Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSun, 04 Dec 2016 17:41:44 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/04/t1480869786m2dqt65afut8euz.htm/, Retrieved Fri, 01 Nov 2024 03:40:15 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297683, Retrieved Fri, 01 Nov 2024 03:40:15 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact178
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [imago invloed der...] [2016-12-04 16:41:44] [ca14e1566745fb922befb698831e7d61] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	2	4	3	11
3	2	4	4	11
4	2	3	3	15
4	4	3	4	15
4	1	5	2	14
2	3	5	2	13
4	1	4	1	15
2	4	2	1	15
4	2	5	4	15
4	5	4	1	10
3	2	3	3	11
4	4	5	5	16
3	4	5	2	17
3	3	3	2	14
2	1	4	2	13
4	5	4	3	10
3	3	5	3	17
3	2	5	3	17
4	1	4	2	11
4	2	3	4	15
2	2	4	2	12
4	3	4	2	15
3	2	5	4	15
2	2	4	2	12
4	3	3	5	19
4	1	5	2	13
3	1	5	1	15
2	2	2	4	13
5	5	3	1	10
3	3	5	4	12
4	1	5	3	15
3	1	4	2	13
3	4	2	5	18
3	2	4	2	15
3	2	3	4	14
4	2	5	2	11
4	5	3	1	9
4	4	2	4	13
3	2	5	3	13
2	2	5	2	12
3	2	5	3	16
5	2	4	4	16
2	2	5	2	16
4	4	5	3	13
5	1	3	4	13
5	5	3	2	12
3	3	5	2	11
3	1	4	1	13
4	2	5	1	15
4	3	4	3	13
3	4	5	3	14
3	2	4	2	13
5	2	3	2	15
4	4	3	3	14
4	2	3	4	14
4	4	3	3	13
2	2	4	2	11
2	3	5	4	14
4	4	2	4	17
5	2	4	5	15
4	4	4	2	13
4	2	5	3	12
3	3	3	2	11
3	2	5	4	18
4	4	3	3	15
1	1	5	2	18
2	1	5	3	16
4	1	4	2	12
4	1	4	1	14
3	1	5	3	14
2	3	3	3	14
2	1	4	1	14
3	1	4	1	13
2	5	3	3	12
5	4	3	4	13
3	3	5	3	17
4	4	4	1	13
4	3	2	4	15
5	5	5	4	13
4	1	4	2	14
2	1	4	1	17
3	3	5	3	15
3	2	4	2	13
3	3	5	3	14
3	3	4	2	17
1	2	3	1	8
3	4	5	2	15
4	2	5	3	15
4	2	4	1	15
2	2	4	1	14
3	1	5	1	18
4	3	5	3	14
3	3	4	3	19
4	3	5	4	16
4	3	3	4	17
2	3	5	4	18
4	4	3	4	13
4	4	5	3	10
4	3	5	4	14
3	1	5	3	13
3	2	2	1	12
4	1	4	3	13
4	2	4	4	12
4	1	3	5	13
3	1	3	3	12
3	4	3	3	14
2	2	5	3	17
4	2	4	1	14
2	1	5	4	12
3	2	4	3	14
4	3	3	4	17
2	2	4	2	13
3	3	5	3	14
2	2	3	2	11
4	3	3	3	17
3	2	5	1	15
4	4	3	4	10
2	1	5	3	15
3	4	2	3	16
5	2	5	5	17
2	3	5	2	12
3	3	5	1	15
2	2	5	1	10
4	2	4	3	13
4	2	4	1	17
2	3	3	3	16
3	3	4	3	15
3	2	3	3	16
4	4	3	2	16
3	1	4	2	15
5	2	3	4	16
3	3	4	3	14
4	3	5	4	17
4	1	1	2	14
4	3	5	3	12
5	3	4	4	15
5	1	5	1	14
4	3	5	1	14
3	3	5	2	13
2	1	3	2	13
4	3	4	1	14
3	1	3	1	13
3	2	4	4	13
5	2	5	4	15
5	3	5	3	13
5	3	4	3	14
3	3	3	3	13
1	3	3	4	12




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297683&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297683&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297683&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
IVHBSUM[t] = + 12.2449 + 0.0189819SN1[t] -0.206435SN2[t] + 0.214578SN3[t] + 0.495906SN4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
IVHBSUM[t] =  +  12.2449 +  0.0189819SN1[t] -0.206435SN2[t] +  0.214578SN3[t] +  0.495906SN4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297683&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]IVHBSUM[t] =  +  12.2449 +  0.0189819SN1[t] -0.206435SN2[t] +  0.214578SN3[t] +  0.495906SN4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297683&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297683&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
