Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 05 Dec 2016 14:00:21 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/05/t1480942853g0gu34u3s3zuooq.htm/, Retrieved Fri, 01 Nov 2024 03:36:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297710, Retrieved Fri, 01 Nov 2024 03:36:29 +0000
QR Codes:

Original text written by user:Met goede kollom namen
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact191
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple regression ] [2016-12-05 13:00:21] [9a9519454d094169f95f881e5b6f16f7] [Current]
Feedback Forum

Post a new message
Dataseries X:
2	3	4	3	3
4	1	5	4	3
4	5	4	5	3
4	4	4	4	3
3	3	4	4	4
4	2	5	5	3
1	4	5	5	5
4	5	5	5	3
3	5	5	5	4
4	3	5	5	3
2	2	5	5	3
4	2	4	4	3
4	4	4	4	4
5	4	4	4	3
4	4	4	4	4
1	5	5	5	3
2	2	4	4	4
4	2	3	4	4
5	4	5	5	4
5	4	5	4	3
4	4	4	4	3
1	5	5	4	3
4	3	4	4	3
2	4	5	5	4
4	3	5	5	3
5	3	4	4	4
3	3	4	4	3
5	5	4	5	3
3	4	4	5	3
5	4	3	3	3
2	3	4	5	3
1	3	5	4	4
5	5	5	5	2
4	3	4	4	3
4	3	5	5	3
3	3	4	4	3
5	5	3	4	4
4	3	2	4	4
3	3	5	5	4
4	3	4	4	3
2	4	5	5	3
3	3	4	3	3
1	1	4	5	3
3	4	4	4	3
3	4	3	5	3
3	3	5	5	3
4	4	4	4	3
4	4	3	3	3
4	4	5	5	3
4	4	5	5	3
2	3	4	4	4
5	2	2	3	3
3	4	3	4	3
3	3	2	4	3
4	3	4	4	3
4	3	5	4	3
4	4	4	4	4
3	4	4	4	3
4	3	5	5	3
4	4	5	4	3
4	5	4	4	3
4	2	5	4	3
4	3	4	4	3
2	3	4	4	2
4	3	5	5	3
4	4	3	4	3
4	3	2	4	4
4	4	5	4	3
4	3	4	4	3
5	1	4	4	3
3	4	3	3	3
2	3	4	4	3
4	2	4	4	4
5	3	4	4	3
4	3	5	5	3
5	4	3	4	3
5	5	2	4	5
2	3	5	5	3
4	4	5	5	3
4	2	1	3	3
4	2	5	5	3
3	2	5	4	4
4	3	5	5	4
2	4	5	5	5
5	3	4	5	4
3	5	5	5	4
4	4	4	4	3
2	4	5	4	4
4	3	5	2	3
3	4	4	4	3
3	3	4	5	3
4	5	5	5	3
4	4	4	5	3
4	4	4	4	3
3	3	4	4	4
4	4	4	4	5
3	1	5	5	4
3	4	5	4	3
4	4	5	5	4
3	4	4	4	3
3	4	2	4	3
5	3	4	4	3
5	5	5	5	4
4	3	4	4	4
5	5	5	5	3
4	4	4	4	3
4	4	4	4	4
4	4	4	4	4
4	4	3	3	3
3	3	4	4	3
4	4	3	3	3
3	3	5	5	5
4	3	4	4	4
2	3	5	4	3
1	3	5	5	4
5	2	5	4	3
4	4	3	4	3
3	3	4	4	3
4	2	3	4	3
4	4	4	4	4
4	4	4	4	3
4	3	5	5	4
2	4	4	4	3
4	5	5	4	3
4	4	5	5	3
4	4	4	4	3
4	4	4	4	3
3	4	2	3	3
4	4	4	4	4
5	5	4	4	5
2	2	4	4	3
5	4	2	3	3
4	4	4	4	4
3	5	4	5	5
4	4	3	3	3
2	4	4	4	3
2	5	5	5	4
2	2	4	5	3
4	4	4	4	3
4	5	3	4	3
5	3	4	4	4
3	4	3	3	3
3	4	4	5	3
4	3	2	4	4
4	5	5	5	4
4	5	4	4	3
4	3	4	4	4
4	2	3	3	3
4	4	4	4	4
4	5	5	4	3
2	3	4	4	3
5	3	2	3	3
4	4	4	4	3
4	3	5	5	3
4	2	3	3	3
4	3	4	4	3
4	3	5	5	4
2	4	4	4	3
3	1	5	5	3
3	4	3	4	4
4	3	4	4	3
4	3	4	4	4
4	2	4	4	3
4	3	4	4	4
3	3	3	3	3
3	5	3	4	5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297710&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297710&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297710&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TV4[t] = + 2.66225 -0.0223589IV1[t] + 0.0648903IV3[t] -0.0746503TV1[t] + 0.20264TV3[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TV4[t] =  +  2.66225 -0.0223589IV1[t] +  0.0648903IV3[t] -0.0746503TV1[t] +  0.20264TV3[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297710&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TV4[t] =  +  2.66225 -0.0223589IV1[t] +  0.0648903IV3[t] -0.0746503TV1[t] +  0.20264TV3[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297710&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297710&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TV4[t] = + 2.66225 -0.0223589IV1[t] + 0.0648903IV3[t] -0.0746503TV1[t] + 0.20264TV3[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+2.662 0.3986+6.6790e+00 3.707e-10 1.854e-10
IV1-0.02236 0.04748-4.7090e-01 0.6384 0.3192
IV3+0.06489 0.0478+1.3580e+00 0.1765 0.08824
TV1-0.07465 0.06659-1.1210e+00 0.264 0.132
TV3+0.2026 0.09141+2.2170e+00 0.02803 0.01402

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +2.662 &  0.3986 & +6.6790e+00 &  3.707e-10 &  1.854e-10 \tabularnewline
IV1 & -0.02236 &  0.04748 & -4.7090e-01 &  0.6384 &  0.3192 \tabularnewline
IV3 & +0.06489 &  0.0478 & +1.3580e+00 &  0.1765 &  0.08824 \tabularnewline
TV1 & -0.07465 &  0.06659 & -1.1210e+00 &  0.264 &  0.132 \tabularnewline
TV3 & +0.2026 &  0.09141 & +2.2170e+00 &  0.02803 &  0.01402 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297710&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+2.662[/C][C] 0.3986[/C][C]+6.6790e+00[/C][C] 3.707e-10[/C][C] 1.854e-10[/C][/ROW]
[ROW][C]IV1[/C][C]-0.02236[/C][C] 0.04748[/C][C]-4.7090e-01[/C][C] 0.6384[/C][C] 0.3192[/C][/ROW]
[ROW][C]IV3[/C][C]+0.06489[/C][C] 0.0478[/C][C]+1.3580e+00[/C][C] 0.1765[/C][C] 0.08824[/C][/ROW]
[ROW][C]TV1[/C][C]-0.07465[/C][C] 0.06659[/C][C]-1.1210e+00[/C][C] 0.264[/C][C] 0.132[/C][/ROW]
[ROW][C]TV3[/C][C]+0.2026[/C][C] 0.09141[/C][C]+2.2170e+00[/C][C] 0.02803[/C][C] 0.01402[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297710&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297710&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+2.662 0.3986+6.6790e+00 3.707e-10 1.854e-10
IV1-0.02236 0.04748-4.7090e-01 0.6384 0.3192
IV3+0.06489 0.0478+1.3580e+00 0.1765 0.08824
TV1-0.07465 0.06659-1.1210e+00 0.264 0.132
TV3+0.2026 0.09141+2.2170e+00 0.02803 0.01402







Multiple Linear Regression - Regression Statistics
Multiple R 0.2156
R-squared 0.04647
Adjusted R-squared 0.02278
F-TEST (value) 1.962
F-TEST (DF numerator)4
F-TEST (DF denominator)161
p-value 0.1029
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.5862
Sum Squared Residuals 55.33

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2156 \tabularnewline
R-squared &  0.04647 \tabularnewline
Adjusted R-squared &  0.02278 \tabularnewline
F-TEST (value) &  1.962 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 161 \tabularnewline
p-value &  0.1029 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  0.5862 \tabularnewline
Sum Squared Residuals &  55.33 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297710&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2156[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.04647[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.02278[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.962[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]161[/C][/ROW]
[ROW][C]p-value[/C][C] 0.1029[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 0.5862[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 55.33[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297710&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297710&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2156
R-squared 0.04647
Adjusted R-squared 0.02278
F-TEST (value) 1.962
F-TEST (DF numerator)4
F-TEST (DF denominator)161
p-value 0.1029
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.5862
Sum Squared Residuals 55.33







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 3 3.122-0.1215
2 3 3.075-0.07501
3 3 3.612-0.6119
4 3 3.344-0.3443
5 4 3.302 0.6982
6 3 3.343-0.3425
7 5 3.539 1.461
8 3 3.537-0.5372
9 4 3.56 0.4404
10 3 3.407-0.4074
11 3 3.387-0.3873
12 3 3.215-0.2146
13 4 3.344 0.6557
14 3 3.322-0.322
15 4 3.344 0.6557
16 3 3.604-0.6043
17 4 3.259 0.7407
18 4 3.289 0.7108
19 4 3.45 0.55
20 3 3.247-0.2473
21 3 3.344-0.3443
22 3 3.402-0.4016
23 3 3.279-0.2794
24 4 3.517 0.483
25 3 3.407-0.4074
26 4 3.257 0.7429
27 3 3.302-0.3018
28 3 3.59-0.5895
29 3 3.569-0.5693
30 3 3.194-0.194
