW]
[ROW][C]42[/C][C] 10[/C][C] 11.59[/C][C]-1.587[/C][/ROW]
[ROW][C]43[/C][C] 13[/C][C] 12.44[/C][C] 0.5644[/C][/ROW]
[ROW][C]44[/C][C] 12[/C][C] 12.15[/C][C]-0.1538[/C][/ROW]
[ROW][C]45[/C][C] 12[/C][C] 11.95[/C][C] 0.05181[/C][/ROW]
[ROW][C]46[/C][C] 13.5[/C][C] 11.95[/C][C] 1.552[/C][/ROW]
[ROW][C]47[/C][C] 12[/C][C] 11.64[/C][C] 0.363[/C][/ROW]
[ROW][C]48[/C][C] 10[/C][C] 11.95[/C][C]-1.948[/C][/ROW]
[ROW][C]49[/C][C] 9[/C][C] 11.84[/C][C]-2.844[/C][/ROW]
[ROW][C]50[/C][C] 14[/C][C] 12.41[/C][C] 1.589[/C][/ROW]
[ROW][C]51[/C][C] 15[/C][C] 11.95[/C][C] 3.052[/C][/ROW]
[ROW][C]52[/C][C] 13.5[/C][C] 12.21[/C][C] 1.294[/C][/ROW]
[ROW][C]53[/C][C] 8[/C][C] 12.41[/C][C]-4.411[/C][/ROW]
[ROW][C]54[/C][C] 11[/C][C] 12.21[/C][C]-1.206[/C][/ROW]
[ROW][C]55[/C][C] 10[/C][C] 12.21[/C][C]-2.206[/C][/ROW]
[ROW][C]56[/C][C] 12[/C][C] 11.84[/C][C] 0.1555[/C][/ROW]
[ROW][C]57[/C][C] 14[/C][C] 12.41[/C][C] 1.59[/C][/ROW]
[ROW][C]58[/C][C] 12[/C][C] 11.95[/C][C] 0.05181[/C][/ROW]
[ROW][C]59[/C][C] 12[/C][C] 12.18[/C][C]-0.178[/C][/ROW]
[ROW][C]60[/C][C] 14[/C][C] 12.21[/C][C] 1.794[/C][/ROW]
[ROW][C]61[/C][C] 13[/C][C] 12.08[/C][C] 0.9221[/C][/ROW]
[ROW][C]62[/C][C] 13[/C][C] 12.08[/C][C] 0.9221[/C][/ROW]
[ROW][C]63[/C][C] 13[/C][C] 12.31[/C][C] 0.6923[/C][/ROW]
[ROW][C]64[/C][C] 12[/C][C] 12.41[/C][C]-0.4114[/C][/ROW]
[ROW][C]65[/C][C] 10[/C][C] 11.97[/C][C]-1.972[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 11.33[/C][C] 2.671[/C][/ROW]
[ROW][C]67[/C][C] 11[/C][C] 12.08[/C][C]-1.078[/C][/ROW]
[ROW][C]68[/C][C] 10[/C][C] 11.95[/C][C]-1.948[/C][/ROW]
[ROW][C]69[/C][C] 13[/C][C] 11.84[/C][C] 1.156[/C][/ROW]
[ROW][C]70[/C][C] 12[/C][C] 12.08[/C][C]-0.07795[/C][/ROW]
[ROW][C]71[/C][C] 12[/C][C] 12.08[/C][C]-0.07795[/C][/ROW]
[ROW][C]72[/C][C] 10.5[/C][C] 11.64[/C][C]-1.143[/C][/ROW]
[ROW][C]73[/C][C] 10.5[/C][C] 12.41[/C][C]-1.911[/C][/ROW]
[ROW][C]74[/C][C] 13.5[/C][C] 12.21[/C][C] 1.294[/C][/ROW]
[ROW][C]75[/C][C] 12[/C][C] 12.44[/C][C]-0.4356[/C][/ROW]
[ROW][C]76[/C][C] 13[/C][C] 12.41[/C][C] 0.5886[/C][/ROW]
[ROW][C]77[/C][C] 11[/C][C] 12.18[/C][C]-1.182[/C][/ROW]
[ROW][C]78[/C][C] 10[/C][C] 12.52[/C][C]-2.515[/C][/ROW]
[ROW][C]79[/C][C] 14[/C][C] 12.41[/C][C] 1.589[/C][/ROW]
[ROW][C]80[/C][C] 13.5[/C][C] 12.08[/C][C] 1.422[/C][/ROW]
[ROW][C]81[/C][C] 7[/C][C] 11.95[/C][C]-4.948[/C][/ROW]
[ROW][C]82[/C][C] 13.5[/C][C] 11.95[/C][C] 1.552[/C][/ROW]
[ROW][C]83[/C][C] 13[/C][C] 11.69[/C][C] 1.309[/C][/ROW]
[ROW][C]84[/C][C] 13.5[/C][C] 12.52[/C][C] 0.9848[/C][/ROW]
[ROW][C]85[/C][C] 15[/C][C] 12.1[/C][C] 2.898[/C][/ROW]
[ROW][C]86[/C][C] 13[/C][C] 11.95[/C][C] 1.052[/C][/ROW]
[ROW][C]87[/C][C] 14[/C][C] 12.52[/C][C] 1.485[/C][/ROW]
[ROW][C]88[/C][C] 12[/C][C] 12.52[/C][C]-0.5152[/C][/ROW]
[ROW][C]89[/C][C] 13[/C][C] 12.08[/C][C] 0.9221[/C][/ROW]
[ROW][C]90[/C][C] 11[/C][C] 12.54[/C][C]-1.537[/C][/ROW]
[ROW][C]91[/C][C] 12[/C][C] 11.59[/C][C] 0.4132[/C][/ROW]
[ROW][C]92[/C][C] 14[/C][C] 11.95[/C][C] 2.052[/C][/ROW]
[ROW][C]93[/C][C] 13.5[/C][C] 11.74[/C][C] 1.757[/C][/ROW]
[ROW][C]94[/C][C] 14[/C][C] 12.08[/C][C] 1.922[/C][/ROW]
[ROW][C]95[/C][C] 12[/C][C] 12.52[/C][C]-0.5152[/C][/ROW]
[ROW][C]96[/C][C] 12[/C][C] 12.52[/C][C]-0.5152[/C][/ROW]
[ROW][C]97[/C][C] 13[/C][C] 12.08[/C][C] 0.9221[/C][/ROW]
[ROW][C]98[/C][C] 14[/C][C] 12.52[/C][C] 1.485[/C][/ROW]
[ROW][C]99[/C][C] 13[/C][C] 11.51[/C][C] 1.489[/C][/ROW]
[ROW][C]100[/C][C] 12[/C][C] 12.52[/C][C]-0.5152[/C][/ROW]
[ROW][C]101[/C][C] 13.5[/C][C] 12.21[/C][C] 1.294[/C][/ROW]
[ROW][C]102[/C][C] 12[/C][C] 12.52[/C][C]-0.5152[/C][/ROW]
[ROW][C]103[/C][C] 10[/C][C] 11.51[/C][C]-1.511[/C][/ROW]
[ROW][C]104[/C][C] 12[/C][C] 11.95[/C][C] 0.05181[/C][/ROW]
[ROW][C]105[/C][C] 13.5[/C][C] 12.52[/C][C] 0.9848[/C][/ROW]
[ROW][C]106[/C][C] 12[/C][C] 12.41[/C][C]-0.4114[/C][/ROW]
[ROW][C]107[/C][C] 13.5[/C][C] 12.31[/C][C] 1.19[/C][/ROW]
[ROW][C]108[/C][C] 12[/C][C] 12.21[/C][C]-0.2058[/C][/ROW]
[ROW][C]109[/C][C] 12[/C][C] 12.21[/C][C]-0.2058[/C][/ROW]
[ROW][C]110[/C][C] 12[/C][C] 12.26[/C][C]-0.2575[/C][/ROW]
[ROW][C]111[/C][C] 10.5[/C][C] 11.84[/C][C]-1.344[/C][/ROW]
[ROW][C]112[/C][C] 12[/C][C] 12.15[/C][C]-0.1538[/C][/ROW]
[ROW][C]113[/C][C] 9[/C][C] 11.69[/C][C]-2.691[/C][/ROW]
[ROW][C]114[/C][C] 14[/C][C] 11.95[/C][C] 2.052[/C][/ROW]
[ROW][C]115[/C][C] 12[/C][C] 11.95[/C][C] 0.05181[/C][/ROW]
[ROW][C]116[/C][C] 13[/C][C] 12.52[/C][C] 0.4848[/C][/ROW]
[ROW][C]117[/C][C] 13.5[/C][C] 12.54[/C][C] 0.9607[/C][/ROW]
[ROW][C]118[/C][C] 13[/C][C] 12.52[/C][C] 0.4848[/C][/ROW]
[ROW][C]119[/C][C] 11[/C][C] 12.31[/C][C]-1.308[/C][/ROW]
[ROW][C]120[/C][C] 12[/C][C] 12.21[/C][C]-0.2058[/C][/ROW]
[ROW][C]121[/C][C] 11[/C][C] 12.26[/C][C]-1.258[/C][/ROW]
[ROW][C]122[/C][C] 12[/C][C] 12.08[/C][C]-0.07795[/C][/ROW]
[ROW][C]123[/C][C] 12[/C][C] 12.41[/C][C]-0.4114[/C][/ROW]
[ROW][C]124[/C][C] 13.5[/C][C] 12.51[/C][C] 0.9867[/C][/ROW]
[ROW][C]125[/C][C] 12[/C][C] 12.54[/C][C]-0.5393[/C][/ROW]
