Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationTue, 06 Dec 2016 17:47:13 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/06/t1481043367kzjg3etkrscng41.htm/, Retrieved Fri, 01 Nov 2024 03:28:25 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297876, Retrieved Fri, 01 Nov 2024 03:28:25 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords2e x gedifferentieerd
Estimated Impact96
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [Autocorrelation F...] [2016-12-06 16:47:13] [e6dc02234f5305f92311fb16bc25f73e] [Current]
Feedback Forum

Post a new message
Dataseries X:
13663
11635
9606
8784.5
9415.5
10418
11344.5
11271
11895
12152.5
12731
12951
10692
8563.5
6217
5562
6294.5
7422
9254.5
10607
11268
12041
12962.5
12200.5
10400.5
8765
7000
6677
7318
7999
8762
9696
10373
10682.5
10935.5
10815.5
8669
7079.5
5640
5238.5
5777.5
6479
7290
7343
7810.5
8171.5
8532
8719
7281.5
5923.5
4837
4675.5
4585.5
5083
5766
6201
6778
7393.5
7849.5
8282.5
7610
6192.5
4693.5
4869
5149
5648.5
6230.5
7032
7727
8087.5
8443
9002
7717.5
6374.5
4995.5
4655
5198
5501
6119.5
6922
7390
7466.5
7773
7865
6567
5132.5
3656.5
3623
4045.5
4617
5374
6022.5
6464.5
7058
7484.5
7955
6801
5499
4179.5
4305.5
3304
5773.5
6419.5
6938
7760
8224
8381
8667
7304.5
5565.5
4023
3932.5
4508.5
5491
6284
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297876&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297876&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297876&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.117782-1.18950.118495
20.0436070.44040.330287
30.1438081.45240.074732
4-0.094361-0.9530.171421
5-0.132928-1.34250.091206
60.0410940.4150.339497
70.0252890.25540.39946
80.0340140.34350.365956
90.029950.30250.38145
100.0089270.09020.464167
110.1013461.02350.154235
12-0.342004-3.45410.000403
130.1024951.03520.151523
14-0.049048-0.49540.310706
15-0.149059-1.50540.067653
16-0.022381-0.2260.410813
17-0.048738-0.49220.311809
18-0.134182-1.35520.089178
190.043470.4390.330787
20-0.018143-0.18320.427488
21-0.08488-0.85720.196659