31 3 3.527-0.5268
32 4 3.272 0.7281
33 2 3.515-1.515
34 3 3.279-0.2794
35 3 3.407-0.4074
36 3 3.302-0.3018
37 4 3.462 0.5385
38 4 3.429 0.5713
39 4 3.43 0.5702
40 3 3.279-0.2794
41 3 3.517-0.517
42 3 3.099-0.09916
43 3 3.419-0.4194
44 3 3.367-0.3667
45 3 3.644-0.644
46 3 3.43-0.4298
47 3 3.344-0.3443
48 3 3.216-0.2163
49 3 3.472-0.4723
50 3 3.472-0.4723
51 4 3.324 0.6758
52 3 3.139-0.1389
53 3 3.441-0.4413
54 3 3.451-0.4511
55 3 3.279-0.2794
56 3 3.205-0.2048
57 4 3.344 0.6557
58 3 3.367-0.3667
59 3 3.407-0.4074
60 3 3.27-0.2697
61 3 3.409-0.4092
62 3 3.14-0.1399
63 3 3.279-0.2794
64 2 3.324-1.324
65 3 3.407-0.4074
66 3 3.419-0.419
67 4 3.429 0.5713
68 3 3.27-0.2697
69 3 3.279-0.2794
70 3 3.127-0.1273
71 3 3.239-0.2387
72 3 3.324-0.3242
73 4 3.215 0.7854
74 3 3.257-0.2571
75 3 3.407-0.4074
76 3 3.397-0.3966
77 5 3.536 1.464
78 3 3.452-0.4521
79 3 3.472-0.4723
80 3 3.236-0.2359
81 3 3.343-0.3425
82 4 3.162 0.8377
83 4 3.407 0.5926
84 5 3.517 1.483
85 4 3.46 0.5403
86 4 3.56 0.4404
87 3 3.344-0.3443
88 4 3.314 0.6856
89 3 2.8 0.2005
90 3 3.367-0.3667
91 3 3.504-0.5044
92 3 3.537-0.5372
93 3 3.547-0.547
94 3 3.344-0.3443
95 4 3.302 0.6982
96 5 3.344 1.656
97 4 3.3 0.7
98 3 3.292-0.292
99 4 3.472 0.5277
100 3 3.367-0.3667
101 3 3.516-0.516
102 3 3.257-0.2571
103 4 3.515 0.4851
104 4 3.279 0.7206
105 3 3.515-0.5149
106 3 3.344-0.3443
107 4 3.344 0.6557
108 4 3.344 0.6557
109 3 3.216-0.2163
110 3 3.302-0.3018
111 3 3.216-0.2163
112 5 3.43 1.57
113 4 3.279 0.7206
114 3 3.25-0.2495
115 4 3.475 0.5255
116 3 3.118-0.1175
117 3 3.419-0.419
118 3 3.302-0.3018
119 3 3.289-0.2892
120 4 3.344 0.6557
121 3 3.344-0.3443
122 4 3.407 0.5926
123 3 3.389-0.3891
124 3 3.335-0.3346
125 3 3.472-0.4723
126 3 3.344-0.3443
127 3 3.344-0.3443
128 3 3.313-0.3134
129 4 3.344 0.6557
130 5 3.387 1.613
131 3 3.259-0.2593
132 3 3.269-0.2686
133 4 3.344 0.6557
134 5 3.634 1.366
135 3 3.216-0.2163
136 3 3.389-0.3891
137 4 3.582 0.4181
138 3 3.462-0.4619
139 3 3.344-0.3443
140 3 3.484-0.4839
141 4 3.257 0.7429
142 3 3.239-0.2387
143 3 3.569-0.5693
144 4 3.429 0.5713
145 4 3.537 0.4628
146 3 3.409-0.4092
147 4 3.279 0.7206
148 3 3.087-0.08656
149 4 3.344 0.6557
150 3 3.335-0.3346
151 3 3.324-0.3242
152 3 3.204-0.2037
153 3 3.344-0.3443
154 3 3.407-0.4074
155 3 3.087-0.08656
156 3 3.279-0.2794
157 4 3.407 0.5926
158 3 3.389-0.3891
159 3 3.3-0.3
160 4 3.441 0.5587
161 3 3.279-0.2794
162 4 3.279 0.7206
163 3 3.215-0.2146
164 4 3.279 0.7206
165 3 3.174-0.1738
166 5 3.506 1.494

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  3 &  3.122 & -0.1215 \tabularnewline
2 &  3 &  3.075 & -0.07501 \tabularnewline
3 &  3 &  3.612 & -0.6119 \tabularnewline
4 &  3 &  3.344 & -0.3443 \tabularnewline
5 &  4 &  3.302 &  0.6982 \tabularnewline
6 &  3 &  3.343 & -0.3425 \tabularnewline
7 &  5 &  3.539 &  1.461 \tabularnewline
8 &  3 &  3.537 & -0.5372 \tabularnewline
9 &  4 &  3.56 &  0.4404 \tabularnewline
10 &  3 &  3.407 & -0.4074 \tabularnewline
11 &  3 &  3.387 & -0.3873 \tabularnewline
12 &  3 &  3.215 & -0.2146 \tabularnewline
13 &  4 &  3.344 &  0.6557 \tabularnewline
14 &  3 &  3.322 & -0.322 \tabularnewline
15 &  4 &  3.344 &  0.6557 \tabularnewline
16 &  3 &  3.604 & -0.6043 \tabularnewline
17 &  4 &  3.259 &  0.7407 \tabularnewline
18 &  4 &  3.289 &  0.7108 \tabularnewline
19 &  4 &  3.45 &  0.55 \tabularnewline
20 &  3 &  3.247 & -0.2473 \tabularnewline
21 &  3 &  3.344 & -0.3443 \tabularnewline
22 &  3 &  3.402 & -0.4016 \tabularnewline
23 &  3 &  3.279 & -0.2794 \tabularnewline
24 &  4 &  3.517 &  0.483 \tabularnewline
25 &  3 &  3.407 & -0.4074 \tabularnewline
26 &  4 &  3.257 &  0.7429 \tabularnewline
27 &  3 &  3.302 & -0.3018 \tabularnewline
28 &  3 &  3.59 & -0.5895 \tabularnewline
29 &  3 &  3.569 & -0.5693 \tabularnewline
30 &  3 &  3.194 & -0.194 \tabularnewline
31 &  3 &  3.527 & -0.5268 \tabularnewline
32 &  4 &  3.272 &  0.7281 \tabularnewline
33 &  2 &  3.515 & -1.515 \tabularnewline
34 &  3 &  3.279 & -0.2794 \tabularnewline
35 &  3 &  3.407 & -0.4074 \tabularnewline
36 &  3 &  3.302 & -0.3018 \tabularnewline
37 &  4 &  3.462 &  0.5385 \tabularnewline
38 &  4 &  3.429 &  0.5713 \tabularnewline
39 &  4 &  3.43 &  0.5702 \tabularnewline
40 &  3 &  3.279 & -0.2794 \tabularnewline
41 &  3 &  3.517 & -0.517 \tabularnewline
42 &  3 &  3.099 & -0.09916 \tabularnewline
43 &  3 &  3.419 & -0.4194 \tabularnewline
44 &  3 &  3.367 & -0.3667 \tabularnewline
45 &  3 &  3.644 & -0.644 \tabularnewline
46 &  3 &  3.43 & -0.4298 \tabularnewline
47 &  3 &  3.344 & -0.3443 \tabularnewline
48 &  3 &  3.216 & -0.2163 \tabularnewline
49 &  3 &  3.472 & -0.4723 \tabularnewline
50 &  3 &  3.472 & -0.4723 \tabularnewline
51 &  4 &  3.324 &  0.6758 \tabularnewline
52 &  3 &  3.139 & -0.1389 \tabularnewline
53 &  3 &  3.441 & -0.4413 \tabularnewline
54 &  3 &  3.451 & -0.4511 \tabularnewline
55 &  3 &  3.279 & -0.2794 \tabularnewline
56 &  3 &  3.205 & -0.2048 \tabularnewline
57 &  4 &  3.344 &  0.6557 \tabularnewline
58 &  3 &  3.367 & -0.3667 \tabularnewline
59 &  3 &  3.407 & -0.4074 \tabularnewline
60 &  3 &  3.27 & -0.2697 \tabularnewline
61 &  3 &  3.409 & -0.4092 \tabularnewline
62 &  3 &  3.14 & -0.1399 \tabularnewline
63 &  3 &  3.279 & -0.2794 \tabularnewline
64 &  2 &  3.324 & -1.324 \tabularnewline
65 &  3 &  3.407 & -0.4074 \tabularnewline
66 &  3 &  3.419 & -0.419 \tabularnewline
67 &  4 &  3.429 &  0.5713 \tabularnewline
68 &  3 &  3.27 & -0.2697 \tabularnewline
69 &  3 &  3.279 & -0.2794 \tabularnewline
70 &  3 &  3.127 & -0.1273 \tabularnewline
71 &  3 &  3.239 & -0.2387 \tabularnewline
72 &  3 &  3.324 & -0.3242 \tabularnewline
73 &  4 &  3.215 &  0.7854 \tabularnewline
74 &  3 &  3.257 & -0.2571 \tabularnewline
75 &  3 &  3.407 & -0.4074 \tabularnewline
76 &  3 &  3.397 & -0.3966 \tabularnewline
77 &  5 &  3.536 &  1.464 \tabularnewline
78 &  3 &  3.452 & -0.4521 \tabularnewline
79 &  3 &  3.472 & -0.4723 \tabularnewline
80 &  3 &  3.236 & -0.2359 \tabularnewline
81 &  3 &  3.343 & -0.3425 \tabularnewline
82 &  4 &  3.162 &  0.8377 \tabularnewline
83 &  4 &  3.407 &  0.5926 \tabularnewline
84 &  5 &  3.517 &  1.483 \tabularnewline
85 &  4 &  3.46 &  0.5403 \tabularnewline
86 &  4 &  3.56 &  0.4404 \tabularnewline
87 &  3 &  3.344 & -0.3443 \tabularnewline
88 &  4 &  3.314 &  0.6856 \tabularnewline
89 &  3 &  2.8 &  0.2005 \tabularnewline
90 &  3 &  3.367 & -0.3667 \tabularnewline
91 &  3 &  3.504 & -0.5044 \tabularnewline
92 &  3 &  3.537 & -0.5372 \tabularnewline
93 &  3 &  3.547 & -0.547 \tabularnewline
94 &  3 &  3.344 & -0.3443 \tabularnewline
95 &  4 &  3.302 &  0.6982 \tabularnewline
96 &  5 &  3.344 &  1.656 \tabularnewline
97 &  4 &  3.3 &  0.7 \tabularnewline
98 &  3 &  3.292 & -0.292 \tabularnewline
99 &  4 &  3.472 &  0.5277 \tabularnewline
100 &  3 &  3.367 & -0.3667 \tabularnewline
101 &  3 &  3.516 & -0.516 \tabularnewline
102 &  3 &  3.257 & -0.2571 \tabularnewline
103 &  4 &  3.515 &  0.4851 \tabularnewline
104 &  4 &  3.279 &  0.7206 \tabularnewline
105 &  3 &  3.515 & -0.5149 \tabularnewline
106 &  3 &  3.344 & -0.3443 \tabularnewline