[ROW][C]126[/C][C] 13[/C][C] 12.21[/C][C] 0.7942[/C][/ROW]
[ROW][C]127[/C][C] 13.5[/C][C] 11.95[/C][C] 1.552[/C][/ROW]
[ROW][C]128[/C][C] 12[/C][C] 12.41[/C][C]-0.4114[/C][/ROW]
[ROW][C]129[/C][C] 12[/C][C] 12.54[/C][C]-0.5393[/C][/ROW]
[ROW][C]130[/C][C] 8[/C][C] 12.21[/C][C]-4.206[/C][/ROW]
[ROW][C]131[/C][C] 12[/C][C] 12.54[/C][C]-0.5393[/C][/ROW]
[ROW][C]132[/C][C] 13[/C][C] 11.95[/C][C] 1.052[/C][/ROW]
[ROW][C]133[/C][C] 10.5[/C][C] 12.52[/C][C]-2.015[/C][/ROW]
[ROW][C]134[/C][C] 8[/C][C] 11.59[/C][C]-3.587[/C][/ROW]
[ROW][C]135[/C][C] 12[/C][C] 12.21[/C][C]-0.2058[/C][/ROW]
[ROW][C]136[/C][C] 13[/C][C] 11.72[/C][C] 1.283[/C][/ROW]
[ROW][C]137[/C][C] 9[/C][C] 11.02[/C][C]-2.024[/C][/ROW]
[ROW][C]138[/C][C] 12[/C][C] 12.21[/C][C]-0.2058[/C][/ROW]
[ROW][C]139[/C][C] 15[/C][C] 12.08[/C][C] 2.922[/C][/ROW]
[ROW][C]140[/C][C] 14[/C][C] 11.95[/C][C] 2.052[/C][/ROW]
[ROW][C]141[/C][C] 10.5[/C][C] 12.21[/C][C]-1.706[/C][/ROW]
[ROW][C]142[/C][C] 11[/C][C] 12.41[/C][C]-1.411[/C][/ROW]
[ROW][C]143[/C][C] 12[/C][C] 12.64[/C][C]-0.643[/C][/ROW]
[ROW][C]144[/C][C] 10[/C][C] 11.74[/C][C]-1.744[/C][/ROW]
[ROW][C]145[/C][C] 14[/C][C] 12.1[/C][C] 1.898[/C][/ROW]
[ROW][C]146[/C][C] 10[/C][C] 12.21[/C][C]-2.206[/C][/ROW]
[ROW][C]147[/C][C] 15[/C][C] 12.44[/C][C] 2.564[/C][/ROW]
[ROW][C]148[/C][C] 11[/C][C] 12.21[/C][C]-1.206[/C][/ROW]
[ROW][C]149[/C][C] 12[/C][C] 12.52[/C][C]-0.5152[/C][/ROW]
[ROW][C]150[/C][C] 9[/C][C] 11.51[/C][C]-2.511[/C][/ROW]
[ROW][C]151[/C][C] 12[/C][C] 12.52[/C][C]-0.5152[/C][/ROW]
[ROW][C]152[/C][C] 13[/C][C] 12.41[/C][C] 0.5886[/C][/ROW]
[ROW][C]153[/C][C] 12[/C][C] 11.64[/C][C] 0.3593[/C][/ROW]
[ROW][C]154[/C][C] 9[/C][C] 12.41[/C][C]-3.411[/C][/ROW]
[ROW][C]155[/C][C] 12[/C][C] 12.21[/C][C]-0.2058[/C][/ROW]
[ROW][C]156[/C][C] 14[/C][C] 12.41[/C][C] 1.589[/C][/ROW]
[ROW][C]157[/C][C] 10.5[/C][C] 12.52[/C][C]-2.015[/C][/ROW]
[ROW][C]158[/C][C] 12[/C][C] 12.26[/C][C]-0.2575[/C][/ROW]
[ROW][C]159[/C][C] 14[/C][C] 12.41[/C][C] 1.589[/C][/ROW]
[ROW][C]160[/C][C] 12[/C][C] 12.1[/C][C]-0.1021[/C][/ROW]
[ROW][C]161[/C][C] 15[/C][C] 12.15[/C][C] 2.846[/C][/ROW]
[ROW][C]162[/C][C] 11[/C][C] 12.64[/C][C]-1.641[/C][/ROW]
[ROW][C]163[/C][C] 12[/C][C] 12.21[/C][C]-0.2058[/C][/ROW]
[ROW][C]164[/C][C] 12[/C][C] 12.08[/C][C]-0.07795[/C][/ROW]
[ROW][C]165[/C][C] 10.5[/C][C] 11.72[/C][C]-1.217[/C][/ROW]
[ROW][C]166[/C][C] 12[/C][C] 12.21[/C][C]-0.2058[/C][/ROW]
[ROW][C]167[/C][C] 10.5[/C][C] 11.84[/C][C]-1.344[/C][/ROW]
[ROW][C]168[/C][C] 11[/C][C] 12.31[/C][C]-1.308[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297893&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297893&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 10 12.08-2.078
2 13 12.41 0.5886
3 14 12.54 1.461
4 12 11.61 0.3853
5 12 12.41-0.4114
6 13 12.41 0.5886
7 13 12.26 0.7425
8 13.5 11.95 1.552
9 13.5 12.54 0.9607
10 14 12.52 1.485
11 14 11.59 2.413
12 12 11.77 0.2314
13 12 12.08-0.07795
14 11 12.41-1.411
15 12 11.95 0.05181
16 14 12.15 1.846
17 12 12.08-0.07795
18 11 12.28-1.282
19 13.5 12.26 1.242
20 13 12.41 0.5886
21 12 11.74 0.2555
22 13 12.08 0.9221
23 12 11.95 0.05181
24 13.5 12.52 0.9848
25 12 11.64 0.3612
26 12 12.64-0.643
27 12 11.84 0.1555
28 13 12.21 0.7942
29 13 12.21 0.7942
30 10 11.56-1.563
31 12 12.05-0.0501
32 13 12.41 0.5886
33 13.5 11.92 1.576
34 10 12.41-2.411
35 14 12.52 1.485
36 12 11.95 0.05181
37 10 12.28-2.282
38 10 11.95-1.948
39 14 12.1 1.898
40 12 11.95 0.05181
41 14 11.95 2.052
42 10 11.59-1.587
43 13 12.44 0.5644
44 12 12.15-0.1538
45 12 11.95 0.05181
46 13.5 11.95 1.552
47 12 11.64 0.363
48 10 11.95-1.948
49 9 11.84-2.844
50 14 12.41 1.589
51 15 11.95 3.052
52 13.5 12.21 1.294
53 8 12.41-4.411
54 11 12.21-1.206
55 10 12.21-2.206
56 12 11.84 0.1555
57 14 12.41 1.59
58 12 11.95 0.05181
59 12 12.18-0.178
60 14 12.21 1.794
61 13 12.08 0.9221
62 13 12.08 0.9221
63 13 12.31 0.6923
64 12 12.41-0.4114
65 10 11.97-1.972
66 14 11.33 2.671
67 11 12.08-1.078
68 10 11.95-1.948
69 13 11.84 1.156
70 12 12.08-0.07795
71 12 12.08-0.07795
72 10.5 11.64-1.143
73 10.5 12.41-1.911
74 13.5 12.21 1.294
75 12 12.44-0.4356
76 13 12.41 0.5886
77 11 12.18-1.182
78 10 12.52-2.515
79 14 12.41 1.589
80 13.5 12.08 1.422
81 7 11.95-4.948
82 13.5 11.95 1.552
83 13 11.69 1.309
84 13.5 12.52 0.9848
85 15 12.1 2.898
86 13 11.95 1.052
87 14 12.52 1.485
88 12 12.52-0.5152
89 13 12.08 0.9221
90 11 12.54-1.537
91 12 11.59 0.4132
92 14 11.95 2.052
93 13.5 11.74 1.757
94 14 12.08 1.922
95 12 12.52-0.5152
96 12 12.52-0.5152
97 13 12.08 0.9221
98 14 12.52 1.485
99 13 11.51 1.489
100 12 12.52-0.5152
101 13.5 12.21 1.294
102 12 12.52-0.5152
103 10 11.51-1.511
104 12 11.95 0.05181
105 13.5 12.52 0.9848
106 12 12.41-0.4114
107 13.5 12.31 1.19
108 12 12.21-0.2058
109 12 12.21-0.2058
110 12 12.26-0.2575
111 10.5 11.84-1.344
112 12 12.15-0.1538
113 9 11.69-2.691
114 14 11.95 2.052
115 12 11.95 0.05181
116 13 12.52 0.4848