IVHBSUM[t] = + 12.2449 + 0.0189819SN1[t] -0.206435SN2[t] + 0.214578SN3[t] + 0.495906SN4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.24 1.09+1.1240e+01 2.167e-21 1.083e-21
SN1+0.01898 0.1849+1.0270e-01 0.9184 0.4592
SN2-0.2064 0.1584-1.3030e+00 0.1946 0.09732
SN3+0.2146 0.1804+1.1890e+00 0.2363 0.1182
SN4+0.4959 0.156+3.1800e+00 0.001808 0.0009041

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +12.24 &  1.09 & +1.1240e+01 &  2.167e-21 &  1.083e-21 \tabularnewline
SN1 & +0.01898 &  0.1849 & +1.0270e-01 &  0.9184 &  0.4592 \tabularnewline
SN2 & -0.2064 &  0.1584 & -1.3030e+00 &  0.1946 &  0.09732 \tabularnewline
SN3 & +0.2146 &  0.1804 & +1.1890e+00 &  0.2363 &  0.1182 \tabularnewline
SN4 & +0.4959 &  0.156 & +3.1800e+00 &  0.001808 &  0.0009041 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297683&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+12.24[/C][C] 1.09[/C][C]+1.1240e+01[/C][C] 2.167e-21[/C][C] 1.083e-21[/C][/ROW]
[ROW][C]SN1[/C][C]+0.01898[/C][C] 0.1849[/C][C]+1.0270e-01[/C][C] 0.9184[/C][C] 0.4592[/C][/ROW]
[ROW][C]SN2[/C][C]-0.2064[/C][C] 0.1584[/C][C]-1.3030e+00[/C][C] 0.1946[/C][C] 0.09732[/C][/ROW]
[ROW][C]SN3[/C][C]+0.2146[/C][C] 0.1804[/C][C]+1.1890e+00[/C][C] 0.2363[/C][C] 0.1182[/C][/ROW]
[ROW][C]SN4[/C][C]+0.4959[/C][C] 0.156[/C][C]+3.1800e+00[/C][C] 0.001808[/C][C] 0.0009041[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297683&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297683&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.24 1.09+1.1240e+01 2.167e-21 1.083e-21
SN1+0.01898 0.1849+1.0270e-01 0.9184 0.4592
SN2-0.2064 0.1584-1.3030e+00 0.1946 0.09732
SN3+0.2146 0.1804+1.1890e+00 0.2363 0.1182
SN4+0.4959 0.156+3.1800e+00 0.001808 0.0009041







Multiple Linear Regression - Regression Statistics
Multiple R 0.2847
R-squared 0.08103
Adjusted R-squared 0.05533
F-TEST (value) 3.152
F-TEST (DF numerator)4
F-TEST (DF denominator)143
p-value 0.01614
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.053
Sum Squared Residuals 602.8

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2847 \tabularnewline
R-squared &  0.08103 \tabularnewline
Adjusted R-squared &  0.05533 \tabularnewline
F-TEST (value) &  3.152 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 143 \tabularnewline
p-value &  0.01614 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.053 \tabularnewline