107 &  4 &  3.344 &  0.6557 \tabularnewline
108 &  4 &  3.344 &  0.6557 \tabularnewline
109 &  3 &  3.216 & -0.2163 \tabularnewline
110 &  3 &  3.302 & -0.3018 \tabularnewline
111 &  3 &  3.216 & -0.2163 \tabularnewline
112 &  5 &  3.43 &  1.57 \tabularnewline
113 &  4 &  3.279 &  0.7206 \tabularnewline
114 &  3 &  3.25 & -0.2495 \tabularnewline
115 &  4 &  3.475 &  0.5255 \tabularnewline
116 &  3 &  3.118 & -0.1175 \tabularnewline
117 &  3 &  3.419 & -0.419 \tabularnewline
118 &  3 &  3.302 & -0.3018 \tabularnewline
119 &  3 &  3.289 & -0.2892 \tabularnewline
120 &  4 &  3.344 &  0.6557 \tabularnewline
121 &  3 &  3.344 & -0.3443 \tabularnewline
122 &  4 &  3.407 &  0.5926 \tabularnewline
123 &  3 &  3.389 & -0.3891 \tabularnewline
124 &  3 &  3.335 & -0.3346 \tabularnewline
125 &  3 &  3.472 & -0.4723 \tabularnewline
126 &  3 &  3.344 & -0.3443 \tabularnewline
127 &  3 &  3.344 & -0.3443 \tabularnewline
128 &  3 &  3.313 & -0.3134 \tabularnewline
129 &  4 &  3.344 &  0.6557 \tabularnewline
130 &  5 &  3.387 &  1.613 \tabularnewline
131 &  3 &  3.259 & -0.2593 \tabularnewline
132 &  3 &  3.269 & -0.2686 \tabularnewline
133 &  4 &  3.344 &  0.6557 \tabularnewline
134 &  5 &  3.634 &  1.366 \tabularnewline
135 &  3 &  3.216 & -0.2163 \tabularnewline
136 &  3 &  3.389 & -0.3891 \tabularnewline
137 &  4 &  3.582 &  0.4181 \tabularnewline
138 &  3 &  3.462 & -0.4619 \tabularnewline
139 &  3 &  3.344 & -0.3443 \tabularnewline
140 &  3 &  3.484 & -0.4839 \tabularnewline
141 &  4 &  3.257 &  0.7429 \tabularnewline
142 &  3 &  3.239 & -0.2387 \tabularnewline
143 &  3 &  3.569 & -0.5693 \tabularnewline
144 &  4 &  3.429 &  0.5713 \tabularnewline
145 &  4 &  3.537 &  0.4628 \tabularnewline
146 &  3 &  3.409 & -0.4092 \tabularnewline
147 &  4 &  3.279 &  0.7206 \tabularnewline
148 &  3 &  3.087 & -0.08656 \tabularnewline
149 &  4 &  3.344 &  0.6557 \tabularnewline
150 &  3 &  3.335 & -0.3346 \tabularnewline
151 &  3 &  3.324 & -0.3242 \tabularnewline
152 &  3 &  3.204 & -0.2037 \tabularnewline
153 &  3 &  3.344 & -0.3443 \tabularnewline
154 &  3 &  3.407 & -0.4074 \tabularnewline
155 &  3 &  3.087 & -0.08656 \tabularnewline
156 &  3 &  3.279 & -0.2794 \tabularnewline
157 &  4 &  3.407 &  0.5926 \tabularnewline
158 &  3 &  3.389 & -0.3891 \tabularnewline
159 &  3 &  3.3 & -0.3 \tabularnewline
160 &  4 &  3.441 &  0.5587 \tabularnewline
161 &  3 &  3.279 & -0.2794 \tabularnewline
162 &  4 &  3.279 &  0.7206 \tabularnewline
163 &  3 &  3.215 & -0.2146 \tabularnewline
164 &  4 &  3.279 &  0.7206 \tabularnewline
165 &  3 &  3.174 & -0.1738 \tabularnewline
166 &  5 &  3.506 &  1.494 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297710&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 3[/C][C] 3.122[/C][C]-0.1215[/C][/ROW]
[ROW][C]2[/C][C] 3[/C][C] 3.075[/C][C]-0.07501[/C][/ROW]
[ROW][C]3[/C][C] 3[/C][C] 3.612[/C][C]-0.6119[/C][/ROW]
[ROW][C]4[/C][C] 3[/C][C] 3.344[/C][C]-0.3443[/C][/ROW]
[ROW][C]5[/C][C] 4[/C][C] 3.302[/C][C] 0.6982[/C][/ROW]
[ROW][C]6[/C][C] 3[/C][C] 3.343[/C][C]-0.3425[/C][/ROW]
[ROW][C]7[/C][C] 5[/C][C] 3.539[/C][C] 1.461[/C][/ROW]
[ROW][C]8[/C][C] 3[/C][C] 3.537[/C][C]-0.5372[/C][/ROW]
[ROW][C]9[/C][C] 4[/C][C] 3.56[/C][C] 0.4404[/C][/ROW]
[ROW][C]10[/C][C] 3[/C][C] 3.407[/C][C]-0.4074[/C][/ROW]
[ROW][C]11[/C][C] 3[/C][C] 3.387[/C][C]-0.3873[/C][/ROW]
[ROW][C]12[/C][C] 3[/C][C] 3.215[/C][C]-0.2146[/C][/ROW]
[ROW][C]13[/C][C] 4[/C][C] 3.344[/C][C] 0.6557[/C][/ROW]
[ROW][C]14[/C][C] 3[/C][C] 3.322[/C][C]-0.322[/C][/ROW]
[ROW][C]15[/C][C] 4[/C][C] 3.344[/C][C] 0.6557[/C][/ROW]
[ROW][C]16[/C][C] 3[/C][C] 3.604[/C][C]-0.6043[/C][/ROW]
[ROW][C]17[/C][C] 4[/C][C] 3.259[/C][C] 0.7407[/C][/ROW]
[ROW][C]18[/C][C] 4[/C][C] 3.289[/C][C] 0.7108[/C][/ROW]
[ROW][C]19[/C][C] 4[/C][C] 3.45[/C][C] 0.55[/C][/ROW]
[ROW][C]20[/C][C] 3[/C][C] 3.247[/C][C]-0.2473[/C][/ROW]
[ROW][C]21[/C][C] 3[/C][C] 3.344[/C][C]-0.3443[/C][/ROW]
[ROW][C]22[/C][C] 3[/C][C] 3.402[/C][C]-0.4016[/C][/ROW]
[ROW][C]23[/C][C] 3[/C][C] 3.279[/C][C]-0.2794[/C][/ROW]
[ROW][C]24[/C][C] 4[/C][C] 3.517[/C][C] 0.483[/C][/ROW]
[ROW][C]25[/C][C] 3[/C][C] 3.407[/C][C]-0.4074[/C][/ROW]
[ROW][C]26[/C][C] 4[/C][C] 3.257[/C][C] 0.7429[/C][/ROW]
[ROW][C]27[/C][C] 3[/C][C] 3.302[/C][C]-0.3018[/C][/ROW]
[ROW][C]28[/C][C] 3[/C][C] 3.59[/C][C]-0.5895[/C][/ROW]
[ROW][C]29[/C][C] 3[/C][C] 3.569[/C][C]-0.5693[/C][/ROW]
[ROW][C]30[/C][C] 3[/C][C] 3.194[/C][C]-0.194[/C][/ROW]
[ROW][C]31[/C][C] 3[/C][C] 3.527[/C][C]-0.5268[/C][/ROW]
[ROW][C]32[/C][C] 4[/C][C] 3.272[/C][C] 0.7281[/C][/ROW]
[ROW][C]33[/C][C] 2[/C][C] 3.515[/C][C]-1.515[/C][/ROW]
[ROW][C]34[/C][C] 3[/C][C] 3.279[/C][C]-0.2794[/C][/ROW]
[ROW][C]35[/C][C] 3[/C][C] 3.407[/C][C]-0.4074[/C][/ROW]
[ROW][C]36[/C][C] 3[/C][C] 3.302[/C][C]-0.3018[/C][/ROW]
[ROW][C]37[/C][C] 4[/C][C] 3.462[/C][C] 0.5385[/C][/ROW]
[ROW][C]38[/C][C] 4[/C][C] 3.429[/C][C] 0.5713[/C][/ROW]
[ROW][C]39[/C][C] 4[/C][C] 3.43[/C][C] 0.5702[/C][/ROW]
[ROW][C]40[/C][C] 3[/C][C] 3.279[/C][C]-0.2794[/C][/ROW]
[ROW][C]41[/C][C] 3[/C][C] 3.517[/C][C]-0.517[/C][/ROW]
[ROW][C]42[/C][C] 3[/C][C] 3.099[/C][C]-0.09916[/C][/ROW]
[ROW][C]43[/C][C] 3[/C][C] 3.419[/C][C]-0.4194[/C][/ROW]
[ROW][C]44[/C][C] 3[/C][C] 3.367[/C][C]-0.3667[/C][/ROW]
[ROW][C]45[/C][C] 3[/C][C] 3.644[/C][C]-0.644[/C][/ROW]
[ROW][C]46[/C][C] 3[/C][C] 3.43[/C][C]-0.4298[/C][/ROW]
[ROW][C]47[/C][C] 3[/C][C] 3.344[/C][C]-0.3443[/C][/ROW]
[ROW][C]48[/C][C] 3[/C][C] 3.216[/C][C]-0.2163[/C][/ROW]
[ROW][C]49[/C][C] 3[/C][C] 3.472[/C][C]-0.4723[/C][/ROW]
[ROW][C]50[/C][C] 3[/C][C] 3.472[/C][C]-0.4723[/C][/ROW]
[ROW][C]51[/C][C] 4[/C][C] 3.324[/C][C] 0.6758[/C][/ROW]
[ROW][C]52[/C][C] 3[/C][C] 3.139[/C][C]-0.1389[/C][/ROW]
[ROW][C]53[/C][C] 3[/C][C] 3.441[/C][C]-0.4413[/C][/ROW]
[ROW][C]54[/C][C] 3[/C][C] 3.451[/C][C]-0.4511[/C][/ROW]
[ROW][C]55[/C][C] 3[/C][C] 3.279[/C][C]-0.2794[/C][/ROW]
[ROW][C]56[/C][C] 3[/C][C] 3.205[/C][C]-0.2048[/C][/ROW]
[ROW][C]57[/C][C] 4[/C][C] 3.344[/C][C] 0.6557[/C][/ROW]
[ROW][C]58[/C][C] 3[/C][C] 3.367[/C][C]-0.3667[/C][/ROW]
[ROW][C]59[/C][C] 3[/C][C] 3.407[/C][C]-0.4074[/C][/ROW]
[ROW][C]60[/C][C] 3[/C][C] 3.27[/C][C]-0.2697[/C][/ROW]
[ROW][C]61[/C][C] 3[/C][C] 3.409[/C][C]-0.4092[/C][/ROW]
[ROW][C]62[/C][C] 3[/C][C] 3.14[/C][C]-0.1399[/C][/ROW]
[ROW][C]63[/C][C] 3[/C][C] 3.279[/C][C]-0.2794[/C][/ROW]
[ROW][C]64[/C][C] 2[/C][C] 3.324[/C][C]-1.324[/C][/ROW]
[ROW][C]65[/C][C] 3[/C][C] 3.407[/C][C]-0.4074[/C][/ROW]
[ROW][C]66[/C][C] 3[/C][C] 3.419[/C][C]-0.419[/C][/ROW]
[ROW][C]67[/C][C] 4[/C][C] 3.429[/C][C] 0.5713[/C][/ROW]
[ROW][C]68[/C][C] 3[/C][C] 3.27[/C][C]-0.2697[/C][/ROW]
[ROW][C]69[/C][C] 3[/C][C] 3.279[/C][C]-0.2794[/C][/ROW]
[ROW][C]70[/C][C] 3[/C][C] 3.127[/C][C]-0.1273[/C][/ROW]
[ROW][C]71[/C][C] 3[/C][C] 3.239[/C][C]-0.2387[/C][/ROW]
[ROW][C]72[/C][C] 3[/C][C] 3.324[/C][C]-0.3242[/C][/ROW]
[ROW][C]73[/C][C] 4[/C][C] 3.215[/C][C] 0.7854[/C][/ROW]
[ROW][C]74[/C][C] 3[/C][C] 3.257[/C][C]-0.2571[/C][/ROW]
[ROW][C]75[/C][C] 3[/C][C] 3.407[/C][C]-0.4074[/C][/ROW]
[ROW][C]76[/C][C] 3[/C][C] 3.397[/C][C]-0.3966[/C][/ROW]