117 13.5 12.54 0.9607
118 13 12.52 0.4848
119 11 12.31-1.308
120 12 12.21-0.2058
121 11 12.26-1.258
122 12 12.08-0.07795
123 12 12.41-0.4114
124 13.5 12.51 0.9867
125 12 12.54-0.5393
126 13 12.21 0.7942
127 13.5 11.95 1.552
128 12 12.41-0.4114
129 12 12.54-0.5393
130 8 12.21-4.206
131 12 12.54-0.5393
132 13 11.95 1.052
133 10.5 12.52-2.015
134 8 11.59-3.587
135 12 12.21-0.2058
136 13 11.72 1.283
137 9 11.02-2.024
138 12 12.21-0.2058
139 15 12.08 2.922
140 14 11.95 2.052
141 10.5 12.21-1.706
142 11 12.41-1.411
143 12 12.64-0.643
144 10 11.74-1.744
145 14 12.1 1.898
146 10 12.21-2.206
147 15 12.44 2.564
148 11 12.21-1.206
149 12 12.52-0.5152
150 9 11.51-2.511
151 12 12.52-0.5152
152 13 12.41 0.5886
153 12 11.64 0.3593
154 9 12.41-3.411
155 12 12.21-0.2058
156 14 12.41 1.589
157 10.5 12.52-2.015
158 12 12.26-0.2575
159 14 12.41 1.589
160 12 12.1-0.1021
161 15 12.15 2.846
162 11 12.64-1.641
163 12 12.21-0.2058
164 12 12.08-0.07795
165 10.5 11.72-1.217
166 12 12.21-0.2058
167 10.5 11.84-1.344
168 11 12.31-1.308







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.07091 0.1418 0.9291
9 0.02703 0.05405 0.973
10 0.08248 0.165 0.9175
11 0.04923 0.09845 0.9508
12 0.04391 0.08782 0.9561
13 0.02688 0.05375 0.9731
14 0.04183 0.08367 0.9582
15 0.04783 0.09566 0.9522
16 0.03993 0.07986 0.9601
17 0.02573 0.05146 0.9743
18 0.1458 0.2917 0.8542
19 0.1059 0.2117 0.8941
20 0.07539 0.1508 0.9246
21 0.05558 0.1112 0.9444
22 0.04515 0.0903 0.9549
23 0.03386 0.06772 0.9661
24 0.0244 0.04879 0.9756
25 0.01543 0.03085 0.9846
26 0.01211 0.02423 0.9879
27 0.008023 0.01605 0.992
28 0.005889 0.01178 0.9941
29 0.004118 0.008235 0.9959
30 0.01144 0.02287 0.9886
31 0.007442 0.01488 0.9926
32 0.004809 0.009618 0.9952
33 0.004521 0.009041 0.9955
34 0.01459 0.02918 0.9854
35 0.01274 0.02549 0.9873
36 0.009074 0.01815 0.9909
37 0.02735 0.05471 0.9726
38 0.04607 0.09215 0.9539
39 0.05757 0.1151 0.9424
40 0.04312 0.08625 0.9569
41 0.05085 0.1017 0.9492
42 0.05305 0.1061 0.9469
43 0.04134 0.08269 0.9587
44 0.03057 0.06113 0.9694
45 0.02243 0.04486 0.9776
46 0.02132 0.04265 0.9787
47 0.01668 0.03337 0.9833
48 0.02577 0.05155 0.9742
49 0.05867 0.1173 0.9413
50 0.05772 0.1154 0.9423
51 0.1145 0.229 0.8855
52 0.1007 0.2014 0.8993
53 0.3883 0.7765 0.6117
54 0.3879 0.7758 0.6121
55 0.458 0.916 0.542
56 0.4108 0.8216 0.5892
57 0.3996 0.7991 0.6004
58 0.3547 0.7095 0.6453
59 0.3114 0.6229 0.6886
60 0.3162 0.6324 0.6838
61 0.2891 0.5782 0.7109
62 0.2625 0.525 0.7375
63 0.2368 0.4736 0.7632
64 0.2048 0.4095 0.7952
65 0.2342 0.4683 0.7658
66 0.3151 0.6302 0.6849
67 0.2967 0.5934 0.7033
68 0.3318 0.6636 0.6682
69 0.3144 0.6288 0.6856
70 0.2748 0.5497 0.7252
71 0.2379 0.4759 0.7621
72 0.2282 0.4564 0.7718
73 0.2474 0.4948 0.7526
74 0.2357 0.4714 0.7643
75 0.2041 0.4081 0.7959
76 0.1779 0.3557 0.8221
77 0.168 0.336 0.832
78 0.2226 0.4452 0.7774
79 0.2272 0.4544 0.7728
80 0.2227 0.4453 0.7773
81 0.6124 0.7751 0.3876
82 0.6133 0.7734 0.3867
83 0.6059 0.7882 0.3941
84 0.5793 0.8414 0.4207
85 0.6889 0.6223 0.3111
86 0.6694 0.6612 0.3306
87 0.6654 0.6692 0.3346
88 0.6284 0.7431 0.3716
89 0.6008 0.7985 0.3992
90 0.5964 0.8072 0.4036
91 0.5631 0.8739 0.4369
92 0.6064 0.7871 0.3936
93 0.6239 0.7521 0.3761
94 0.652 0.6959 0.348
95 0.6136 0.7727 0.3864
96 0.5741 0.8519 0.4259
97 0.5486 0.9029 0.4514
98 0.5484 0.9032 0.4516
99 0.5673 0.8654 0.4327
100 0.5264 0.9472 0.4736
101 0.5176 0.9649 0.4824
102 0.4762 0.9524 0.5238
103 0.4662 0.9323 0.5338
104 0.4237 0.8474 0.5763
105 0.3984 0.7968 0.6016
106 0.3563 0.7125 0.6437
107 0.3423 0.6847 0.6577
108 0.3011 0.6022 0.6989
109 0.2621 0.5243 0.7379
110 0.2263 0.4526 0.7737
111 0.2114 0.4228 0.7886
112 0.1795 0.359 0.8205
113 0.2301 0.4601 0.7699
114 0.273 0.546 0.727
115 0.2367 0.4734 0.7633
116 0.2073 0.4146 0.7927
117 0.1877 0.3755 0.8123
118 0.1632 0.3263 0.8368
119 0.1521 0.3042 0.8479
120 0.1256 0.2512 0.8744
121 0.1113 0.2226 0.8887
122 0.09081 0.1816 0.9092
123 0.07248 0.145 0.9275
124 0.06393 0.1279 0.9361
125 0.05056 0.1011 0.9494
126 0.04399 0.08798 0.956
127 0.0491 0.0982 0.9509
128 0.0375 0.075 0.9625
129 0.02857 0.05715 0.9714
130 0.1114 0.2229 0.8886
131 0.08998 0.18 0.91
132 0.08671 0.1734 0.9133
133 0.0925 0.185 0.9075
134 0.206 0.412 0.794
135 0.1687 0.3373 0.8313
136 0.2251 0.4502 0.7749
137 0.2015 0.403 0.7985
138 0.1646 0.3292 0.8354
139 0.3334 0.6668 0.6666
140 0.4752 0.9504 0.5248
141 0.4423 0.8845 0.5577
142 0.4497 0.8994 0.5503
143 0.386 0.7719 0.614
144 0.3351 0.6703 0.6649
145 0.3756 0.7512 0.6244
146 0.3705 0.7409 0.6295
147 0.4688 0.9376 0.5312
148 0.4034 0.8068 0.5966
149 0.3349 0.6699 0.6651
150 0.3642 0.7284 0.6358
151 0.2928 0.5855 0.7072
152 0.2396 0.4792 0.7604
153 0.1799 0.3599 0.8201
154 0.4681 0.9363 0.5319
155 0.3767 0.7534 0.6233
156 0.3479 0.6958 0.6521
157 0.5407 0.9186 0.4593
158 0.6091 0.7817 0.3909
159 0.4821 0.9643 0.5179
160 0.6223 0.7553 0.3777