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.117782 & -1.1895 & 0.118495 \tabularnewline
2 & 0.043607 & 0.4404 & 0.330287 \tabularnewline
3 & 0.143808 & 1.4524 & 0.074732 \tabularnewline
4 & -0.094361 & -0.953 & 0.171421 \tabularnewline
5 & -0.132928 & -1.3425 & 0.091206 \tabularnewline
6 & 0.041094 & 0.415 & 0.339497 \tabularnewline
7 & 0.025289 & 0.2554 & 0.39946 \tabularnewline
8 & 0.034014 & 0.3435 & 0.365956 \tabularnewline
9 & 0.02995 & 0.3025 & 0.38145 \tabularnewline
10 & 0.008927 & 0.0902 & 0.464167 \tabularnewline
11 & 0.101346 & 1.0235 & 0.154235 \tabularnewline
12 & -0.342004 & -3.4541 & 0.000403 \tabularnewline
13 & 0.102495 & 1.0352 & 0.151523 \tabularnewline
14 & -0.049048 & -0.4954 & 0.310706 \tabularnewline
15 & -0.149059 & -1.5054 & 0.067653 \tabularnewline
16 & -0.022381 & -0.226 & 0.410813 \tabularnewline
17 & -0.048738 & -0.4922 & 0.311809 \tabularnewline
18 & -0.134182 & -1.3552 & 0.089178 \tabularnewline
19 & 0.04347 & 0.439 & 0.330787 \tabularnewline
20 & -0.018143 & -0.1832 & 0.427488 \tabularnewline
21 & -0.08488 & -0.8572 & 0.196659 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297876&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.117782[/C][C]-1.1895[/C][C]0.118495[/C][/ROW]
[ROW][C]2[/C][C]0.043607[/C][C]0.4404[/C][C]0.330287[/C][/ROW]
[ROW][C]3[/C][C]0.143808[/C][C]1.4524[/C][C]0.074732[/C][/ROW]
[ROW][C]4[/C][C]-0.094361[/C][C]-0.953[/C][C]0.171421[/C][/ROW]
[ROW][C]5[/C][C]-0.132928[/C][C]-1.3425[/C][C]0.091206[/C][/ROW]
[ROW][C]6[/C][C]0.041094[/C][C]0.415[/C][C]0.339497[/C][/ROW]
[ROW][C]7[/C][C]0.025289[/C][C]0.2554[/C][C]0.39946[/C][/ROW]
[ROW][C]8[/C][C]0.034014[/C][C]0.3435[/C][C]0.365956[/C][/ROW]
[ROW][C]9[/C][C]0.02995[/C][C]0.3025[/C][C]0.38145[/C][/ROW]
[ROW][C]10[/C][C]0.008927[/C][C]0.0902[/C][C]0.464167[/C][/ROW]
[ROW][C]11[/C][C]0.101346[/C][C]1.0235[/C][C]0.154235[/C][/ROW]
[ROW][C]12[/C][C]-0.342004[/C][C]-3.4541[/C][C]0.000403[/C][/ROW]
[ROW][C]13[/C][C]0.102495[/C][C]1.0352[/C][C]0.151523[/C][/ROW]
[ROW][C]14[/C][C]-0.049048[/C][C]-0.4954[/C][C]0.310706[/C][/ROW]
[ROW][C]15[/C][C]-0.149059[/C][C]-1.5054[/C][C]0.067653[/C][/ROW]
[ROW][C]16[/C][C]-0.022381[/C][C]-0.226[/C][C]0.410813[/C][/ROW]
[ROW][C]17[/C][C]-0.048738[/C][C]-0.4922[/C][C]0.311809[/C][/ROW]
[ROW][C]18[/C][C]-0.134182[/C][C]-1.3552[/C][C]0.089178[/C][/ROW]
[ROW][C]19[/C][C]0.04347[/C][C]0.439[/C][C]0.330787[/C][/ROW]
[ROW][C]20[/C][C]-0.018143[/C][C]-0.1832[/C][C]0.427488[/C][/ROW]
[ROW][C]21[/C][C]-0.08488[/C][C]-0.8572[/C][C]0.196659[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297876&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297876&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.117782-1.18950.118495
20.0436070.44040.330287
30.1438081.45240.074732
4-0.094361-0.9530.171421
5-0.132928-1.34250.091206
60.0410940.4150.339497
70.0252890.25540.39946
80.0340140.34350.365956
90.029950.30250.38145
100.0089270.09020.464167
110.1013461.02350.154235
12-0.342004-3.45410.000403
130.1024951.03520.151523
14-0.049048-0.49540.310706
15-0.149059-1.50540.067653
16-0.022381-0.2260.410813
17-0.048738-0.49220.311809
18-0.134182-1.35520.089178
190.043470.4390.330787
20-0.018143-0.18320.427488
21-0.08488-0.85720.196659







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.117782-1.18950.118495
20.0301530.30450.380674
30.1546241.56160.060737
4-0.063573-0.64210.261138
5-0.17168-1.73390.04298
6-0.007219-0.07290.471012
70.0791230.79910.213045
80.0878250.8870.188586
90.0024890.02510.489996
10-0.036952-0.37320.354887
110.1030971.04120.150115
12-0.322421-3.25630.000766
130.0434360.43870.330909
14-0.014287-0.14430.442779
15-0.0629-0.63530.263341
16-0.112791-1.13910.128657
17-0.15898-1.60560.055725
18-0.105191-1.06240.145287
190.0467880.47250.318778
200.0048490.0490.480518
21-0.092996-0.93920.174919