[ROW][C]77[/C][C] 5[/C][C] 3.536[/C][C] 1.464[/C][/ROW]
[ROW][C]78[/C][C] 3[/C][C] 3.452[/C][C]-0.4521[/C][/ROW]
[ROW][C]79[/C][C] 3[/C][C] 3.472[/C][C]-0.4723[/C][/ROW]
[ROW][C]80[/C][C] 3[/C][C] 3.236[/C][C]-0.2359[/C][/ROW]
[ROW][C]81[/C][C] 3[/C][C] 3.343[/C][C]-0.3425[/C][/ROW]
[ROW][C]82[/C][C] 4[/C][C] 3.162[/C][C] 0.8377[/C][/ROW]
[ROW][C]83[/C][C] 4[/C][C] 3.407[/C][C] 0.5926[/C][/ROW]
[ROW][C]84[/C][C] 5[/C][C] 3.517[/C][C] 1.483[/C][/ROW]
[ROW][C]85[/C][C] 4[/C][C] 3.46[/C][C] 0.5403[/C][/ROW]
[ROW][C]86[/C][C] 4[/C][C] 3.56[/C][C] 0.4404[/C][/ROW]
[ROW][C]87[/C][C] 3[/C][C] 3.344[/C][C]-0.3443[/C][/ROW]
[ROW][C]88[/C][C] 4[/C][C] 3.314[/C][C] 0.6856[/C][/ROW]
[ROW][C]89[/C][C] 3[/C][C] 2.8[/C][C] 0.2005[/C][/ROW]
[ROW][C]90[/C][C] 3[/C][C] 3.367[/C][C]-0.3667[/C][/ROW]
[ROW][C]91[/C][C] 3[/C][C] 3.504[/C][C]-0.5044[/C][/ROW]
[ROW][C]92[/C][C] 3[/C][C] 3.537[/C][C]-0.5372[/C][/ROW]
[ROW][C]93[/C][C] 3[/C][C] 3.547[/C][C]-0.547[/C][/ROW]
[ROW][C]94[/C][C] 3[/C][C] 3.344[/C][C]-0.3443[/C][/ROW]
[ROW][C]95[/C][C] 4[/C][C] 3.302[/C][C] 0.6982[/C][/ROW]
[ROW][C]96[/C][C] 5[/C][C] 3.344[/C][C] 1.656[/C][/ROW]
[ROW][C]97[/C][C] 4[/C][C] 3.3[/C][C] 0.7[/C][/ROW]
[ROW][C]98[/C][C] 3[/C][C] 3.292[/C][C]-0.292[/C][/ROW]
[ROW][C]99[/C][C] 4[/C][C] 3.472[/C][C] 0.5277[/C][/ROW]
[ROW][C]100[/C][C] 3[/C][C] 3.367[/C][C]-0.3667[/C][/ROW]
[ROW][C]101[/C][C] 3[/C][C] 3.516[/C][C]-0.516[/C][/ROW]
[ROW][C]102[/C][C] 3[/C][C] 3.257[/C][C]-0.2571[/C][/ROW]
[ROW][C]103[/C][C] 4[/C][C] 3.515[/C][C] 0.4851[/C][/ROW]
[ROW][C]104[/C][C] 4[/C][C] 3.279[/C][C] 0.7206[/C][/ROW]
[ROW][C]105[/C][C] 3[/C][C] 3.515[/C][C]-0.5149[/C][/ROW]
[ROW][C]106[/C][C] 3[/C][C] 3.344[/C][C]-0.3443[/C][/ROW]
[ROW][C]107[/C][C] 4[/C][C] 3.344[/C][C] 0.6557[/C][/ROW]
[ROW][C]108[/C][C] 4[/C][C] 3.344[/C][C] 0.6557[/C][/ROW]
[ROW][C]109[/C][C] 3[/C][C] 3.216[/C][C]-0.2163[/C][/ROW]
[ROW][C]110[/C][C] 3[/C][C] 3.302[/C][C]-0.3018[/C][/ROW]
[ROW][C]111[/C][C] 3[/C][C] 3.216[/C][C]-0.2163[/C][/ROW]
[ROW][C]112[/C][C] 5[/C][C] 3.43[/C][C] 1.57[/C][/ROW]
[ROW][C]113[/C][C] 4[/C][C] 3.279[/C][C] 0.7206[/C][/ROW]
[ROW][C]114[/C][C] 3[/C][C] 3.25[/C][C]-0.2495[/C][/ROW]
[ROW][C]115[/C][C] 4[/C][C] 3.475[/C][C] 0.5255[/C][/ROW]
[ROW][C]116[/C][C] 3[/C][C] 3.118[/C][C]-0.1175[/C][/ROW]
[ROW][C]117[/C][C] 3[/C][C] 3.419[/C][C]-0.419[/C][/ROW]
[ROW][C]118[/C][C] 3[/C][C] 3.302[/C][C]-0.3018[/C][/ROW]
[ROW][C]119[/C][C] 3[/C][C] 3.289[/C][C]-0.2892[/C][/ROW]
[ROW][C]120[/C][C] 4[/C][C] 3.344[/C][C] 0.6557[/C][/ROW]
[ROW][C]121[/C][C] 3[/C][C] 3.344[/C][C]-0.3443[/C][/ROW]
[ROW][C]122[/C][C] 4[/C][C] 3.407[/C][C] 0.5926[/C][/ROW]
[ROW][C]123[/C][C] 3[/C][C] 3.389[/C][C]-0.3891[/C][/ROW]
[ROW][C]124[/C][C] 3[/C][C] 3.335[/C][C]-0.3346[/C][/ROW]
[ROW][C]125[/C][C] 3[/C][C] 3.472[/C][C]-0.4723[/C][/ROW]
[ROW][C]126[/C][C] 3[/C][C] 3.344[/C][C]-0.3443[/C][/ROW]
[ROW][C]127[/C][C] 3[/C][C] 3.344[/C][C]-0.3443[/C][/ROW]
[ROW][C]128[/C][C] 3[/C][C] 3.313[/C][C]-0.3134[/C][/ROW]
[ROW][C]129[/C][C] 4[/C][C] 3.344[/C][C] 0.6557[/C][/ROW]
[ROW][C]130[/C][C] 5[/C][C] 3.387[/C][C] 1.613[/C][/ROW]
[ROW][C]131[/C][C] 3[/C][C] 3.259[/C][C]-0.2593[/C][/ROW]
[ROW][C]132[/C][C] 3[/C][C] 3.269[/C][C]-0.2686[/C][/ROW]
[ROW][C]133[/C][C] 4[/C][C] 3.344[/C][C] 0.6557[/C][/ROW]
[ROW][C]134[/C][C] 5[/C][C] 3.634[/C][C] 1.366[/C][/ROW]
[ROW][C]135[/C][C] 3[/C][C] 3.216[/C][C]-0.2163[/C][/ROW]
[ROW][C]136[/C][C] 3[/C][C] 3.389[/C][C]-0.3891[/C][/ROW]
[ROW][C]137[/C][C] 4[/C][C] 3.582[/C][C] 0.4181[/C][/ROW]
[ROW][C]138[/C][C] 3[/C][C] 3.462[/C][C]-0.4619[/C][/ROW]
[ROW][C]139[/C][C] 3[/C][C] 3.344[/C][C]-0.3443[/C][/ROW]
[ROW][C]140[/C][C] 3[/C][C] 3.484[/C][C]-0.4839[/C][/ROW]
[ROW][C]141[/C][C] 4[/C][C] 3.257[/C][C] 0.7429[/C][/ROW]
[ROW][C]142[/C][C] 3[/C][C] 3.239[/C][C]-0.2387[/C][/ROW]
[ROW][C]143[/C][C] 3[/C][C] 3.569[/C][C]-0.5693[/C][/ROW]
[ROW][C]144[/C][C] 4[/C][C] 3.429[/C][C] 0.5713[/C][/ROW]
[ROW][C]145[/C][C] 4[/C][C] 3.537[/C][C] 0.4628[/C][/ROW]
[ROW][C]146[/C][C] 3[/C][C] 3.409[/C][C]-0.4092[/C][/ROW]
[ROW][C]147[/C][C] 4[/C][C] 3.279[/C][C] 0.7206[/C][/ROW]
[ROW][C]148[/C][C] 3[/C][C] 3.087[/C][C]-0.08656[/C][/ROW]
[ROW][C]149[/C][C] 4[/C][C] 3.344[/C][C] 0.6557[/C][/ROW]
[ROW][C]150[/C][C] 3[/C][C] 3.335[/C][C]-0.3346[/C][/ROW]
[ROW][C]151[/C][C] 3[/C][C] 3.324[/C][C]-0.3242[/C][/ROW]
[ROW][C]152[/C][C] 3[/C][C] 3.204[/C][C]-0.2037[/C][/ROW]
[ROW][C]153[/C][C] 3[/C][C] 3.344[/C][C]-0.3443[/C][/ROW]
[ROW][C]154[/C][C] 3[/C][C] 3.407[/C][C]-0.4074[/C][/ROW]
[ROW][C]155[/C][C] 3[/C][C] 3.087[/C][C]-0.08656[/C][/ROW]
[ROW][C]156[/C][C] 3[/C][C] 3.279[/C][C]-0.2794[/C][/ROW]
[ROW][C]157[/C][C] 4[/C][C] 3.407[/C][C] 0.5926[/C][/ROW]
[ROW][C]158[/C][C] 3[/C][C] 3.389[/C][C]-0.3891[/C][/ROW]
[ROW][C]159[/C][C] 3[/C][C] 3.3[/C][C]-0.3[/C][/ROW]
[ROW][C]160[/C][C] 4[/C][C] 3.441[/C][C] 0.5587[/C][/ROW]
[ROW][C]161[/C][C] 3[/C][C] 3.279[/C][C]-0.2794[/C][/ROW]
[ROW][C]162[/C][C] 4[/C][C] 3.279[/C][C] 0.7206[/C][/ROW]
[ROW][C]163[/C][C] 3[/C][C] 3.215[/C][C]-0.2146[/C][/ROW]
[ROW][C]164[/C][C] 4[/C][C] 3.279[/C][C] 0.7206[/C][/ROW]
[ROW][C]165[/C][C] 3[/C][C] 3.174[/C][C]-0.1738[/C][/ROW]
[ROW][C]166[/C][C] 5[/C][C] 3.506[/C][C] 1.494[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297710&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297710&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 3 3.122-0.1215
2 3 3.075-0.07501
3 3 3.612-0.6119
4 3 3.344-0.3443
5 4 3.302 0.6982
6 3 3.343-0.3425
7 5 3.539 1.461
8 3 3.537-0.5372
9 4 3.56 0.4404
10 3 3.407-0.4074
11 3 3.387-0.3873
12 3 3.215-0.2146
13 4 3.344 0.6557
14 3 3.322-0.322
15 4 3.344 0.6557
16 3 3.604-0.6043
17 4 3.259 0.7407
18 4 3.289 0.7108
19 4 3.45 0.55
20 3 3.247-0.2473
21 3 3.344-0.3443
22 3 3.402-0.4016
23 3 3.279-0.2794
24 4 3.517 0.483
25 3 3.407-0.4074
26 4 3.257 0.7429
27 3 3.302-0.3018
28 3 3.59-0.5895
29 3 3.569-0.5693
30 3 3.194-0.194
31 3 3.527-0.5268
32 4 3.272 0.7281
33 2 3.515-1.515
34 3 3.279-0.2794
35 3 3.407-0.4074
36 3 3.302-0.3018
37 4 3.462 0.5385
38 4 3.429 0.5713
39 4 3.43 0.5702
40 3 3.279-0.2794
41 3 3.517-0.517
42 3 3.099-0.09916
43 3 3.419-0.4194
44 3 3.367-0.3667
45 3 3.644-0.644
46 3 3.43-0.4298
47 3 3.344-0.3443
48 3 3.216-0.2163
49 3 3.472-0.4723
50 3 3.472-0.4723
51 4 3.324 0.6758
52 3 3.139-0.1389
53 3 3.441-0.4413
54 3 3.451-0.4511
55 3 3.279-0.2794
56 3 3.205-0.2048
57 4 3.344 0.6557
58 3 3.367-0.3667
59 3 3.407-0.4074
60 3 3.27-0.2697
61 3 3.409-0.4092
62 3 3.14-0.1399
63 3 3.279-0.2794
64 2 3.324-1.324
65 3 3.407-0.4074
66 3 3.419-0.419
67 4 3.429 0.5713
68 3 3.27-0.2697
69 3 3.279-0.2794
70 3 3.127-0.1273
71 3 3.239-0.2387
72 3 3.324-0.3242
73 4 3.215 0.7854
74 3 3.257-0.2571
75 3 3.407-0.4074
76 3 3.397-0.3966
77 5 3.536 1.464
78 3 3.452-0.4521
79 3 3.472-0.4723
80 3 3.236-0.2359
81 3 3.343-0.3425
82 4 3.162 0.8377
83 4 3.407 0.5926
84 5 3.517 1.483
85 4 3.46 0.5403
86 4 3.56 0.4404
87 3 3.344-0.3443
88 4 3.314 0.6856
89 3 2.8 0.2005
90 3 3.367-0.3667
91 3 3.504-0.5044
92 3 3.537-0.5372
93 3 3.547-0.547
94 3 3.344-0.3443
95 4 3.302 0.6982
96 5 3.344 1.656