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.07091 &  0.1418 &  0.9291 \tabularnewline
9 &  0.02703 &  0.05405 &  0.973 \tabularnewline
10 &  0.08248 &  0.165 &  0.9175 \tabularnewline
11 &  0.04923 &  0.09845 &  0.9508 \tabularnewline
12 &  0.04391 &  0.08782 &  0.9561 \tabularnewline
13 &  0.02688 &  0.05375 &  0.9731 \tabularnewline
14 &  0.04183 &  0.08367 &  0.9582 \tabularnewline
15 &  0.04783 &  0.09566 &  0.9522 \tabularnewline
16 &  0.03993 &  0.07986 &  0.9601 \tabularnewline
17 &  0.02573 &  0.05146 &  0.9743 \tabularnewline
18 &  0.1458 &  0.2917 &  0.8542 \tabularnewline
19 &  0.1059 &  0.2117 &  0.8941 \tabularnewline
20 &  0.07539 &  0.1508 &  0.9246 \tabularnewline
21 &  0.05558 &  0.1112 &  0.9444 \tabularnewline
22 &  0.04515 &  0.0903 &  0.9549 \tabularnewline
23 &  0.03386 &  0.06772 &  0.9661 \tabularnewline
24 &  0.0244 &  0.04879 &  0.9756 \tabularnewline
25 &  0.01543 &  0.03085 &  0.9846 \tabularnewline
26 &  0.01211 &  0.02423 &  0.9879 \tabularnewline
27 &  0.008023 &  0.01605 &  0.992 \tabularnewline
28 &  0.005889 &  0.01178 &  0.9941 \tabularnewline
29 &  0.004118 &  0.008235 &  0.9959 \tabularnewline
30 &  0.01144 &  0.02287 &  0.9886 \tabularnewline
31 &  0.007442 &  0.01488 &  0.9926 \tabularnewline
32 &  0.004809 &  0.009618 &  0.9952 \tabularnewline
33 &  0.004521 &  0.009041 &  0.9955 \tabularnewline
34 &  0.01459 &  0.02918 &  0.9854 \tabularnewline
35 &  0.01274 &  0.02549 &  0.9873 \tabularnewline
36 &  0.009074 &  0.01815 &  0.9909 \tabularnewline
37 &  0.02735 &  0.05471 &  0.9726 \tabularnewline
38 &  0.04607 &  0.09215 &  0.9539 \tabularnewline
39 &  0.05757 &  0.1151 &  0.9424 \tabularnewline
40 &  0.04312 &  0.08625 &  0.9569 \tabularnewline
41 &  0.05085 &  0.1017 &  0.9492 \tabularnewline
42 &  0.05305 &  0.1061 &  0.9469 \tabularnewline
43 &  0.04134 &  0.08269 &  0.9587 \tabularnewline
44 &  0.03057 &  0.06113 &  0.9694 \tabularnewline
45 &  0.02243 &  0.04486 &  0.9776 \tabularnewline
46 &  0.02132 &  0.04265 &  0.9787 \tabularnewline
47 &  0.01668 &  0.03337 &  0.9833 \tabularnewline
48 &  0.02577 &  0.05155 &  0.9742 \tabularnewline
49 &  0.05867 &  0.1173 &  0.9413 \tabularnewline
50 &  0.05772 &  0.1154 &  0.9423 \tabularnewline
51 &  0.1145 &  0.229 &  0.8855 \tabularnewline
52 &  0.1007 &  0.2014 &  0.8993 \tabularnewline
53 &  0.3883 &  0.7765 &  0.6117 \tabularnewline
54 &  0.3879 &  0.7758 &  0.6121 \tabularnewline
55 &  0.458 &  0.916 &  0.542 \tabularnewline
56 &  0.4108 &  0.8216 &  0.5892 \tabularnewline
57 &  0.3996 &  0.7991 &  0.6004 \tabularnewline
58 &  0.3547 &  0.7095 &  0.6453 \tabularnewline
59 &  0.3114 &  0.6229 &  0.6886 \tabularnewline
60 &  0.3162 &  0.6324 &  0.6838 \tabularnewline
61 &  0.2891 &  0.5782 &  0.7109 \tabularnewline
62 &  0.2625 &  0.525 &  0.7375 \tabularnewline
63 &  0.2368 &  0.4736 &  0.7632 \tabularnewline
64 &  0.2048 &  0.4095 &  0.7952 \tabularnewline
65 &  0.2342 &  0.4683 &  0.7658 \tabularnewline
66 &  0.3151 &  0.6302 &  0.6849 \tabularnewline
67 &  0.2967 &  0.5934 &  0.7033 \tabularnewline
68 &  0.3318 &  0.6636 &  0.6682 \tabularnewline
69 &  0.3144 &  0.6288 &  0.6856 \tabularnewline
70 &  0.2748 &  0.5497 &  0.7252 \tabularnewline
71 &  0.2379 &  0.4759 &  0.7621 \tabularnewline
72 &  0.2282 &  0.4564 &  0.7718 \tabularnewline
73 &  0.2474 &  0.4948 &  0.7526 \tabularnewline
74 &  0.2357 &  0.4714 &  0.7643 \tabularnewline
75 &  0.2041 &  0.4081 &  0.7959 \tabularnewline
76 &  0.1779 &  0.3557 &  0.8221 \tabularnewline
77 &  0.168 &  0.336 &  0.832 \tabularnewline
78 &  0.2226 &  0.4452 &  0.7774 \tabularnewline
79 &  0.2272 &  0.4544 &  0.7728 \tabularnewline
80 &  0.2227 &  0.4453 &  0.7773 \tabularnewline
81 &  0.6124 &  0.7751 &  0.3876 \tabularnewline
82 &  0.6133 &  0.7734 &  0.3867 \tabularnewline
83 &  0.6059 &  0.7882 &  0.3941 \tabularnewline
84 &  0.5793 &  0.8414 &  0.4207 \tabularnewline
85 &  0.6889 &  0.6223 &  0.3111 \tabularnewline
86 &  0.6694 &  0.6612 &  0.3306 \tabularnewline
87 &  0.6654 &  0.6692 &  0.3346 \tabularnewline
88 &  0.6284 &  0.7431 &  0.3716 \tabularnewline
89 &  0.6008 &  0.7985 &  0.3992 \tabularnewline
90 &  0.5964 &  0.8072 &  0.4036 \tabularnewline
91 &  0.5631 &  0.8739 &  0.4369 \tabularnewline
92 &  0.6064 &  0.7871 &  0.3936 \tabularnewline
93 &  0.6239 &  0.7521 &  0.3761 \tabularnewline
94 &  0.652 &  0.6959 &  0.348 \tabularnewline
95 &  0.6136 &  0.7727 &  0.3864 \tabularnewline
96 &  0.5741 &  0.8519 &  0.4259 \tabularnewline
97 &  0.5486 &  0.9029 &  0.4514 \tabularnewline
98 &  0.5484 &  0.9032 &  0.4516 \tabularnewline
99 &  0.5673 &  0.8654 &  0.4327 \tabularnewline
100 &  0.5264 &  0.9472 &  0.4736 \tabularnewline
101 &  0.5176 &  0.9649 &  0.4824 \tabularnewline
102 &  0.4762 &  0.9524 &  0.5238 \tabularnewline
103 &  0.4662 &  0.9323 &  0.5338 \tabularnewline
104 &  0.4237 &  0.8474 &  0.5763 \tabularnewline