Sum Squared Residuals &  602.8 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297683&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2847[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.08103[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.05533[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 3.152[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]143[/C][/ROW]
[ROW][C]p-value[/C][C] 0.01614[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.053[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 602.8[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297683&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297683&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2847
R-squared 0.08103
Adjusted R-squared 0.05533
F-TEST (value) 3.152
F-TEST (DF numerator)4
F-TEST (DF denominator)143
p-value 0.01614
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.053
Sum Squared Residuals 602.8







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 11 14.25-3.254
2 11 14.73-3.731
3 15 14.04 0.9606
4 15 14.12 0.8776
5 14 14.18-0.1791
6 13 13.73-0.7283
7 15 13.47 1.531
8 15 12.38 2.618
9 15 14.96 0.03552
10 10 12.64-2.643
11 11 14.02-3.02
12 16 15.05 0.9525
13 17 13.54 3.459
14 14 13.32 0.6819
15 13 13.93-0.9266
16 10 13.63-3.635
17 17 14.24 2.757
18 17 14.45 2.55
19 11 13.96-2.965
20 15 14.54 0.4647
21 12 13.72-1.72
22 15 13.55 1.448
23 15 14.95 0.05451
24 12 13.72-1.72
25 19 14.82 4.175
26 13 14.18-1.179
27 15 13.66 1.336
28 13 14.28-1.283
29 10 12.45-2.447
30 12 14.74-2.739
31 15 14.68 0.325
32 13 13.95-0.9455
33 18 14.38 3.615
34 15 13.74 1.261
35 14 14.52-0.5163
36 11 13.97-2.973
37 9 12.43-3.428
38 13 13.91-0.9079
39 13 14.45-1.45
40 12 13.93-1.935
41 16 14.45 1.55
42 16 14.77 1.231
43 16 13.93 2.065
44 13 14.06-1.056
45 13 14.76-1.761
46 12 12.94-0.9432
47 11 13.75-2.747
48 13 13.45-0.4496
49 15 13.48 1.523
50 13 14.05-1.048
51 14 14.04-0.03672
52 13 13.74-0.7391
53 15 13.56 1.438
54 14 13.63 0.3735
55 14 14.54-0.5353
56 13 13.63-0.6265
57 11 13.72-2.72
58 14 14.72-0.7201
59 17 13.91 3.092
60 15 15.26-0.2648
61 13 13.35-0.3452
62 12 14.47-2.469
63 11 13.32-2.318
64 18 14.95 3.055
65 15 13.63 1.373
66 18 14.12 3.878
67 16 14.64 1.363
68 12 13.96-1.965
69 14 13.47 0.5314
70 14 14.66-0.656
71 14 13.79 0.205
72 14 13.43 0.5693
73 13 13.45-0.4496
74 12 13.38-1.382
75 13 14.14-1.141
76 17 14.24 2.757
77 13 12.85 0.1507
78 15 14.11 0.8857
79 13 14.36-1.364
80 14 13.96 0.03548
81 17 13.43 3.569
82 15 14.24 0.7568
83 13 13.74-0.7391
84 14 14.24-0.2432
85 17 13.53 3.467
86 8 12.99-4.991
87 15 13.54 1.459
88 15 14.47 0.5314
89 15 13.26 1.738
90 14 13.22 0.7758
91 18 13.66 4.336
92 14 14.26-0.2621
93 19 14.03 4.971
94 16 14.76 1.242
95 17 14.33 2.671
96 18 14.72 3.28
97 13 14.12-1.122
98 10 14.06-4.056
99 14 14.76-0.758
100 13 14.66-1.656
101 12 12.81-0.814
102 13 14.46-1.46
103 12 14.75-2.75
104 13 15.24-2.238
105 12 14.23-2.227
106 14 13.61 0.3924
107 17 14.43 2.569
108 14 13.26 0.7378
109 12 15.13-3.133