97 4 3.3 0.7
98 3 3.292-0.292
99 4 3.472 0.5277
100 3 3.367-0.3667
101 3 3.516-0.516
102 3 3.257-0.2571
103 4 3.515 0.4851
104 4 3.279 0.7206
105 3 3.515-0.5149
106 3 3.344-0.3443
107 4 3.344 0.6557
108 4 3.344 0.6557
109 3 3.216-0.2163
110 3 3.302-0.3018
111 3 3.216-0.2163
112 5 3.43 1.57
113 4 3.279 0.7206
114 3 3.25-0.2495
115 4 3.475 0.5255
116 3 3.118-0.1175
117 3 3.419-0.419
118 3 3.302-0.3018
119 3 3.289-0.2892
120 4 3.344 0.6557
121 3 3.344-0.3443
122 4 3.407 0.5926
123 3 3.389-0.3891
124 3 3.335-0.3346
125 3 3.472-0.4723
126 3 3.344-0.3443
127 3 3.344-0.3443
128 3 3.313-0.3134
129 4 3.344 0.6557
130 5 3.387 1.613
131 3 3.259-0.2593
132 3 3.269-0.2686
133 4 3.344 0.6557
134 5 3.634 1.366
135 3 3.216-0.2163
136 3 3.389-0.3891
137 4 3.582 0.4181
138 3 3.462-0.4619
139 3 3.344-0.3443
140 3 3.484-0.4839
141 4 3.257 0.7429
142 3 3.239-0.2387
143 3 3.569-0.5693
144 4 3.429 0.5713
145 4 3.537 0.4628
146 3 3.409-0.4092
147 4 3.279 0.7206
148 3 3.087-0.08656
149 4 3.344 0.6557
150 3 3.335-0.3346
151 3 3.324-0.3242
152 3 3.204-0.2037
153 3 3.344-0.3443
154 3 3.407-0.4074
155 3 3.087-0.08656
156 3 3.279-0.2794
157 4 3.407 0.5926
158 3 3.389-0.3891
159 3 3.3-0.3
160 4 3.441 0.5587
161 3 3.279-0.2794
162 4 3.279 0.7206
163 3 3.215-0.2146
164 4 3.279 0.7206
165 3 3.174-0.1738
166 5 3.506 1.494







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.472 0.944 0.528
9 0.3769 0.7538 0.6231
10 0.268 0.536 0.732
11 0.5855 0.8289 0.4145
12 0.4866 0.9733 0.5134
13 0.6052 0.7895 0.3948
14 0.5089 0.9823 0.4911
15 0.5441 0.9119 0.4559
16 0.7366 0.5269 0.2634
17 0.6931 0.6137 0.3069
18 0.6397 0.7205 0.3603
19 0.731 0.5381 0.269
20 0.6652 0.6696 0.3348
21 0.6296 0.7408 0.3704
22 0.5983 0.8035 0.4017
23 0.5535 0.8931 0.4465
24 0.5161 0.9678 0.4839
25 0.4686 0.9372 0.5314
26 0.5102 0.9796 0.4898
27 0.4891 0.9782 0.5109
28 0.4824 0.9647 0.5176
29 0.4972 0.9944 0.5028
30 0.444 0.888 0.556
31 0.4536 0.9073 0.5464
32 0.445 0.8901 0.555
33 0.6327 0.7346 0.3673
34 0.5906 0.8188 0.4094
35 0.5462 0.9076 0.4538
36 0.5162 0.9676 0.4838
37 0.5325 0.9351 0.4675
38 0.4941 0.9882 0.5059
39 0.5092 0.9817 0.4908
40 0.4697 0.9393 0.5303
41 0.4511 0.9022 0.5489
42 0.4102 0.8204 0.5898
43 0.4295 0.8591 0.5705
44 0.4018 0.8037 0.5982
45 0.4111 0.8222 0.5889
46 0.377 0.7539 0.623
47 0.3423 0.6847 0.6577
48 0.3103 0.6207 0.6897
49 0.2821 0.5642 0.7179
50 0.2561 0.5122 0.7439
51 0.2613 0.5226 0.7387
52 0.2325 0.4649 0.7675
53 0.219 0.4379 0.781
54 0.2072 0.4143 0.7928
55 0.1796 0.3591 0.8204
56 0.1518 0.3036 0.8482
57 0.1709 0.3419 0.8291
58 0.1525 0.305 0.8475
59 0.1346 0.2691 0.8654
60 0.1138 0.2277 0.8862
61 0.1002 0.2003 0.8998
62 0.08162 0.1632 0.9184
63 0.068 0.136 0.932
64 0.1771 0.3543 0.8229
65 0.1597 0.3195 0.8403
66 0.1439 0.2878 0.8561
67 0.148 0.2961 0.852
68 0.1271 0.2542 0.8729
69 0.1088 0.2175 0.8912
70 0.0894 0.1788 0.9106
71 0.07563 0.1513 0.9244
72 0.06521 0.1304 0.9348
73 0.08104 0.1621 0.919
74 0.06777 0.1356 0.9322
75 0.06057 0.1211 0.9394
76 0.05329 0.1066 0.9467
77 0.1775 0.3549 0.8225
78 0.1668 0.3337 0.8332
79 0.161 0.3219 0.839
80 0.148 0.296 0.852
81 0.1363 0.2726 0.8637
82 0.1671 0.3342 0.8329
83 0.1757 0.3513 0.8243
84 0.3888 0.7776 0.6112
85 0.3839 0.7679 0.6161
86 0.369 0.738 0.631
87 0.3431 0.6862 0.6569
88 0.3615 0.723 0.6385
89 0.3291 0.6581 0.6709
90 0.3037 0.6074 0.6963
91 0.3031 0.6062 0.6969
92 0.3153 0.6305 0.6847
93 0.3398 0.6796 0.6602
94 0.3173 0.6345 0.6827
95 0.3377 0.6754 0.6623
96 0.6506 0.6987 0.3494
97 0.6599 0.6801 0.3401
98 0.6246 0.7509 0.3754
99 0.6087 0.7827 0.3913
100 0.5817 0.8366 0.4183
101 0.5896 0.8208 0.4104
102 0.5595 0.881 0.4405
103 0.5394 0.9212 0.4606
104 0.5594 0.8813 0.4406
105 0.6237 0.7526 0.3763
106 0.6049 0.7901 0.3951
107 0.6062 0.7876 0.3938
108 0.6076 0.7849 0.3924
109 0.5639 0.8722 0.4361
110 0.5262 0.9476 0.4738
111 0.4808 0.9617 0.5192
112 0.7331 0.5337 0.2669
113 0.7537 0.4927 0.2463
114 0.7173 0.5655 0.2827
115 0.7352 0.5295 0.2648
116 0.6931 0.6138 0.3069
117 0.7036 0.5929 0.2964
118 0.6639 0.6723 0.3361
119 0.6368 0.7264 0.3632
120 0.6376 0.7247 0.3624
121 0.6166 0.7669 0.3834
122 0.5974 0.8051 0.4026
123 0.5547 0.8906 0.4453
124 0.5238 0.9523 0.4762
125 0.562 0.8759 0.438
126 0.548 0.904 0.452
127 0.5371 0.9258 0.4629
128 0.4932 0.9864 0.5068
129 0.4809 0.9617 0.5191
130 0.7029 0.5942 0.2971
131 0.6537 0.6926 0.3463
132 0.6477 0.7045 0.3523
133 0.6429 0.7142 0.3571
134 0.7725 0.455 0.2275
135 0.7313 0.5374 0.2687
136 0.687 0.626 0.313
137 0.673 0.6539 0.327
138 0.6425 0.7151 0.3575
139 0.612 0.7759 0.388
140 0.6935 0.6131 0.3065
141 0.6946 0.6107 0.3054
142 0.6391 0.7219 0.3609
143 0.7762 0.4476 0.2238
144 0.7528 0.4945 0.2472
145 0.6927 0.6145 0.3073
146 0.7351 0.5298 0.2649
147 0.7692 0.4616 0.2308
148 0.715 0.5699 0.285
149 0.7 0.6 0.3
150 0.6209 0.7581 0.3791
151 0.5429 0.9141 0.4571
152 0.6847 0.6307 0.3153
153 0.6962 0.6076 0.3038
154 0.7748 0.4503 0.2252
155 0.68 0.6399 0.32
156 0.6996 0.6008 0.3004
157 0.5594 0.8811 0.4406
158 0.5562 0.8877 0.4438

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.472 &  0.944 &  0.528 \tabularnewline
9 &  0.3769 &  0.7538 &  0.6231 \tabularnewline
10 &  0.268 &  0.536 &  0.732 \tabularnewline
11 &  0.5855 &  0.8289 &  0.4145 \tabularnewline
12 &  0.4866 &  0.9733 &  0.5134 \tabularnewline
13 &  0.6052 &  0.7895 &  0.3948 \tabularnewline
14 &  0.5089 &  0.9823 &  0.4911 \tabularnewline
15 &  0.5441 &  0.9119 &  0.4559 \tabularnewline
16 &  0.7366 &  0.5269 &  0.2634 \tabularnewline
17 &  0.6931 &  0.6137 &  0.3069 \tabularnewline
18 &  0.6397 &  0.7205 &  0.3603 \tabularnewline
19 &  0.731 &  0.5381 &  0.269 \tabularnewline
20 &  0.6652 &  0.6696 &  0.3348 \tabularnewline
21 &  0.6296 &  0.7408 &  0.3704 \tabularnewline
22 &  0.5983 &  0.8035 &  0.4017 \tabularnewline
23 &  0.5535 &  0.8931 &  0.4465 \tabularnewline
24 &  0.5161 &  0.9678 &  0.4839 \tabularnewline
25 &  0.4686 &  0.9372 &  0.5314 \tabularnewline
26 &  0.5102 &  0.9796 &  0.4898 \tabularnewline
27 &  0.4891 &  0.9782 &  0.5109 \tabularnewline
28 &  0.4824 &  0.9647 &  0.5176 \tabularnewline
29 &  0.4972 &  0.9944 &  0.5028 \tabularnewline
30 &  0.444 &  0.888 &  0.556 \tabularnewline
31 &  0.4536 &  0.9073 &  0.5464 \tabularnewline
32 &  0.445 &  0.8901 &  0.555 \tabularnewline
33 &  0.6327 &  0.7346 &  0.3673 \tabularnewline
34 &  0.5906 &  0.8188 &  0.4094 \tabularnewline
35 &  0.5462 &  0.9076 &  0.4538 \tabularnewline
36 &  0.5162 &  0.9676 &  0.4838 \tabularnewline
37 &  0.5325 &  0.9351 &  0.4675 \tabularnewline
38 &  0.4941 &  0.9882 &  0.5059 \tabularnewline
39 &  0.5092 &  0.9817 &  0.4908 \tabularnewline
40 &  0.4697 &  0.9393 &  0.5303 \tabularnewline
41 &  0.4511 &  0.9022 &  0.5489 \tabularnewline
42 &  0.4102 &  0.8204 &  0.5898 \tabularnewline
43 &  0.4295 &  0.8591 &  0.5705 \tabularnewline
44 &  0.4018 &  0.8037 &  0.5982 \tabularnewline
45 &  0.4111 &  0.8222 &  0.5889 \tabularnewline
46 &  0.377 &  0.7539 &  0.623 \tabularnewline
47 &  0.3423 &  0.6847 &  0.6577 \tabularnewline
48 &  0.3103 &  0.6207 &  0.6897 \tabularnewline