105 &  0.3984 &  0.7968 &  0.6016 \tabularnewline
106 &  0.3563 &  0.7125 &  0.6437 \tabularnewline
107 &  0.3423 &  0.6847 &  0.6577 \tabularnewline
108 &  0.3011 &  0.6022 &  0.6989 \tabularnewline
109 &  0.2621 &  0.5243 &  0.7379 \tabularnewline
110 &  0.2263 &  0.4526 &  0.7737 \tabularnewline
111 &  0.2114 &  0.4228 &  0.7886 \tabularnewline
112 &  0.1795 &  0.359 &  0.8205 \tabularnewline
113 &  0.2301 &  0.4601 &  0.7699 \tabularnewline
114 &  0.273 &  0.546 &  0.727 \tabularnewline
115 &  0.2367 &  0.4734 &  0.7633 \tabularnewline
116 &  0.2073 &  0.4146 &  0.7927 \tabularnewline
117 &  0.1877 &  0.3755 &  0.8123 \tabularnewline
118 &  0.1632 &  0.3263 &  0.8368 \tabularnewline
119 &  0.1521 &  0.3042 &  0.8479 \tabularnewline
120 &  0.1256 &  0.2512 &  0.8744 \tabularnewline
121 &  0.1113 &  0.2226 &  0.8887 \tabularnewline
122 &  0.09081 &  0.1816 &  0.9092 \tabularnewline
123 &  0.07248 &  0.145 &  0.9275 \tabularnewline
124 &  0.06393 &  0.1279 &  0.9361 \tabularnewline
125 &  0.05056 &  0.1011 &  0.9494 \tabularnewline
126 &  0.04399 &  0.08798 &  0.956 \tabularnewline
127 &  0.0491 &  0.0982 &  0.9509 \tabularnewline
128 &  0.0375 &  0.075 &  0.9625 \tabularnewline
129 &  0.02857 &  0.05715 &  0.9714 \tabularnewline
130 &  0.1114 &  0.2229 &  0.8886 \tabularnewline
131 &  0.08998 &  0.18 &  0.91 \tabularnewline
132 &  0.08671 &  0.1734 &  0.9133 \tabularnewline
133 &  0.0925 &  0.185 &  0.9075 \tabularnewline
134 &  0.206 &  0.412 &  0.794 \tabularnewline
135 &  0.1687 &  0.3373 &  0.8313 \tabularnewline
136 &  0.2251 &  0.4502 &  0.7749 \tabularnewline
137 &  0.2015 &  0.403 &  0.7985 \tabularnewline
138 &  0.1646 &  0.3292 &  0.8354 \tabularnewline
139 &  0.3334 &  0.6668 &  0.6666 \tabularnewline
140 &  0.4752 &  0.9504 &  0.5248 \tabularnewline
141 &  0.4423 &  0.8845 &  0.5577 \tabularnewline
142 &  0.4497 &  0.8994 &  0.5503 \tabularnewline
143 &  0.386 &  0.7719 &  0.614 \tabularnewline
144 &  0.3351 &  0.6703 &  0.6649 \tabularnewline
145 &  0.3756 &  0.7512 &  0.6244 \tabularnewline
146 &  0.3705 &  0.7409 &  0.6295 \tabularnewline
147 &  0.4688 &  0.9376 &  0.5312 \tabularnewline
148 &  0.4034 &  0.8068 &  0.5966 \tabularnewline
149 &  0.3349 &  0.6699 &  0.6651 \tabularnewline
150 &  0.3642 &  0.7284 &  0.6358 \tabularnewline
151 &  0.2928 &  0.5855 &  0.7072 \tabularnewline
152 &  0.2396 &  0.4792 &  0.7604 \tabularnewline
153 &  0.1799 &  0.3599 &  0.8201 \tabularnewline
154 &  0.4681 &  0.9363 &  0.5319 \tabularnewline
155 &  0.3767 &  0.7534 &  0.6233 \tabularnewline
156 &  0.3479 &  0.6958 &  0.6521 \tabularnewline
157 &  0.5407 &  0.9186 &  0.4593 \tabularnewline
158 &  0.6091 &  0.7817 &  0.3909 \tabularnewline
159 &  0.4821 &  0.9643 &  0.5179 \tabularnewline
160 &  0.6223 &  0.7553 &  0.3777 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297893&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.07091[/C][C] 0.1418[/C][C] 0.9291[/C][/ROW]
[ROW][C]9[/C][C] 0.02703[/C][C] 0.05405[/C][C] 0.973[/C][/ROW]
[ROW][C]10[/C][C] 0.08248[/C][C] 0.165[/C][C] 0.9175[/C][/ROW]
[ROW][C]11[/C][C] 0.04923[/C][C] 0.09845[/C][C] 0.9508[/C][/ROW]
[ROW][C]12[/C][C] 0.04391[/C][C] 0.08782[/C][C] 0.9561[/C][/ROW]
[ROW][C]13[/C][C] 0.02688[/C][C] 0.05375[/C][C] 0.9731[/C][/ROW]
[ROW][C]14[/C][C] 0.04183[/C][C] 0.08367[/C][C] 0.9582[/C][/ROW]
[ROW][C]15[/C][C] 0.04783[/C][C] 0.09566[/C][C] 0.9522[/C][/ROW]
[ROW][C]16[/C][C] 0.03993[/C][C] 0.07986[/C][C] 0.9601[/C][/ROW]
[ROW][C]17[/C][C] 0.02573[/C][C] 0.05146[/C][C] 0.9743[/C][/ROW]
[ROW][C]18[/C][C] 0.1458[/C][C] 0.2917[/C][C] 0.8542[/C][/ROW]
[ROW][C]19[/C][C] 0.1059[/C][C] 0.2117[/C][C] 0.8941[/C][/ROW]
[ROW][C]20[/C][C] 0.07539[/C][C] 0.1508[/C][C] 0.9246[/C][/ROW]
[ROW][C]21[/C][C] 0.05558[/C][C] 0.1112[/C][C] 0.9444[/C][/ROW]
[ROW][C]22[/C][C] 0.04515[/C][C] 0.0903[/C][C] 0.9549[/C][/ROW]
[ROW][C]23[/C][C] 0.03386[/C][C] 0.06772[/C][C] 0.9661[/C][/ROW]
[ROW][C]24[/C][C] 0.0244[/C][C] 0.04879[/C][C] 0.9756[/C][/ROW]
[ROW][C]25[/C][C] 0.01543[/C][C] 0.03085[/C][C] 0.9846[/C][/ROW]
[ROW][C]26[/C][C] 0.01211[/C][C] 0.02423[/C][C] 0.9879[/C][/ROW]
[ROW][C]27[/C][C] 0.008023[/C][C] 0.01605[/C][C] 0.992[/C][/ROW]
[ROW][C]28[/C][C] 0.005889[/C][C] 0.01178[/C][C] 0.9941[/C][/ROW]
[ROW][C]29[/C][C] 0.004118[/C][C] 0.008235[/C][C] 0.9959[/C][/ROW]
[ROW][C]30[/C][C] 0.01144[/C][C] 0.02287[/C][C] 0.9886[/C][/ROW]
[ROW][C]31[/C][C] 0.007442[/C][C] 0.01488[/C][C] 0.9926[/C][/ROW]
[ROW][C]32[/C][C] 0.004809[/C][C] 0.009618[/C][C] 0.9952[/C][/ROW]
[ROW][C]33[/C][C] 0.004521[/C][C] 0.009041[/C][C] 0.9955[/C][/ROW]
[ROW][C]34[/C][C] 0.01459[/C][C] 0.02918[/C][C] 0.9854[/C][/ROW]
[ROW][C]35[/C][C] 0.01274[/C][C] 0.02549[/C][C] 0.9873[/C][/ROW]
[ROW][C]36[/C][C] 0.009074[/C][C] 0.01815[/C][C] 0.9909[/C][/ROW]
[ROW][C]37[/C][C] 0.02735[/C][C] 0.05471[/C][C] 0.9726[/C][/ROW]
[ROW][C]38[/C][C] 0.04607[/C][C] 0.09215[/C][C] 0.9539[/C][/ROW]