110 14 14.23-0.235
111 17 14.33 2.671
112 13 13.72-0.7201
113 14 14.24-0.2432
114 11 13.51-2.506
115 17 13.83 3.167
116 15 13.46 1.542
117 10 14.12-4.122
118 15 14.64 0.363
119 16 13.39 2.607
120 17 15.48 1.521
121 12 13.73-1.728
122 15 13.25 1.749
123 10 13.44-3.439
124 13 14.25-1.254
125 17 13.26 3.738
126 16 13.79 2.205
127 15 14.03 0.9714
128 16 14.02 1.98
129 16 13.13 2.869
130 15 13.95 1.054
131 16 14.55 1.446
132 14 14.03-0.02858
133 17 14.76 2.242
134 14 13.32 0.6792
135 12 14.26-2.262
136 15 14.56 0.4376
137 14 13.7 0.2978
138 14 13.27 0.7297
139 13 13.75-0.7472
140 13 13.71-0.712
141 14 13.06 0.9443
142 13 13.24-0.2351
143 13 14.73-1.731
144 15 14.98 0.01654
145 13 14.28-1.281
146 14 14.07-0.06654
147 13 13.81-0.814
148 12 14.27-2.272

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  11 &  14.25 & -3.254 \tabularnewline
2 &  11 &  14.73 & -3.731 \tabularnewline
3 &  15 &  14.04 &  0.9606 \tabularnewline
4 &  15 &  14.12 &  0.8776 \tabularnewline
5 &  14 &  14.18 & -0.1791 \tabularnewline
6 &  13 &  13.73 & -0.7283 \tabularnewline
7 &  15 &  13.47 &  1.531 \tabularnewline
8 &  15 &  12.38 &  2.618 \tabularnewline
9 &  15 &  14.96 &  0.03552 \tabularnewline
10 &  10 &  12.64 & -2.643 \tabularnewline
11 &  11 &  14.02 & -3.02 \tabularnewline
12 &  16 &  15.05 &  0.9525 \tabularnewline
13 &  17 &  13.54 &  3.459 \tabularnewline
14 &  14 &  13.32 &  0.6819 \tabularnewline
15 &  13 &  13.93 & -0.9266 \tabularnewline
16 &  10 &  13.63 & -3.635 \tabularnewline
17 &  17 &  14.24 &  2.757 \tabularnewline
18 &  17 &  14.45 &  2.55 \tabularnewline
19 &  11 &  13.96 & -2.965 \tabularnewline
20 &  15 &  14.54 &  0.4647 \tabularnewline
21 &  12 &  13.72 & -1.72 \tabularnewline
22 &  15 &  13.55 &  1.448 \tabularnewline
23 &  15 &  14.95 &  0.05451 \tabularnewline
24 &  12 &  13.72 & -1.72 \tabularnewline
25 &  19 &  14.82 &  4.175 \tabularnewline
26 &  13 &  14.18 & -1.179 \tabularnewline
27 &  15 &  13.66 &  1.336 \tabularnewline
28 &  13 &  14.28 & -1.283 \tabularnewline
29 &  10 &  12.45 & -2.447 \tabularnewline
30 &  12 &  14.74 & -2.739 \tabularnewline
31 &  15 &  14.68 &  0.325 \tabularnewline
32 &  13 &  13.95 & -0.9455 \tabularnewline
33 &  18 &  14.38 &  3.615 \tabularnewline
34 &  15 &  13.74 &  1.261 \tabularnewline
35 &  14 &  14.52 & -0.5163 \tabularnewline
36 &  11 &  13.97 & -2.973 \tabularnewline
37 &  9 &  12.43 & -3.428 \tabularnewline
38 &  13 &  13.91 & -0.9079 \tabularnewline
39 &  13 &  14.45 & -1.45 \tabularnewline
40 &  12 &  13.93 & -1.935 \tabularnewline
41 &  16 &  14.45 &  1.55 \tabularnewline
42 &  16 &  14.77 &  1.231 \tabularnewline
43 &  16 &  13.93 &  2.065 \tabularnewline
44 &  13 &  14.06 & -1.056 \tabularnewline
45 &  13 &  14.76 & -1.761 \tabularnewline
46 &  12 &  12.94 & -0.9432 \tabularnewline