49 &  0.2821 &  0.5642 &  0.7179 \tabularnewline
50 &  0.2561 &  0.5122 &  0.7439 \tabularnewline
51 &  0.2613 &  0.5226 &  0.7387 \tabularnewline
52 &  0.2325 &  0.4649 &  0.7675 \tabularnewline
53 &  0.219 &  0.4379 &  0.781 \tabularnewline
54 &  0.2072 &  0.4143 &  0.7928 \tabularnewline
55 &  0.1796 &  0.3591 &  0.8204 \tabularnewline
56 &  0.1518 &  0.3036 &  0.8482 \tabularnewline
57 &  0.1709 &  0.3419 &  0.8291 \tabularnewline
58 &  0.1525 &  0.305 &  0.8475 \tabularnewline
59 &  0.1346 &  0.2691 &  0.8654 \tabularnewline
60 &  0.1138 &  0.2277 &  0.8862 \tabularnewline
61 &  0.1002 &  0.2003 &  0.8998 \tabularnewline
62 &  0.08162 &  0.1632 &  0.9184 \tabularnewline
63 &  0.068 &  0.136 &  0.932 \tabularnewline
64 &  0.1771 &  0.3543 &  0.8229 \tabularnewline
65 &  0.1597 &  0.3195 &  0.8403 \tabularnewline
66 &  0.1439 &  0.2878 &  0.8561 \tabularnewline
67 &  0.148 &  0.2961 &  0.852 \tabularnewline
68 &  0.1271 &  0.2542 &  0.8729 \tabularnewline
69 &  0.1088 &  0.2175 &  0.8912 \tabularnewline
70 &  0.0894 &  0.1788 &  0.9106 \tabularnewline
71 &  0.07563 &  0.1513 &  0.9244 \tabularnewline
72 &  0.06521 &  0.1304 &  0.9348 \tabularnewline
73 &  0.08104 &  0.1621 &  0.919 \tabularnewline
74 &  0.06777 &  0.1356 &  0.9322 \tabularnewline
75 &  0.06057 &  0.1211 &  0.9394 \tabularnewline
76 &  0.05329 &  0.1066 &  0.9467 \tabularnewline
77 &  0.1775 &  0.3549 &  0.8225 \tabularnewline
78 &  0.1668 &  0.3337 &  0.8332 \tabularnewline
79 &  0.161 &  0.3219 &  0.839 \tabularnewline
80 &  0.148 &  0.296 &  0.852 \tabularnewline
81 &  0.1363 &  0.2726 &  0.8637 \tabularnewline
82 &  0.1671 &  0.3342 &  0.8329 \tabularnewline
83 &  0.1757 &  0.3513 &  0.8243 \tabularnewline
84 &  0.3888 &  0.7776 &  0.6112 \tabularnewline
85 &  0.3839 &  0.7679 &  0.6161 \tabularnewline
86 &  0.369 &  0.738 &  0.631 \tabularnewline
87 &  0.3431 &  0.6862 &  0.6569 \tabularnewline
88 &  0.3615 &  0.723 &  0.6385 \tabularnewline
89 &  0.3291 &  0.6581 &  0.6709 \tabularnewline
90 &  0.3037 &  0.6074 &  0.6963 \tabularnewline
91 &  0.3031 &  0.6062 &  0.6969 \tabularnewline
92 &  0.3153 &  0.6305 &  0.6847 \tabularnewline
93 &  0.3398 &  0.6796 &  0.6602 \tabularnewline
94 &  0.3173 &  0.6345 &  0.6827 \tabularnewline
95 &  0.3377 &  0.6754 &  0.6623 \tabularnewline
96 &  0.6506 &  0.6987 &  0.3494 \tabularnewline
97 &  0.6599 &  0.6801 &  0.3401 \tabularnewline
98 &  0.6246 &  0.7509 &  0.3754 \tabularnewline
99 &  0.6087 &  0.7827 &  0.3913 \tabularnewline
100 &  0.5817 &  0.8366 &  0.4183 \tabularnewline
101 &  0.5896 &  0.8208 &  0.4104 \tabularnewline
102 &  0.5595 &  0.881 &  0.4405 \tabularnewline
103 &  0.5394 &  0.9212 &  0.4606 \tabularnewline
104 &  0.5594 &  0.8813 &  0.4406 \tabularnewline
105 &  0.6237 &  0.7526 &  0.3763 \tabularnewline
106 &  0.6049 &  0.7901 &  0.3951 \tabularnewline
107 &  0.6062 &  0.7876 &  0.3938 \tabularnewline
108 &  0.6076 &  0.7849 &  0.3924 \tabularnewline
109 &  0.5639 &  0.8722 &  0.4361 \tabularnewline
110 &  0.5262 &  0.9476 &  0.4738 \tabularnewline
111 &  0.4808 &  0.9617 &  0.5192 \tabularnewline
112 &  0.7331 &  0.5337 &  0.2669 \tabularnewline
113 &  0.7537 &  0.4927 &  0.2463 \tabularnewline
114 &  0.7173 &  0.5655 &  0.2827 \tabularnewline
115 &  0.7352 &  0.5295 &  0.2648 \tabularnewline
116 &  0.6931 &  0.6138 &  0.3069 \tabularnewline
117 &  0.7036 &  0.5929 &  0.2964 \tabularnewline
118 &  0.6639 &  0.6723 &  0.3361 \tabularnewline
119 &  0.6368 &  0.7264 &  0.3632 \tabularnewline
120 &  0.6376 &  0.7247 &  0.3624 \tabularnewline
121 &  0.6166 &  0.7669 &  0.3834 \tabularnewline
122 &  0.5974 &  0.8051 &  0.4026 \tabularnewline
123 &  0.5547 &  0.8906 &  0.4453 \tabularnewline
124 &  0.5238 &  0.9523 &  0.4762 \tabularnewline
125 &  0.562 &  0.8759 &  0.438 \tabularnewline
126 &  0.548 &  0.904 &  0.452 \tabularnewline
127 &  0.5371 &  0.9258 &  0.4629 \tabularnewline
128 &  0.4932 &  0.9864 &  0.5068 \tabularnewline
129 &  0.4809 &  0.9617 &  0.5191 \tabularnewline
130 &  0.7029 &  0.5942 &  0.2971 \tabularnewline
131 &  0.6537 &  0.6926 &  0.3463 \tabularnewline
132 &  0.6477 &  0.7045 &  0.3523 \tabularnewline
133 &  0.6429 &  0.7142 &  0.3571 \tabularnewline
134 &  0.7725 &  0.455 &  0.2275 \tabularnewline
135 &  0.7313 &  0.5374 &  0.2687 \tabularnewline
136 &  0.687 &  0.626 &  0.313 \tabularnewline
137 &  0.673 &  0.6539 &  0.327 \tabularnewline
138 &  0.6425 &  0.7151 &  0.3575 \tabularnewline
139 &  0.612 &  0.7759 &  0.388 \tabularnewline
140 &  0.6935 &  0.6131 &  0.3065 \tabularnewline
141 &  0.6946 &  0.6107 &  0.3054 \tabularnewline
142 &  0.6391 &  0.7219 &  0.3609 \tabularnewline
143 &  0.7762 &  0.4476 &  0.2238 \tabularnewline
144 &  0.7528 &  0.4945 &  0.2472 \tabularnewline
145 &  0.6927 &  0.6145 &  0.3073 \tabularnewline
146 &  0.7351 &  0.5298 &  0.2649 \tabularnewline
147 &  0.7692 &  0.4616 &  0.2308 \tabularnewline
148 &  0.715 &  0.5699 &  0.285 \tabularnewline
149 &  0.7 &  0.6 &  0.3 \tabularnewline
150 &  0.6209 &  0.7581 &  0.3791 \tabularnewline
151 &  0.5429 &  0.9141 &  0.4571 \tabularnewline
152 &  0.6847 &  0.6307 &  0.3153 \tabularnewline
153 &  0.6962 &  0.6076 &  0.3038 \tabularnewline
154 &  0.7748 &  0.4503 &  0.2252 \tabularnewline
155 &  0.68 &  0.6399 &  0.32 \tabularnewline
156 &  0.6996 &  0.6008 &  0.3004 \tabularnewline
157 &  0.5594 &  0.8811 &  0.4406 \tabularnewline
158 &  0.5562 &  0.8877 &  0.4438 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297710&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.472[/C][C] 0.944[/C][C] 0.528[/C][/ROW]
[ROW][C]9[/C][C] 0.3769[/C][C] 0.7538[/C][C] 0.6231[/C][/ROW]
[ROW][C]10[/C][C] 0.268[/C][C] 0.536[/C][C] 0.732[/C][/ROW]
[ROW][C]11[/C][C] 0.5855[/C][C] 0.8289[/C][C] 0.4145[/C][/ROW]
[ROW][C]12[/C][C] 0.4866[/C][C] 0.9733[/C][C] 0.5134[/C][/ROW]
[ROW][C]13[/C][C] 0.6052[/C][C] 0.7895[/C][C] 0.3948[/C][/ROW]
[ROW][C]14[/C][C] 0.5089[/C][C] 0.9823[/C][C] 0.4911[/C][/ROW]
[ROW][C]15[/C][C] 0.5441[/C][C] 0.9119[/C][C] 0.4559[/C][/ROW]
[ROW][C]16[/C][C] 0.7366[/C][C] 0.5269[/C][C] 0.2634[/C][/ROW]
[ROW][C]17[/C][C] 0.6931[/C][C] 0.6137[/C][C] 0.3069[/C][/ROW]
[ROW][C]18[/C][C] 0.6397[/C][C] 0.7205[/C][C] 0.3603[/C][/ROW]
[ROW][C]19[/C][C] 0.731[/C][C] 0.5381[/C][C] 0.269[/C][/ROW]
[ROW][C]20[/C][C] 0.6652[/C][C] 0.6696[/C][C] 0.3348[/C][/ROW]
[ROW][C]21[/C][C] 0.6296[/C][C] 0.7408[/C][C] 0.3704[/C][/ROW]
[ROW][C]22[/C][C] 0.5983[/C][C] 0.8035[/C][C] 0.4017[/C][/ROW]
[ROW][C]23[/C][C] 0.5535[/C][C] 0.8931[/C][C] 0.4465[/C][/ROW]
[ROW][C]24[/C][C] 0.5161[/C][C] 0.9678[/C][C] 0.4839[/C][/ROW]
[ROW][C]25[/C][C] 0.4686[/C][C] 0.9372[/C][C] 0.5314[/C][/ROW]
[ROW][C]26[/C][C] 0.5102[/C][C] 0.9796[/C][C] 0.4898[/C][/ROW]
[ROW][C]27[/C][C] 0.4891[/C][C] 0.9782[/C][C] 0.5109[/C][/ROW]
[ROW][C]28[/C][C] 0.4824[/C][C] 0.9647[/C][C] 0.5176[/C][/ROW]
[ROW][C]29[/C][C] 0.4972[/C][C] 0.9944[/C][C] 0.5028[/C][/ROW]
[ROW][C]30[/C][C] 0.444[/C][C] 0.888[/C][C] 0.556[/C][/ROW]
[ROW][C]31[/C][C] 0.4536[/C][C] 0.9073[/C][C] 0.5464[/C][/ROW]
[ROW][C]32[/C][C] 0.445[/C][C] 0.8901[/C][C] 0.555[/C][/ROW]