[ROW][C]39[/C][C] 0.05757[/C][C] 0.1151[/C][C] 0.9424[/C][/ROW]
[ROW][C]40[/C][C] 0.04312[/C][C] 0.08625[/C][C] 0.9569[/C][/ROW]
[ROW][C]41[/C][C] 0.05085[/C][C] 0.1017[/C][C] 0.9492[/C][/ROW]
[ROW][C]42[/C][C] 0.05305[/C][C] 0.1061[/C][C] 0.9469[/C][/ROW]
[ROW][C]43[/C][C] 0.04134[/C][C] 0.08269[/C][C] 0.9587[/C][/ROW]
[ROW][C]44[/C][C] 0.03057[/C][C] 0.06113[/C][C] 0.9694[/C][/ROW]
[ROW][C]45[/C][C] 0.02243[/C][C] 0.04486[/C][C] 0.9776[/C][/ROW]
[ROW][C]46[/C][C] 0.02132[/C][C] 0.04265[/C][C] 0.9787[/C][/ROW]
[ROW][C]47[/C][C] 0.01668[/C][C] 0.03337[/C][C] 0.9833[/C][/ROW]
[ROW][C]48[/C][C] 0.02577[/C][C] 0.05155[/C][C] 0.9742[/C][/ROW]
[ROW][C]49[/C][C] 0.05867[/C][C] 0.1173[/C][C] 0.9413[/C][/ROW]
[ROW][C]50[/C][C] 0.05772[/C][C] 0.1154[/C][C] 0.9423[/C][/ROW]
[ROW][C]51[/C][C] 0.1145[/C][C] 0.229[/C][C] 0.8855[/C][/ROW]
[ROW][C]52[/C][C] 0.1007[/C][C] 0.2014[/C][C] 0.8993[/C][/ROW]
[ROW][C]53[/C][C] 0.3883[/C][C] 0.7765[/C][C] 0.6117[/C][/ROW]
[ROW][C]54[/C][C] 0.3879[/C][C] 0.7758[/C][C] 0.6121[/C][/ROW]
[ROW][C]55[/C][C] 0.458[/C][C] 0.916[/C][C] 0.542[/C][/ROW]
[ROW][C]56[/C][C] 0.4108[/C][C] 0.8216[/C][C] 0.5892[/C][/ROW]
[ROW][C]57[/C][C] 0.3996[/C][C] 0.7991[/C][C] 0.6004[/C][/ROW]
[ROW][C]58[/C][C] 0.3547[/C][C] 0.7095[/C][C] 0.6453[/C][/ROW]
[ROW][C]59[/C][C] 0.3114[/C][C] 0.6229[/C][C] 0.6886[/C][/ROW]
[ROW][C]60[/C][C] 0.3162[/C][C] 0.6324[/C][C] 0.6838[/C][/ROW]
[ROW][C]61[/C][C] 0.2891[/C][C] 0.5782[/C][C] 0.7109[/C][/ROW]
[ROW][C]62[/C][C] 0.2625[/C][C] 0.525[/C][C] 0.7375[/C][/ROW]
[ROW][C]63[/C][C] 0.2368[/C][C] 0.4736[/C][C] 0.7632[/C][/ROW]
[ROW][C]64[/C][C] 0.2048[/C][C] 0.4095[/C][C] 0.7952[/C][/ROW]
[ROW][C]65[/C][C] 0.2342[/C][C] 0.4683[/C][C] 0.7658[/C][/ROW]
[ROW][C]66[/C][C] 0.3151[/C][C] 0.6302[/C][C] 0.6849[/C][/ROW]
[ROW][C]67[/C][C] 0.2967[/C][C] 0.5934[/C][C] 0.7033[/C][/ROW]
[ROW][C]68[/C][C] 0.3318[/C][C] 0.6636[/C][C] 0.6682[/C][/ROW]
[ROW][C]69[/C][C] 0.3144[/C][C] 0.6288[/C][C] 0.6856[/C][/ROW]
[ROW][C]70[/C][C] 0.2748[/C][C] 0.5497[/C][C] 0.7252[/C][/ROW]
[ROW][C]71[/C][C] 0.2379[/C][C] 0.4759[/C][C] 0.7621[/C][/ROW]
[ROW][C]72[/C][C] 0.2282[/C][C] 0.4564[/C][C] 0.7718[/C][/ROW]
[ROW][C]73[/C][C] 0.2474[/C][C] 0.4948[/C][C] 0.7526[/C][/ROW]
[ROW][C]74[/C][C] 0.2357[/C][C] 0.4714[/C][C] 0.7643[/C][/ROW]
[ROW][C]75[/C][C] 0.2041[/C][C] 0.4081[/C][C] 0.7959[/C][/ROW]
[ROW][C]76[/C][C] 0.1779[/C][C] 0.3557[/C][C] 0.8221[/C][/ROW]
[ROW][C]77[/C][C] 0.168[/C][C] 0.336[/C][C] 0.832[/C][/ROW]
[ROW][C]78[/C][C] 0.2226[/C][C] 0.4452[/C][C] 0.7774[/C][/ROW]
[ROW][C]79[/C][C] 0.2272[/C][C] 0.4544[/C][C] 0.7728[/C][/ROW]
[ROW][C]80[/C][C] 0.2227[/C][C] 0.4453[/C][C] 0.7773[/C][/ROW]
[ROW][C]81[/C][C] 0.6124[/C][C] 0.7751[/C][C] 0.3876[/C][/ROW]
[ROW][C]82[/C][C] 0.6133[/C][C] 0.7734[/C][C] 0.3867[/C][/ROW]
[ROW][C]83[/C][C] 0.6059[/C][C] 0.7882[/C][C] 0.3941[/C][/ROW]
[ROW][C]84[/C][C] 0.5793[/C][C] 0.8414[/C][C] 0.4207[/C][/ROW]
[ROW][C]85[/C][C] 0.6889[/C][C] 0.6223[/C][C] 0.3111[/C][/ROW]
[ROW][C]86[/C][C] 0.6694[/C][C] 0.6612[/C][C] 0.3306[/C][/ROW]
[ROW][C]87[/C][C] 0.6654[/C][C] 0.6692[/C][C] 0.3346[/C][/ROW]
[ROW][C]88[/C][C] 0.6284[/C][C] 0.7431[/C][C] 0.3716[/C][/ROW]
[ROW][C]89[/C][C] 0.6008[/C][C] 0.7985[/C][C] 0.3992[/C][/ROW]
[ROW][C]90[/C][C] 0.5964[/C][C] 0.8072[/C][C] 0.4036[/C][/ROW]
[ROW][C]91[/C][C] 0.5631[/C][C] 0.8739[/C][C] 0.4369[/C][/ROW]
[ROW][C]92[/C][C] 0.6064[/C][C] 0.7871[/C][C] 0.3936[/C][/ROW]
[ROW][C]93[/C][C] 0.6239[/C][C] 0.7521[/C][C] 0.3761[/C][/ROW]
[ROW][C]94[/C][C] 0.652[/C][C] 0.6959[/C][C] 0.348[/C][/ROW]
[ROW][C]95[/C][C] 0.6136[/C][C] 0.7727[/C][C] 0.3864[/C][/ROW]
[ROW][C]96[/C][C] 0.5741[/C][C] 0.8519[/C][C] 0.4259[/C][/ROW]
[ROW][C]97[/C][C] 0.5486[/C][C] 0.9029[/C][C] 0.4514[/C][/ROW]
[ROW][C]98[/C][C] 0.5484[/C][C] 0.9032[/C][C] 0.4516[/C][/ROW]
[ROW][C]99[/C][C] 0.5673[/C][C] 0.8654[/C][C] 0.4327[/C][/ROW]
[ROW][C]100[/C][C] 0.5264[/C][C] 0.9472[/C][C] 0.4736[/C][/ROW]
[ROW][C]101[/C][C] 0.5176[/C][C] 0.9649[/C][C] 0.4824[/C][/ROW]
[ROW][C]102[/C][C] 0.4762[/C][C] 0.9524[/C][C] 0.5238[/C][/ROW]
[ROW][C]103[/C][C] 0.4662[/C][C] 0.9323[/C][C] 0.5338[/C][/ROW]
[ROW][C]104[/C][C] 0.4237[/C][C] 0.8474[/C][C] 0.5763[/C][/ROW]
[ROW][C]105[/C][C] 0.3984[/C][C] 0.7968[/C][C] 0.6016[/C][/ROW]
[ROW][C]106[/C][C] 0.3563[/C][C] 0.7125[/C][C] 0.6437[/C][/ROW]
[ROW][C]107[/C][C] 0.3423[/C][C] 0.6847[/C][C] 0.6577[/C][/ROW]
[ROW][C]108[/C][C] 0.3011[/C][C] 0.6022[/C][C] 0.6989[/C][/ROW]
[ROW][C]109[/C][C] 0.2621[/C][C] 0.5243[/C][C] 0.7379[/C][/ROW]
[ROW][C]110[/C][C] 0.2263[/C][C] 0.4526[/C][C] 0.7737[/C][/ROW]
[ROW][C]111[/C][C] 0.2114[/C][C] 0.4228[/C][C] 0.7886[/C][/ROW]
[ROW][C]112[/C][C] 0.1795[/C][C] 0.359[/C][C] 0.8205[/C][/ROW]
[ROW][C]113[/C][C] 0.2301[/C][C] 0.4601[/C][C] 0.7699[/C][/ROW]
[ROW][C]114[/C][C] 0.273[/C][C] 0.546[/C][C] 0.727[/C][/ROW]
[ROW][C]115[/C][C] 0.2367[/C][C] 0.4734[/C][C] 0.7633[/C][/ROW]