47 &  11 &  13.75 & -2.747 \tabularnewline
48 &  13 &  13.45 & -0.4496 \tabularnewline
49 &  15 &  13.48 &  1.523 \tabularnewline
50 &  13 &  14.05 & -1.048 \tabularnewline
51 &  14 &  14.04 & -0.03672 \tabularnewline
52 &  13 &  13.74 & -0.7391 \tabularnewline
53 &  15 &  13.56 &  1.438 \tabularnewline
54 &  14 &  13.63 &  0.3735 \tabularnewline
55 &  14 &  14.54 & -0.5353 \tabularnewline
56 &  13 &  13.63 & -0.6265 \tabularnewline
57 &  11 &  13.72 & -2.72 \tabularnewline
58 &  14 &  14.72 & -0.7201 \tabularnewline
59 &  17 &  13.91 &  3.092 \tabularnewline
60 &  15 &  15.26 & -0.2648 \tabularnewline
61 &  13 &  13.35 & -0.3452 \tabularnewline
62 &  12 &  14.47 & -2.469 \tabularnewline
63 &  11 &  13.32 & -2.318 \tabularnewline
64 &  18 &  14.95 &  3.055 \tabularnewline
65 &  15 &  13.63 &  1.373 \tabularnewline
66 &  18 &  14.12 &  3.878 \tabularnewline
67 &  16 &  14.64 &  1.363 \tabularnewline
68 &  12 &  13.96 & -1.965 \tabularnewline
69 &  14 &  13.47 &  0.5314 \tabularnewline
70 &  14 &  14.66 & -0.656 \tabularnewline
71 &  14 &  13.79 &  0.205 \tabularnewline
72 &  14 &  13.43 &  0.5693 \tabularnewline
73 &  13 &  13.45 & -0.4496 \tabularnewline
74 &  12 &  13.38 & -1.382 \tabularnewline
75 &  13 &  14.14 & -1.141 \tabularnewline
76 &  17 &  14.24 &  2.757 \tabularnewline
77 &  13 &  12.85 &  0.1507 \tabularnewline
78 &  15 &  14.11 &  0.8857 \tabularnewline
79 &  13 &  14.36 & -1.364 \tabularnewline
80 &  14 &  13.96 &  0.03548 \tabularnewline
81 &  17 &  13.43 &  3.569 \tabularnewline
82 &  15 &  14.24 &  0.7568 \tabularnewline
83 &  13 &  13.74 & -0.7391 \tabularnewline
84 &  14 &  14.24 & -0.2432 \tabularnewline
85 &  17 &  13.53 &  3.467 \tabularnewline
86 &  8 &  12.99 & -4.991 \tabularnewline
87 &  15 &  13.54 &  1.459 \tabularnewline
88 &  15 &  14.47 &  0.5314 \tabularnewline
89 &  15 &  13.26 &  1.738 \tabularnewline
90 &  14 &  13.22 &  0.7758 \tabularnewline
91 &  18 &  13.66 &  4.336 \tabularnewline
92 &  14 &  14.26 & -0.2621 \tabularnewline
93 &  19 &  14.03 &  4.971 \tabularnewline
94 &  16 &  14.76 &  1.242 \tabularnewline
95 &  17 &  14.33 &  2.671 \tabularnewline
96 &  18 &  14.72 &  3.28 \tabularnewline
97 &  13 &  14.12 & -1.122 \tabularnewline
98 &  10 &  14.06 & -4.056 \tabularnewline
99 &  14 &  14.76 & -0.758 \tabularnewline
100 &  13 &  14.66 & -1.656 \tabularnewline
101 &  12 &  12.81 & -0.814 \tabularnewline
102 &  13 &  14.46 & -1.46 \tabularnewline
103 &  12 &  14.75 & -2.75 \tabularnewline
104 &  13 &  15.24 & -2.238 \tabularnewline
105 &  12 &  14.23 & -2.227 \tabularnewline
106 &  14 &  13.61 &  0.3924 \tabularnewline
107 &  17 &  14.43 &  2.569 \tabularnewline
108 &  14 &  13.26 &  0.7378 \tabularnewline
109 &  12 &  15.13 & -3.133 \tabularnewline
110 &  14 &  14.23 & -0.235 \tabularnewline
111 &  17 &  14.33 &  2.671 \tabularnewline