[ROW][C]33[/C][C] 0.6327[/C][C] 0.7346[/C][C] 0.3673[/C][/ROW]
[ROW][C]34[/C][C] 0.5906[/C][C] 0.8188[/C][C] 0.4094[/C][/ROW]
[ROW][C]35[/C][C] 0.5462[/C][C] 0.9076[/C][C] 0.4538[/C][/ROW]
[ROW][C]36[/C][C] 0.5162[/C][C] 0.9676[/C][C] 0.4838[/C][/ROW]
[ROW][C]37[/C][C] 0.5325[/C][C] 0.9351[/C][C] 0.4675[/C][/ROW]
[ROW][C]38[/C][C] 0.4941[/C][C] 0.9882[/C][C] 0.5059[/C][/ROW]
[ROW][C]39[/C][C] 0.5092[/C][C] 0.9817[/C][C] 0.4908[/C][/ROW]
[ROW][C]40[/C][C] 0.4697[/C][C] 0.9393[/C][C] 0.5303[/C][/ROW]
[ROW][C]41[/C][C] 0.4511[/C][C] 0.9022[/C][C] 0.5489[/C][/ROW]
[ROW][C]42[/C][C] 0.4102[/C][C] 0.8204[/C][C] 0.5898[/C][/ROW]
[ROW][C]43[/C][C] 0.4295[/C][C] 0.8591[/C][C] 0.5705[/C][/ROW]
[ROW][C]44[/C][C] 0.4018[/C][C] 0.8037[/C][C] 0.5982[/C][/ROW]
[ROW][C]45[/C][C] 0.4111[/C][C] 0.8222[/C][C] 0.5889[/C][/ROW]
[ROW][C]46[/C][C] 0.377[/C][C] 0.7539[/C][C] 0.623[/C][/ROW]
[ROW][C]47[/C][C] 0.3423[/C][C] 0.6847[/C][C] 0.6577[/C][/ROW]
[ROW][C]48[/C][C] 0.3103[/C][C] 0.6207[/C][C] 0.6897[/C][/ROW]
[ROW][C]49[/C][C] 0.2821[/C][C] 0.5642[/C][C] 0.7179[/C][/ROW]
[ROW][C]50[/C][C] 0.2561[/C][C] 0.5122[/C][C] 0.7439[/C][/ROW]
[ROW][C]51[/C][C] 0.2613[/C][C] 0.5226[/C][C] 0.7387[/C][/ROW]
[ROW][C]52[/C][C] 0.2325[/C][C] 0.4649[/C][C] 0.7675[/C][/ROW]
[ROW][C]53[/C][C] 0.219[/C][C] 0.4379[/C][C] 0.781[/C][/ROW]
[ROW][C]54[/C][C] 0.2072[/C][C] 0.4143[/C][C] 0.7928[/C][/ROW]
[ROW][C]55[/C][C] 0.1796[/C][C] 0.3591[/C][C] 0.8204[/C][/ROW]
[ROW][C]56[/C][C] 0.1518[/C][C] 0.3036[/C][C] 0.8482[/C][/ROW]
[ROW][C]57[/C][C] 0.1709[/C][C] 0.3419[/C][C] 0.8291[/C][/ROW]
[ROW][C]58[/C][C] 0.1525[/C][C] 0.305[/C][C] 0.8475[/C][/ROW]
[ROW][C]59[/C][C] 0.1346[/C][C] 0.2691[/C][C] 0.8654[/C][/ROW]
[ROW][C]60[/C][C] 0.1138[/C][C] 0.2277[/C][C] 0.8862[/C][/ROW]
[ROW][C]61[/C][C] 0.1002[/C][C] 0.2003[/C][C] 0.8998[/C][/ROW]
[ROW][C]62[/C][C] 0.08162[/C][C] 0.1632[/C][C] 0.9184[/C][/ROW]
[ROW][C]63[/C][C] 0.068[/C][C] 0.136[/C][C] 0.932[/C][/ROW]
[ROW][C]64[/C][C] 0.1771[/C][C] 0.3543[/C][C] 0.8229[/C][/ROW]
[ROW][C]65[/C][C] 0.1597[/C][C] 0.3195[/C][C] 0.8403[/C][/ROW]
[ROW][C]66[/C][C] 0.1439[/C][C] 0.2878[/C][C] 0.8561[/C][/ROW]
[ROW][C]67[/C][C] 0.148[/C][C] 0.2961[/C][C] 0.852[/C][/ROW]
[ROW][C]68[/C][C] 0.1271[/C][C] 0.2542[/C][C] 0.8729[/C][/ROW]
[ROW][C]69[/C][C] 0.1088[/C][C] 0.2175[/C][C] 0.8912[/C][/ROW]
[ROW][C]70[/C][C] 0.0894[/C][C] 0.1788[/C][C] 0.9106[/C][/ROW]
[ROW][C]71[/C][C] 0.07563[/C][C] 0.1513[/C][C] 0.9244[/C][/ROW]
[ROW][C]72[/C][C] 0.06521[/C][C] 0.1304[/C][C] 0.9348[/C][/ROW]
[ROW][C]73[/C][C] 0.08104[/C][C] 0.1621[/C][C] 0.919[/C][/ROW]
[ROW][C]74[/C][C] 0.06777[/C][C] 0.1356[/C][C] 0.9322[/C][/ROW]
[ROW][C]75[/C][C] 0.06057[/C][C] 0.1211[/C][C] 0.9394[/C][/ROW]
[ROW][C]76[/C][C] 0.05329[/C][C] 0.1066[/C][C] 0.9467[/C][/ROW]
[ROW][C]77[/C][C] 0.1775[/C][C] 0.3549[/C][C] 0.8225[/C][/ROW]
[ROW][C]78[/C][C] 0.1668[/C][C] 0.3337[/C][C] 0.8332[/C][/ROW]
[ROW][C]79[/C][C] 0.161[/C][C] 0.3219[/C][C] 0.839[/C][/ROW]
[ROW][C]80[/C][C] 0.148[/C][C] 0.296[/C][C] 0.852[/C][/ROW]
[ROW][C]81[/C][C] 0.1363[/C][C] 0.2726[/C][C] 0.8637[/C][/ROW]
[ROW][C]82[/C][C] 0.1671[/C][C] 0.3342[/C][C] 0.8329[/C][/ROW]
[ROW][C]83[/C][C] 0.1757[/C][C] 0.3513[/C][C] 0.8243[/C][/ROW]
[ROW][C]84[/C][C] 0.3888[/C][C] 0.7776[/C][C] 0.6112[/C][/ROW]
[ROW][C]85[/C][C] 0.3839[/C][C] 0.7679[/C][C] 0.6161[/C][/ROW]
[ROW][C]86[/C][C] 0.369[/C][C] 0.738[/C][C] 0.631[/C][/ROW]
[ROW][C]87[/C][C] 0.3431[/C][C] 0.6862[/C][C] 0.6569[/C][/ROW]
[ROW][C]88[/C][C] 0.3615[/C][C] 0.723[/C][C] 0.6385[/C][/ROW]
[ROW][C]89[/C][C] 0.3291[/C][C] 0.6581[/C][C] 0.6709[/C][/ROW]
[ROW][C]90[/C][C] 0.3037[/C][C] 0.6074[/C][C] 0.6963[/C][/ROW]
[ROW][C]91[/C][C] 0.3031[/C][C] 0.6062[/C][C] 0.6969[/C][/ROW]
[ROW][C]92[/C][C] 0.3153[/C][C] 0.6305[/C][C] 0.6847[/C][/ROW]
[ROW][C]93[/C][C] 0.3398[/C][C] 0.6796[/C][C] 0.6602[/C][/ROW]
[ROW][C]94[/C][C] 0.3173[/C][C] 0.6345[/C][C] 0.6827[/C][/ROW]
[ROW][C]95[/C][C] 0.3377[/C][C] 0.6754[/C][C] 0.6623[/C][/ROW]
[ROW][C]96[/C][C] 0.6506[/C][C] 0.6987[/C][C] 0.3494[/C][/ROW]
[ROW][C]97[/C][C] 0.6599[/C][C] 0.6801[/C][C] 0.3401[/C][/ROW]
[ROW][C]98[/C][C] 0.6246[/C][C] 0.7509[/C][C] 0.3754[/C][/ROW]
[ROW][C]99[/C][C] 0.6087[/C][C] 0.7827[/C][C] 0.3913[/C][/ROW]
[ROW][C]100[/C][C] 0.5817[/C][C] 0.8366[/C][C] 0.4183[/C][/ROW]
[ROW][C]101[/C][C] 0.5896[/C][C] 0.8208[/C][C] 0.4104[/C][/ROW]
[ROW][C]102[/C][C] 0.5595[/C][C] 0.881[/C][C] 0.4405[/C][/ROW]
[ROW][C]103[/C][C] 0.5394[/C][C] 0.9212[/C][C] 0.4606[/C][/ROW]
[ROW][C]104[/C][C] 0.5594[/C][C] 0.8813[/C][C] 0.4406[/C][/ROW]
[ROW][C]105[/C][C] 0.6237[/C][C] 0.7526[/C][C] 0.3763[/C][/ROW]
[ROW][C]106[/C][C] 0.6049[/C][C] 0.7901[/C][C] 0.3951[/C][/ROW]
[ROW][C]107[/C][C] 0.6062[/C][C] 0.7876[/C][C] 0.3938[/C][/ROW]
[ROW][C]108[/C][C] 0.6076[/C][C] 0.7849[/C][C] 0.3924[/C][/ROW]
[ROW][C]109[/C][C] 0.5639[/C][C] 0.8722[/C][C] 0.4361[/C][/ROW]
[ROW][C]110[/C][C] 0.5262[/C][C] 0.9476[/C][C] 0.4738[/C][/ROW]
[ROW][C]111[/C][C] 0.4808[/C][C] 0.9617[/C][C] 0.5192[/C][/ROW]
[ROW][C]112[/C][C] 0.7331[/C][C] 0.5337[/C][C] 0.2669[/C][/ROW]
[ROW][C]113[/C][C] 0.7537[/C][C] 0.4927[/C][C] 0.2463[/C][/ROW]
[ROW][C]114[/C][C] 0.7173[/C][C] 0.5655[/C][C] 0.2827[/C][/ROW]
[ROW][C]115[/C][C] 0.7352[/C][C] 0.5295[/C][C] 0.2648[/C][/ROW]
[ROW][C]116[/C][C] 0.6931[/C][C] 0.6138[/C][C] 0.3069[/C][/ROW]
[ROW][C]117[/C][C] 0.7036[/C][C] 0.5929[/C][C] 0.2964[/C][/ROW]
[ROW][C]118[/C][C] 0.6639[/C][C] 0.6723[/C][C] 0.3361[/C][/ROW]
[ROW][C]119[/C][C] 0.6368[/C][C] 0.7264[/C][C] 0.3632[/C][/ROW]
[ROW][C]120[/C][C] 0.6376[/C][C] 0.7247[/C][C] 0.3624[/C][/ROW]
[ROW][C]121[/C][C] 0.6166[/C][C] 0.7669[/C][C] 0.3834[/C][/ROW]
[ROW][C]122[/C][C] 0.5974[/C][C] 0.8051[/C][C] 0.4026[/C][/ROW]
[ROW][C]123[/C][C] 0.5547[/C][C] 0.8906[/C][C] 0.4453[/C][/ROW]
[ROW][C]124[/C][C] 0.5238[/C][C] 0.9523[/C][C] 0.4762[/C][/ROW]
[ROW][C]125[/C][C] 0.562[/C][C] 0.8759[/C][C] 0.438[/C][/ROW]
[ROW][C]126[/C][C] 0.548[/C][C] 0.904[/C][C] 0.452[/C][/ROW]
[ROW][C]127[/C][C] 0.5371[/C][C] 0.9258[/C][C] 0.4629[/C][/ROW]
[ROW][C]128[/C][C] 0.4932[/C][C] 0.9864[/C][C] 0.5068[/C][/ROW]
[ROW][C]129[/C][C] 0.4809[/C][C] 0.9617[/C][C] 0.5191[/C][/ROW]
[ROW][C]130[/C][C] 0.7029[/C][C] 0.5942[/C][C] 0.2971[/C][/ROW]
[ROW][C]131[/C][C] 0.6537[/C][C] 0.6926[/C][C] 0.3463[/C][/ROW]
[ROW][C]132[/C][C] 0.6477[/C][C] 0.7045[/C][C] 0.3523[/C][/ROW]
[ROW][C]133[/C][C] 0.6429[/C][C] 0.7142[/C][C] 0.3571[/C][/ROW]
[ROW][C]134[/C][C] 0.7725[/C][C] 0.455[/C][C] 0.2275[/C][/ROW]
[ROW][C]135[/C][C] 0.7313[/C][C] 0.5374[/C][C] 0.2687[/C][/ROW]
[ROW][C]136[/C][C] 0.687[/C][C] 0.626[/C][C] 0.313[/C][/ROW]
[ROW][C]137[/C][C] 0.673[/C][C] 0.6539[/C][C] 0.327[/C][/ROW]
[ROW][C]138[/C][C] 0.6425[/C][C] 0.7151[/C][C] 0.3575[/C][/ROW]
[ROW][C]139[/C][C] 0.612[/C][C] 0.7759[/C][C] 0.388[/C][/ROW]
[ROW][C]140[/C][C] 0.6935[/C][C] 0.6131[/C][C] 0.3065[/C][/ROW]
[ROW][C]141[/C][C] 0.6946[/C][C] 0.6107[/C][C] 0.3054[/C][/ROW]
[ROW][C]142[/C][C] 0.6391[/C][C] 0.7219[/C][C] 0.3609[/C][/ROW]
[ROW][C]143[/C][C] 0.7762[/C][C] 0.4476[/C][C] 0.2238[/C][/ROW]