[ROW][C]116[/C][C] 0.2073[/C][C] 0.4146[/C][C] 0.7927[/C][/ROW]
[ROW][C]117[/C][C] 0.1877[/C][C] 0.3755[/C][C] 0.8123[/C][/ROW]
[ROW][C]118[/C][C] 0.1632[/C][C] 0.3263[/C][C] 0.8368[/C][/ROW]
[ROW][C]119[/C][C] 0.1521[/C][C] 0.3042[/C][C] 0.8479[/C][/ROW]
[ROW][C]120[/C][C] 0.1256[/C][C] 0.2512[/C][C] 0.8744[/C][/ROW]
[ROW][C]121[/C][C] 0.1113[/C][C] 0.2226[/C][C] 0.8887[/C][/ROW]
[ROW][C]122[/C][C] 0.09081[/C][C] 0.1816[/C][C] 0.9092[/C][/ROW]
[ROW][C]123[/C][C] 0.07248[/C][C] 0.145[/C][C] 0.9275[/C][/ROW]
[ROW][C]124[/C][C] 0.06393[/C][C] 0.1279[/C][C] 0.9361[/C][/ROW]
[ROW][C]125[/C][C] 0.05056[/C][C] 0.1011[/C][C] 0.9494[/C][/ROW]
[ROW][C]126[/C][C] 0.04399[/C][C] 0.08798[/C][C] 0.956[/C][/ROW]
[ROW][C]127[/C][C] 0.0491[/C][C] 0.0982[/C][C] 0.9509[/C][/ROW]
[ROW][C]128[/C][C] 0.0375[/C][C] 0.075[/C][C] 0.9625[/C][/ROW]
[ROW][C]129[/C][C] 0.02857[/C][C] 0.05715[/C][C] 0.9714[/C][/ROW]
[ROW][C]130[/C][C] 0.1114[/C][C] 0.2229[/C][C] 0.8886[/C][/ROW]
[ROW][C]131[/C][C] 0.08998[/C][C] 0.18[/C][C] 0.91[/C][/ROW]
[ROW][C]132[/C][C] 0.08671[/C][C] 0.1734[/C][C] 0.9133[/C][/ROW]
[ROW][C]133[/C][C] 0.0925[/C][C] 0.185[/C][C] 0.9075[/C][/ROW]
[ROW][C]134[/C][C] 0.206[/C][C] 0.412[/C][C] 0.794[/C][/ROW]
[ROW][C]135[/C][C] 0.1687[/C][C] 0.3373[/C][C] 0.8313[/C][/ROW]
[ROW][C]136[/C][C] 0.2251[/C][C] 0.4502[/C][C] 0.7749[/C][/ROW]
[ROW][C]137[/C][C] 0.2015[/C][C] 0.403[/C][C] 0.7985[/C][/ROW]
[ROW][C]138[/C][C] 0.1646[/C][C] 0.3292[/C][C] 0.8354[/C][/ROW]
[ROW][C]139[/C][C] 0.3334[/C][C] 0.6668[/C][C] 0.6666[/C][/ROW]
[ROW][C]140[/C][C] 0.4752[/C][C] 0.9504[/C][C] 0.5248[/C][/ROW]
[ROW][C]141[/C][C] 0.4423[/C][C] 0.8845[/C][C] 0.5577[/C][/ROW]
[ROW][C]142[/C][C] 0.4497[/C][C] 0.8994[/C][C] 0.5503[/C][/ROW]
[ROW][C]143[/C][C] 0.386[/C][C] 0.7719[/C][C] 0.614[/C][/ROW]
[ROW][C]144[/C][C] 0.3351[/C][C] 0.6703[/C][C] 0.6649[/C][/ROW]
[ROW][C]145[/C][C] 0.3756[/C][C] 0.7512[/C][C] 0.6244[/C][/ROW]
[ROW][C]146[/C][C] 0.3705[/C][C] 0.7409[/C][C] 0.6295[/C][/ROW]
[ROW][C]147[/C][C] 0.4688[/C][C] 0.9376[/C][C] 0.5312[/C][/ROW]
[ROW][C]148[/C][C] 0.4034[/C][C] 0.8068[/C][C] 0.5966[/C][/ROW]
[ROW][C]149[/C][C] 0.3349[/C][C] 0.6699[/C][C] 0.6651[/C][/ROW]
[ROW][C]150[/C][C] 0.3642[/C][C] 0.7284[/C][C] 0.6358[/C][/ROW]
[ROW][C]151[/C][C] 0.2928[/C][C] 0.5855[/C][C] 0.7072[/C][/ROW]
[ROW][C]152[/C][C] 0.2396[/C][C] 0.4792[/C][C] 0.7604[/C][/ROW]
[ROW][C]153[/C][C] 0.1799[/C][C] 0.3599[/C][C] 0.8201[/C][/ROW]
[ROW][C]154[/C][C] 0.4681[/C][C] 0.9363[/C][C] 0.5319[/C][/ROW]
[ROW][C]155[/C][C] 0.3767[/C][C] 0.7534[/C][C] 0.6233[/C][/ROW]
[ROW][C]156[/C][C] 0.3479[/C][C] 0.6958[/C][C] 0.6521[/C][/ROW]
[ROW][C]157[/C][C] 0.5407[/C][C] 0.9186[/C][C] 0.4593[/C][/ROW]
[ROW][C]158[/C][C] 0.6091[/C][C] 0.7817[/C][C] 0.3909[/C][/ROW]
[ROW][C]159[/C][C] 0.4821[/C][C] 0.9643[/C][C] 0.5179[/C][/ROW]
[ROW][C]160[/C][C] 0.6223[/C][C] 0.7553[/C][C] 0.3777[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297893&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297893&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.07091 0.1418 0.9291
9 0.02703 0.05405 0.973
10 0.08248 0.165 0.9175
11 0.04923 0.09845 0.9508
12 0.04391 0.08782 0.9561
13 0.02688 0.05375 0.9731
14 0.04183 0.08367 0.9582
15 0.04783 0.09566 0.9522
16 0.03993 0.07986 0.9601
17 0.02573 0.05146 0.9743
18 0.1458 0.2917 0.8542
19 0.1059 0.2117 0.8941
20 0.07539 0.1508 0.9246
21 0.05558 0.1112 0.9444
22 0.04515 0.0903 0.9549
23 0.03386 0.06772 0.9661
24 0.0244 0.04879 0.9756
25 0.01543 0.03085 0.9846
26 0.01211 0.02423 0.9879
27 0.008023 0.01605 0.992
28 0.005889 0.01178 0.9941
29 0.004118 0.008235 0.9959
30 0.01144 0.02287 0.9886
31 0.007442 0.01488 0.9926
32 0.004809 0.009618 0.9952
33 0.004521 0.009041 0.9955
34 0.01459 0.02918 0.9854
35 0.01274 0.02549 0.9873
36 0.009074 0.01815 0.9909
37 0.02735 0.05471 0.9726
38 0.04607 0.09215 0.9539
39 0.05757 0.1151 0.9424
40 0.04312 0.08625 0.9569
41 0.05085 0.1017 0.9492
42 0.05305 0.1061 0.9469
43 0.04134 0.08269 0.9587
44 0.03057 0.06113 0.9694
45 0.02243 0.04486 0.9776
46 0.02132 0.04265 0.9787
47 0.01668 0.03337 0.9833
48 0.02577 0.05155 0.9742
49 0.05867 0.1173 0.9413
50 0.05772 0.1154 0.9423
51 0.1145 0.229 0.8855
52 0.1007 0.2014 0.8993
53 0.3883 0.7765 0.6117
54 0.3879 0.7758 0.6121
55 0.458 0.916 0.542
56 0.4108 0.8216 0.5892
57 0.3996 0.7991 0.6004
58 0.3547 0.7095 0.6453
59 0.3114 0.6229 0.6886
60 0.3162 0.6324 0.6838
61 0.2891 0.5782 0.7109
62 0.2625 0.525 0.7375
63 0.2368 0.4736 0.7632
64 0.2048 0.4095 0.7952
65 0.2342 0.4683 0.7658
66 0.3151 0.6302 0.6849
67 0.2967 0.5934 0.7033
68 0.3318 0.6636 0.6682
69 0.3144 0.6288 0.6856
70 0.2748 0.5497 0.7252
71 0.2379 0.4759 0.7621
72 0.2282 0.4564 0.7718
73 0.2474 0.4948 0.7526
74 0.2357 0.4714 0.7643
75 0.2041 0.4081 0.7959
76 0.1779 0.3557 0.8221
77 0.168 0.336 0.832
78 0.2226 0.4452 0.7774
79 0.2272 0.4544 0.7728
80 0.2227 0.4453 0.7773
81 0.6124 0.7751 0.3876
82 0.6133 0.7734 0.3867