112 &  13 &  13.72 & -0.7201 \tabularnewline
113 &  14 &  14.24 & -0.2432 \tabularnewline
114 &  11 &  13.51 & -2.506 \tabularnewline
115 &  17 &  13.83 &  3.167 \tabularnewline
116 &  15 &  13.46 &  1.542 \tabularnewline
117 &  10 &  14.12 & -4.122 \tabularnewline
118 &  15 &  14.64 &  0.363 \tabularnewline
119 &  16 &  13.39 &  2.607 \tabularnewline
120 &  17 &  15.48 &  1.521 \tabularnewline
121 &  12 &  13.73 & -1.728 \tabularnewline
122 &  15 &  13.25 &  1.749 \tabularnewline
123 &  10 &  13.44 & -3.439 \tabularnewline
124 &  13 &  14.25 & -1.254 \tabularnewline
125 &  17 &  13.26 &  3.738 \tabularnewline
126 &  16 &  13.79 &  2.205 \tabularnewline
127 &  15 &  14.03 &  0.9714 \tabularnewline
128 &  16 &  14.02 &  1.98 \tabularnewline
129 &  16 &  13.13 &  2.869 \tabularnewline
130 &  15 &  13.95 &  1.054 \tabularnewline
131 &  16 &  14.55 &  1.446 \tabularnewline
132 &  14 &  14.03 & -0.02858 \tabularnewline
133 &  17 &  14.76 &  2.242 \tabularnewline
134 &  14 &  13.32 &  0.6792 \tabularnewline
135 &  12 &  14.26 & -2.262 \tabularnewline
136 &  15 &  14.56 &  0.4376 \tabularnewline
137 &  14 &  13.7 &  0.2978 \tabularnewline
138 &  14 &  13.27 &  0.7297 \tabularnewline
139 &  13 &  13.75 & -0.7472 \tabularnewline
140 &  13 &  13.71 & -0.712 \tabularnewline
141 &  14 &  13.06 &  0.9443 \tabularnewline
142 &  13 &  13.24 & -0.2351 \tabularnewline
143 &  13 &  14.73 & -1.731 \tabularnewline
144 &  15 &  14.98 &  0.01654 \tabularnewline
145 &  13 &  14.28 & -1.281 \tabularnewline
146 &  14 &  14.07 & -0.06654 \tabularnewline
147 &  13 &  13.81 & -0.814 \tabularnewline
148 &  12 &  14.27 & -2.272 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297683&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 11[/C][C] 14.25[/C][C]-3.254[/C][/ROW]
[ROW][C]2[/C][C] 11[/C][C] 14.73[/C][C]-3.731[/C][/ROW]
[ROW][C]3[/C][C] 15[/C][C] 14.04[/C][C] 0.9606[/C][/ROW]
[ROW][C]4[/C][C] 15[/C][C] 14.12[/C][C] 0.8776[/C][/ROW]
[ROW][C]5[/C][C] 14[/C][C] 14.18[/C][C]-0.1791[/C][/ROW]
[ROW][C]6[/C][C] 13[/C][C] 13.73[/C][C]-0.7283[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 13.47[/C][C] 1.531[/C][/ROW]
[ROW][C]8[/C][C] 15[/C][C] 12.38[/C][C] 2.618[/C][/ROW]
[ROW][C]9[/C][C] 15[/C][C] 14.96[/C][C] 0.03552[/C][/ROW]
[ROW][C]10[/C][C] 10[/C][C] 12.64[/C][C]-2.643[/C][/ROW]
[ROW][C]11[/C][C] 11[/C][C] 14.02[/C][C]-3.02[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 15.05[/C][C] 0.9525[/C][/ROW]
[ROW][C]13[/C][C] 17[/C][C] 13.54[/C][C] 3.459[/C][/ROW]
[ROW][C]14[/C][C] 14[/C][C] 13.32[/C][C] 0.6819[/C][/ROW]
[ROW][C]15[/C][C] 13[/C][C] 13.93[/C][C]-0.9266[/C][/ROW]
[ROW][C]16[/C][C] 10[/C][C] 13.63[/C][C]-3.635[/C][/ROW]
[ROW][C]17[/C][C] 17[/C][C] 14.24[/C][C] 2.757[/C][/ROW]
[ROW][C]18[/C][C] 17[/C][C] 14.45[/C][C] 2.55[/C][/ROW]