[ROW][C]144[/C][C] 0.7528[/C][C] 0.4945[/C][C] 0.2472[/C][/ROW]
[ROW][C]145[/C][C] 0.6927[/C][C] 0.6145[/C][C] 0.3073[/C][/ROW]
[ROW][C]146[/C][C] 0.7351[/C][C] 0.5298[/C][C] 0.2649[/C][/ROW]
[ROW][C]147[/C][C] 0.7692[/C][C] 0.4616[/C][C] 0.2308[/C][/ROW]
[ROW][C]148[/C][C] 0.715[/C][C] 0.5699[/C][C] 0.285[/C][/ROW]
[ROW][C]149[/C][C] 0.7[/C][C] 0.6[/C][C] 0.3[/C][/ROW]
[ROW][C]150[/C][C] 0.6209[/C][C] 0.7581[/C][C] 0.3791[/C][/ROW]
[ROW][C]151[/C][C] 0.5429[/C][C] 0.9141[/C][C] 0.4571[/C][/ROW]
[ROW][C]152[/C][C] 0.6847[/C][C] 0.6307[/C][C] 0.3153[/C][/ROW]
[ROW][C]153[/C][C] 0.6962[/C][C] 0.6076[/C][C] 0.3038[/C][/ROW]
[ROW][C]154[/C][C] 0.7748[/C][C] 0.4503[/C][C] 0.2252[/C][/ROW]
[ROW][C]155[/C][C] 0.68[/C][C] 0.6399[/C][C] 0.32[/C][/ROW]
[ROW][C]156[/C][C] 0.6996[/C][C] 0.6008[/C][C] 0.3004[/C][/ROW]
[ROW][C]157[/C][C] 0.5594[/C][C] 0.8811[/C][C] 0.4406[/C][/ROW]
[ROW][C]158[/C][C] 0.5562[/C][C] 0.8877[/C][C] 0.4438[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297710&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297710&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.472 0.944 0.528
9 0.3769 0.7538 0.6231
10 0.268 0.536 0.732
11 0.5855 0.8289 0.4145
12 0.4866 0.9733 0.5134
13 0.6052 0.7895 0.3948
14 0.5089 0.9823 0.4911
15 0.5441 0.9119 0.4559
16 0.7366 0.5269 0.2634
17 0.6931 0.6137 0.3069
18 0.6397 0.7205 0.3603
19 0.731 0.5381 0.269
20 0.6652 0.6696 0.3348
21 0.6296 0.7408 0.3704
22 0.5983 0.8035 0.4017
23 0.5535 0.8931 0.4465
24 0.5161 0.9678 0.4839
25 0.4686 0.9372 0.5314
26 0.5102 0.9796 0.4898
27 0.4891 0.9782 0.5109
28 0.4824 0.9647 0.5176
29 0.4972 0.9944 0.5028
30 0.444 0.888 0.556
31 0.4536 0.9073 0.5464
32 0.445 0.8901 0.555
33 0.6327 0.7346 0.3673
34 0.5906 0.8188 0.4094
35 0.5462 0.9076 0.4538
36 0.5162 0.9676 0.4838
37 0.5325 0.9351 0.4675
38 0.4941 0.9882 0.5059
39 0.5092 0.9817 0.4908
40 0.4697 0.9393 0.5303
41 0.4511 0.9022 0.5489
42 0.4102 0.8204 0.5898
43 0.4295 0.8591 0.5705
44 0.4018 0.8037 0.5982
45 0.4111 0.8222 0.5889
46 0.377 0.7539 0.623
47 0.3423 0.6847 0.6577
48 0.3103 0.6207 0.6897
49 0.2821 0.5642 0.7179
50 0.2561 0.5122 0.7439
51 0.2613 0.5226 0.7387
52 0.2325 0.4649 0.7675
53 0.219 0.4379 0.781
54 0.2072 0.4143 0.7928
55 0.1796 0.3591 0.8204
56 0.1518 0.3036 0.8482
57 0.1709 0.3419 0.8291
58 0.1525 0.305 0.8475
59 0.1346 0.2691 0.8654
60 0.1138 0.2277 0.8862
61 0.1002 0.2003 0.8998
62 0.08162 0.1632 0.9184
63 0.068 0.136 0.932
64 0.1771 0.3543 0.8229
65 0.1597 0.3195 0.8403
66 0.1439 0.2878 0.8561
67 0.148 0.2961 0.852
68 0.1271 0.2542 0.8729
69 0.1088 0.2175 0.8912
70 0.0894 0.1788 0.9106
71 0.07563 0.1513 0.9244
72 0.06521 0.1304 0.9348
73 0.08104 0.1621 0.919
74 0.06777 0.1356 0.9322
75 0.06057 0.1211 0.9394
76 0.05329 0.1066 0.9467
77 0.1775 0.3549 0.8225
78 0.1668 0.3337 0.8332
79 0.161 0.3219 0.839
80 0.148 0.296 0.852
81 0.1363 0.2726 0.8637
82 0.1671 0.3342 0.8329
83 0.1757 0.3513 0.8243
84 0.3888 0.7776 0.6112
85 0.3839 0.7679 0.6161
86 0.369 0.738 0.631
87 0.3431 0.6862 0.6569
88 0.3615 0.723 0.6385
89 0.3291 0.6581 0.6709
90 0.3037 0.6074 0.6963
91 0.3031 0.6062 0.6969
92 0.3153 0.6305 0.6847
93 0.3398 0.6796 0.6602
94 0.3173 0.6345 0.6827
95 0.3377 0.6754 0.6623
96 0.6506 0.6987 0.3494
97 0.6599 0.6801 0.3401
98 0.6246 0.7509 0.3754
99 0.6087 0.7827 0.3913
100 0.5817 0.8366 0.4183
101 0.5896 0.8208 0.4104
102 0.5595 0.881 0.4405
103 0.5394 0.9212 0.4606
104 0.5594 0.8813 0.4406
105 0.6237 0.7526 0.3763
106 0.6049 0.7901 0.3951
107 0.6062 0.7876 0.3938
108 0.6076 0.7849 0.3924
109 0.5639 0.8722 0.4361
110 0.5262 0.9476 0.4738
111 0.4808 0.9617 0.5192
112 0.7331 0.5337 0.2669
113 0.7537 0.4927 0.2463
114 0.7173 0.5655 0.2827
115 0.7352 0.5295 0.2648
116 0.6931 0.6138 0.3069
117 0.7036 0.5929 0.2964
118 0.6639 0.6723 0.3361
119 0.6368 0.7264 0.3632
120 0.6376 0.7247 0.3624
121 0.6166 0.7669 0.3834
122 0.5974 0.8051 0.4026
123 0.5547 0.8906 0.4453
124 0.5238 0.9523 0.4762
125 0.562 0.8759 0.438
126 0.548 0.904 0.452
127 0.5371 0.9258 0.4629
128 0.4932 0.9864 0.5068
129 0.4809 0.9617 0.5191
130 0.7029 0.5942 0.2971
131 0.6537 0.6926 0.3463
132 0.6477 0.7045 0.3523
133 0.6429 0.7142 0.3571
134 0.7725 0.455 0.2275
135 0.7313 0.5374 0.2687
136 0.687 0.626 0.313
137 0.673 0.6539 0.327
138 0.6425 0.7151 0.3575
139 0.612 0.7759 0.388
140 0.6935 0.6131 0.3065
141 0.6946 0.6107 0.3054
142 0.6391 0.7219 0.3609
143 0.7762 0.4476 0.2238
144 0.7528 0.4945 0.2472
145 0.6927 0.6145 0.3073
146 0.7351 0.5298 0.2649
147 0.7692 0.4616 0.2308
148 0.715 0.5699 0.285
149 0.7 0.6 0.3
150 0.6209 0.7581 0.3791
151 0.5429 0.9141 0.4571
152 0.6847 0.6307 0.3153
153 0.6962 0.6076 0.3038
154 0.7748 0.4503 0.2252
155 0.68 0.6399 0.32
156 0.6996 0.6008 0.3004
157 0.5594 0.8811 0.4406
158 0.5562 0.8877 0.4438







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297710&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297710&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297710&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.10386, df1 = 2, df2 = 159, p-value = 0.9014
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.72891, df1 = 8, df2 = 153, p-value = 0.6658
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.2241, df1 = 2, df2 = 159, p-value = 0.1115

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.10386, df1 = 2, df2 = 159, p-value = 0.9014
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.72891, df1 = 8, df2 = 153, p-value = 0.6658
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.2241, df1 = 2, df2 = 159, p-value = 0.1115
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297710&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.10386, df1 = 2, df2 = 159, p-value = 0.9014
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.72891, df1 = 8, df2 = 153, p-value = 0.6658
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.2241, df1 = 2, df2 = 159, p-value = 0.1115
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297710&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297710&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.10386, df1 = 2, df2 = 159, p-value = 0.9014
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.72891, df1 = 8, df2 = 153, p-value = 0.6658
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.2241, df1 = 2, df2 = 159, p-value = 0.1115







Variance Inflation Factors (Multicollinearity)
> vif
     IV1      IV3      TV1      TV3 
1.052865 1.020194 1.614666 1.615232 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     IV1      IV3      TV1      TV3 
1.052865 1.020194 1.614666 1.615232 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297710&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     IV1      IV3      TV1      TV3 
1.052865 1.020194 1.614666 1.615232 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297710&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297710&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     IV1      IV3      TV1      TV3 
1.052865 1.020194 1.614666 1.615232 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')