83 0.6059 0.7882 0.3941
84 0.5793 0.8414 0.4207
85 0.6889 0.6223 0.3111
86 0.6694 0.6612 0.3306
87 0.6654 0.6692 0.3346
88 0.6284 0.7431 0.3716
89 0.6008 0.7985 0.3992
90 0.5964 0.8072 0.4036
91 0.5631 0.8739 0.4369
92 0.6064 0.7871 0.3936
93 0.6239 0.7521 0.3761
94 0.652 0.6959 0.348
95 0.6136 0.7727 0.3864
96 0.5741 0.8519 0.4259
97 0.5486 0.9029 0.4514
98 0.5484 0.9032 0.4516
99 0.5673 0.8654 0.4327
100 0.5264 0.9472 0.4736
101 0.5176 0.9649 0.4824
102 0.4762 0.9524 0.5238
103 0.4662 0.9323 0.5338
104 0.4237 0.8474 0.5763
105 0.3984 0.7968 0.6016
106 0.3563 0.7125 0.6437
107 0.3423 0.6847 0.6577
108 0.3011 0.6022 0.6989
109 0.2621 0.5243 0.7379
110 0.2263 0.4526 0.7737
111 0.2114 0.4228 0.7886
112 0.1795 0.359 0.8205
113 0.2301 0.4601 0.7699
114 0.273 0.546 0.727
115 0.2367 0.4734 0.7633
116 0.2073 0.4146 0.7927
117 0.1877 0.3755 0.8123
118 0.1632 0.3263 0.8368
119 0.1521 0.3042 0.8479
120 0.1256 0.2512 0.8744
121 0.1113 0.2226 0.8887
122 0.09081 0.1816 0.9092
123 0.07248 0.145 0.9275
124 0.06393 0.1279 0.9361
125 0.05056 0.1011 0.9494
126 0.04399 0.08798 0.956
127 0.0491 0.0982 0.9509
128 0.0375 0.075 0.9625
129 0.02857 0.05715 0.9714
130 0.1114 0.2229 0.8886
131 0.08998 0.18 0.91
132 0.08671 0.1734 0.9133
133 0.0925 0.185 0.9075
134 0.206 0.412 0.794
135 0.1687 0.3373 0.8313
136 0.2251 0.4502 0.7749
137 0.2015 0.403 0.7985
138 0.1646 0.3292 0.8354
139 0.3334 0.6668 0.6666
140 0.4752 0.9504 0.5248
141 0.4423 0.8845 0.5577
142 0.4497 0.8994 0.5503
143 0.386 0.7719 0.614
144 0.3351 0.6703 0.6649
145 0.3756 0.7512 0.6244
146 0.3705 0.7409 0.6295
147 0.4688 0.9376 0.5312
148 0.4034 0.8068 0.5966
149 0.3349 0.6699 0.6651
150 0.3642 0.7284 0.6358
151 0.2928 0.5855 0.7072
152 0.2396 0.4792 0.7604
153 0.1799 0.3599 0.8201
154 0.4681 0.9363 0.5319
155 0.3767 0.7534 0.6233
156 0.3479 0.6958 0.6521
157 0.5407 0.9186 0.4593
158 0.6091 0.7817 0.3909
159 0.4821 0.9643 0.5179
160 0.6223 0.7553 0.3777







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level3 0.01961NOK
5% type I error level160.104575NOK
10% type I error level360.235294NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 3 &  0.01961 & NOK \tabularnewline
5% type I error level & 16 & 0.104575 & NOK \tabularnewline
10% type I error level & 36 & 0.235294 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297893&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]3[/C][C] 0.01961[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]16[/C][C]0.104575[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]36[/C][C]0.235294[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297893&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297893&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level3 0.01961NOK
5% type I error level160.104575NOK
10% type I error level360.235294NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.4328, df1 = 2, df2 = 161, p-value = 0.2417
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.0515, df1 = 8, df2 = 155, p-value = 0.4001
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.46409, df1 = 2, df2 = 161, p-value = 0.6295

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.4328, df1 = 2, df2 = 161, p-value = 0.2417
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.0515, df1 = 8, df2 = 155, p-value = 0.4001
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.46409, df1 = 2, df2 = 161, p-value = 0.6295
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297893&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.4328, df1 = 2, df2 = 161, p-value = 0.2417
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.0515, df1 = 8, df2 = 155, p-value = 0.4001
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.46409, df1 = 2, df2 = 161, p-value = 0.6295
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297893&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297893&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.4328, df1 = 2, df2 = 161, p-value = 0.2417
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.0515, df1 = 8, df2 = 155, p-value = 0.4001
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.46409, df1 = 2, df2 = 161, p-value = 0.6295







Variance Inflation Factors (Multicollinearity)
> vif
     IK1      IK2      IK3      IK4 
1.270445 1.285436 1.350428 1.159910 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     IK1      IK2      IK3      IK4 
1.270445 1.285436 1.350428 1.159910 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297893&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     IK1      IK2      IK3      IK4 
1.270445 1.285436 1.350428 1.159910 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297893&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297893&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     IK1      IK2      IK3      IK4 
1.270445 1.285436 1.350428 1.159910 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')