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.117782 & -1.1895 & 0.118495 \tabularnewline
2 & 0.030153 & 0.3045 & 0.380674 \tabularnewline
3 & 0.154624 & 1.5616 & 0.060737 \tabularnewline
4 & -0.063573 & -0.6421 & 0.261138 \tabularnewline
5 & -0.17168 & -1.7339 & 0.04298 \tabularnewline
6 & -0.007219 & -0.0729 & 0.471012 \tabularnewline
7 & 0.079123 & 0.7991 & 0.213045 \tabularnewline
8 & 0.087825 & 0.887 & 0.188586 \tabularnewline
9 & 0.002489 & 0.0251 & 0.489996 \tabularnewline
10 & -0.036952 & -0.3732 & 0.354887 \tabularnewline
11 & 0.103097 & 1.0412 & 0.150115 \tabularnewline
12 & -0.322421 & -3.2563 & 0.000766 \tabularnewline
13 & 0.043436 & 0.4387 & 0.330909 \tabularnewline
14 & -0.014287 & -0.1443 & 0.442779 \tabularnewline
15 & -0.0629 & -0.6353 & 0.263341 \tabularnewline
16 & -0.112791 & -1.1391 & 0.128657 \tabularnewline
17 & -0.15898 & -1.6056 & 0.055725 \tabularnewline
18 & -0.105191 & -1.0624 & 0.145287 \tabularnewline
19 & 0.046788 & 0.4725 & 0.318778 \tabularnewline
20 & 0.004849 & 0.049 & 0.480518 \tabularnewline
21 & -0.092996 & -0.9392 & 0.174919 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297876&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.117782[/C][C]-1.1895[/C][C]0.118495[/C][/ROW]
[ROW][C]2[/C][C]0.030153[/C][C]0.3045[/C][C]0.380674[/C][/ROW]
[ROW][C]3[/C][C]0.154624[/C][C]1.5616[/C][C]0.060737[/C][/ROW]
[ROW][C]4[/C][C]-0.063573[/C][C]-0.6421[/C][C]0.261138[/C][/ROW]
[ROW][C]5[/C][C]-0.17168[/C][C]-1.7339[/C][C]0.04298[/C][/ROW]
[ROW][C]6[/C][C]-0.007219[/C][C]-0.0729[/C][C]0.471012[/C][/ROW]
[ROW][C]7[/C][C]0.079123[/C][C]0.7991[/C][C]0.213045[/C][/ROW]
[ROW][C]8[/C][C]0.087825[/C][C]0.887[/C][C]0.188586[/C][/ROW]
[ROW][C]9[/C][C]0.002489[/C][C]0.0251[/C][C]0.489996[/C][/ROW]
[ROW][C]10[/C][C]-0.036952[/C][C]-0.3732[/C][C]0.354887[/C][/ROW]
[ROW][C]11[/C][C]0.103097[/C][C]1.0412[/C][C]0.150115[/C][/ROW]
[ROW][C]12[/C][C]-0.322421[/C][C]-3.2563[/C][C]0.000766[/C][/ROW]
[ROW][C]13[/C][C]0.043436[/C][C]0.4387[/C][C]0.330909[/C][/ROW]
[ROW][C]14[/C][C]-0.014287[/C][C]-0.1443[/C][C]0.442779[/C][/ROW]
[ROW][C]15[/C][C]-0.0629[/C][C]-0.6353[/C][C]0.263341[/C][/ROW]
[ROW][C]16[/C][C]-0.112791[/C][C]-1.1391[/C][C]0.128657[/C][/ROW]
[ROW][C]17[/C][C]-0.15898[/C][C]-1.6056[/C][C]0.055725[/C][/ROW]
[ROW][C]18[/C][C]-0.105191[/C][C]-1.0624[/C][C]0.145287[/C][/ROW]
[ROW][C]19[/C][C]0.046788[/C][C]0.4725[/C][C]0.318778[/C][/ROW]
[ROW][C]20[/C][C]0.004849[/C][C]0.049[/C][C]0.480518[/C][/ROW]
[ROW][C]21[/C][C]-0.092996[/C][C]-0.9392[/C][C]0.174919[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297876&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297876&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.117782-1.18950.118495
20.0301530.30450.380674
30.1546241.56160.060737
4-0.063573-0.64210.261138
5-0.17168-1.73390.04298
6-0.007219-0.07290.471012
70.0791230.79910.213045
80.0878250.8870.188586
90.0024890.02510.489996
10-0.036952-0.37320.354887
110.1030971.04120.150115
12-0.322421-3.25630.000766
130.0434360.43870.330909
14-0.014287-0.14430.442779
15-0.0629-0.63530.263341
16-0.112791-1.13910.128657
17-0.15898-1.60560.055725
18-0.105191-1.06240.145287
190.0467880.47250.318778
200.0048490.0490.480518
21-0.092996-0.93920.174919



Parameters (Session):
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '0'
par3 <- '2'
par2 <- '1'
par1 <- 'Default'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')