[ROW][C]19[/C][C] 11[/C][C] 13.96[/C][C]-2.965[/C][/ROW]
[ROW][C]20[/C][C] 15[/C][C] 14.54[/C][C] 0.4647[/C][/ROW]
[ROW][C]21[/C][C] 12[/C][C] 13.72[/C][C]-1.72[/C][/ROW]
[ROW][C]22[/C][C] 15[/C][C] 13.55[/C][C] 1.448[/C][/ROW]
[ROW][C]23[/C][C] 15[/C][C] 14.95[/C][C] 0.05451[/C][/ROW]
[ROW][C]24[/C][C] 12[/C][C] 13.72[/C][C]-1.72[/C][/ROW]
[ROW][C]25[/C][C] 19[/C][C] 14.82[/C][C] 4.175[/C][/ROW]
[ROW][C]26[/C][C] 13[/C][C] 14.18[/C][C]-1.179[/C][/ROW]
[ROW][C]27[/C][C] 15[/C][C] 13.66[/C][C] 1.336[/C][/ROW]
[ROW][C]28[/C][C] 13[/C][C] 14.28[/C][C]-1.283[/C][/ROW]
[ROW][C]29[/C][C] 10[/C][C] 12.45[/C][C]-2.447[/C][/ROW]
[ROW][C]30[/C][C] 12[/C][C] 14.74[/C][C]-2.739[/C][/ROW]
[ROW][C]31[/C][C] 15[/C][C] 14.68[/C][C] 0.325[/C][/ROW]
[ROW][C]32[/C][C] 13[/C][C] 13.95[/C][C]-0.9455[/C][/ROW]
[ROW][C]33[/C][C] 18[/C][C] 14.38[/C][C] 3.615[/C][/ROW]
[ROW][C]34[/C][C] 15[/C][C] 13.74[/C][C] 1.261[/C][/ROW]
[ROW][C]35[/C][C] 14[/C][C] 14.52[/C][C]-0.5163[/C][/ROW]
[ROW][C]36[/C][C] 11[/C][C] 13.97[/C][C]-2.973[/C][/ROW]
[ROW][C]37[/C][C] 9[/C][C] 12.43[/C][C]-3.428[/C][/ROW]
[ROW][C]38[/C][C] 13[/C][C] 13.91[/C][C]-0.9079[/C][/ROW]
[ROW][C]39[/C][C] 13[/C][C] 14.45[/C][C]-1.45[/C][/ROW]
[ROW][C]40[/C][C] 12[/C][C] 13.93[/C][C]-1.935[/C][/ROW]
[ROW][C]41[/C][C] 16[/C][C] 14.45[/C][C] 1.55[/C][/ROW]
[ROW][C]42[/C][C] 16[/C][C] 14.77[/C][C] 1.231[/C][/ROW]
[ROW][C]43[/C][C] 16[/C][C] 13.93[/C][C] 2.065[/C][/ROW]
[ROW][C]44[/C][C] 13[/C][C] 14.06[/C][C]-1.056[/C][/ROW]
[ROW][C]45[/C][C] 13[/C][C] 14.76[/C][C]-1.761[/C][/ROW]
[ROW][C]46[/C][C] 12[/C][C] 12.94[/C][C]-0.9432[/C][/ROW]
[ROW][C]47[/C][C] 11[/C][C] 13.75[/C][C]-2.747[/C][/ROW]
[ROW][C]48[/C][C] 13[/C][C] 13.45[/C][C]-0.4496[/C][/ROW]
[ROW][C]49[/C][C] 15[/C][C] 13.48[/C][C] 1.523[/C][/ROW]
[ROW][C]50[/C][C] 13[/C][C] 14.05[/C][C]-1.048[/C][/ROW]
[ROW][C]51[/C][C] 14[/C][C] 14.04[/C][C]-0.03672[/C][/ROW]
[ROW][C]52[/C][C] 13[/C][C] 13.74[/C][C]-0.7391[/C][/ROW]
[ROW][C]53[/C][C] 15[/C][C] 13.56[/C][C] 1.438[/C][/ROW]
[ROW][C]54[/C][C] 14[/C][C] 13.63[/C][C] 0.3735[/C][/ROW]
[ROW][C]55[/C][C] 14[/C][C] 14.54[/C][C]-0.5353[/C][/ROW]
[ROW][C]56[/C][C] 13[/C][C] 13.63[/C][C]-0.6265[/C][/ROW]
[ROW][C]57[/C][C] 11[/C][C] 13.72[/C][C]-2.72[/C][/ROW]
[ROW][C]58[/C][C] 14[/C][C] 14.72[/C][C]-0.7201[/C][/ROW]
[ROW][C]59[/C][C] 17[/C][C] 13.91[/C][C] 3.092[/C][/ROW]
[ROW][C]60[/C][C] 15[/C][C] 15.26[/C][C]-0.2648[/C][/ROW]
[ROW][C]61[/C][C] 13[/C][C] 13.35[/C][C]-0.3452[/C][/ROW]
[ROW][C]62[/C][C] 12[/C][C] 14.47[/C][C]-2.469[/C][/ROW]
[ROW][C]63[/C][C] 11[/C][C] 13.32[/C][C]-2.318[/C][/ROW]
[ROW][C]64[/C][C] 18[/C][C] 14.95[/C][C] 3.055[/C][/ROW]
[ROW][C]65[/C][C] 15[/C][C] 13.63[/C][C] 1.373[/C][/ROW]
[ROW][C]66[/C][C] 18[/C][C] 14.12[/C][C] 3.878[/C][/ROW]
[ROW][C]67[/C][C] 16[/C][C] 14.64[/C][C] 1.363[/C][/ROW]
[ROW][C]68[/C][C] 12[/C][C] 13.96[/C][C]-1.965[/C][/ROW]
[ROW][C]69[/C][C] 14[/C][C] 13.47[/C][C] 0.5314[/C][/ROW]
[ROW][C]70[/C][C] 14[/C][C] 14.66[/C][C]-0.656[/C][/ROW]
[ROW][C]71[/C][C] 14[/C][C] 13.79[/C][C] 0.205[/C][/ROW]
[ROW][C]72[/C][C] 14[/C][C] 13.43[/C][C] 0.5693[/C][/ROW]
[ROW][C]73[/C][C] 13[/C][C] 13.45[/C][C]-0.4496[/C][/ROW]
[ROW][C]74[/C][C] 12[/C][C] 13.38[/C][C]-1.382[/C][/ROW]
[ROW][C]75[/C][C] 13[/C][C] 14.14[/C][C]-1.141[/C][/ROW]
[ROW][C]76[/C][C] 17[/C][C] 14.24[/C][C] 2.757[/C][/ROW]
[ROW][C]77[/C][C] 13[/C][C] 12.85[/C][C] 0.1507[/C][/ROW]
[ROW][C]78[/C][C] 15[/C][C] 14.11[/C][C] 0.8857[/C][/ROW]
[ROW][C]79[/C][C] 13[/C][C] 14.36[/C][C]-1.364[/C][/ROW]
[ROW][C]80[/C][C] 14[/C][C] 13.96[/C][C] 0.03548[/C][/ROW]
[ROW][C]81[/C][C] 17[/C][C] 13.43[/C][C] 3.569[/C][/ROW]
[ROW][C]82[/C][C] 15[/C][C] 14.24[/C][C] 0.7568[/C][/ROW]
[ROW][C]83[/C][C] 13[/C][C] 13.74[/C][C]-0.7391[/C][/ROW]
[ROW][C]84[/C][C] 14[/C][C] 14.24[/C][C]-0.2432[/C][/ROW]
[ROW][C]85[/C][C] 17[/C][C] 13.53[/C][C] 3.467[/C][/ROW]
[ROW][C]86[/C][C] 8[/C][C] 12.99[/C][C]-4.991[/C][/ROW]
[ROW][C]87[/C][C] 15[/C][C] 13.54[/C][C] 1.459[/C][/ROW]
[ROW][C]88[/C][C] 15[/C][C] 14.47[/C][C] 0.5314[/C][/ROW]
[ROW][C]89[/C][C] 15[/C][C] 13.26[/C][C] 1.738[/C][/ROW]
[ROW][C]90[/C][C] 14[/C][C] 13.22[/C][C] 0.7758[/C][/ROW]
[ROW][C]91[/C][C] 18[/C][C] 13.66[/C][C] 4.336[/C][/ROW]
[ROW][C]92[/C][C] 14[/C][C] 14.26[/C][C]-0.2621[/C][/ROW]
[ROW][C]93[/C][C] 19[/C][C] 14.03[/C][C] 4.971[/C][/ROW]
[ROW][C]94[/C][C] 16[/C][C] 14.76[/C][C] 1.242[/C][/ROW]
[ROW][C]95[/C][C] 17[/C][C] 14.33[/C][C] 2.671[/C][/ROW]
[ROW][C]96[/C][C] 18[/C][C] 14.72[/C][C] 3.28[/C][/ROW]
[ROW][C]97[/C][C] 13[/C][C] 14.12[/C][C]-1.122[/C][/ROW]
[ROW][C]98[/C][C] 10[/C][C] 14.06[/C][C]-4.056[/C][/ROW]
[ROW][C]99[/C][C] 14[/C][C] 14.76[/C][C]-0.758[/C][/ROW]
[ROW][C]100[/C][C] 13[/C][C] 14.66[/C][C]-1.656[/C][/ROW]
[ROW][C]101[/C][C] 12[/C][C] 12.81[/C][C]-0.814[/C][/ROW]
[ROW][C]102[/C][C] 13[/C][C] 14.46[/C][C]-1.46[/C][/ROW]
[ROW][C]103[/C][C] 12[/C][C] 14.75[/C][C]-2.75[/C][/ROW]
[ROW][C]104[/C][C] 13[/C][C] 15.24[/C][C]-2.238[/C][/ROW]
[ROW][C]105[/C][C] 12[/C][C] 14.23[/C][C]-2.227[/C][/ROW]
[ROW][C]106[/C][C] 14[/C][C] 13.61[/C][C] 0.3924[/C][/ROW]
[ROW][C]107[/C][C] 17[/C][C] 14.43[/C][C] 2.569[/C][/ROW]
[ROW][C]108[/C][C] 14[/C][C] 13.26[/C][C] 0.7378[/C][/ROW]
[ROW][C]109[/C][C] 12[/C][C] 15.13[/C][C]-3.133[/C][/ROW]
[ROW][C]110[/C][C] 14[/C][C] 14.23[/C][C]-0.235[/C][/ROW]
[ROW][C]111[/C][C] 17[/C][C] 14.33[/C][C] 2.671[/C][/ROW]
[ROW][C]112[/C][C] 13[/C][C] 13.72[/C][C]-0.7201[/C][/ROW]
[ROW][C]113[/C][C] 14[/C][C] 14.24[/C][C]-0.2432[/C][/ROW]
[ROW][C]114[/C][C] 11[/C][C] 13.51[/C][C]-2.506[/C][/ROW]
[ROW][C]115[/C][C] 17[/C][C] 13.83[/C][C] 3.167[/C][/ROW]
[ROW][C]116[/C][C] 15[/C][C] 13.46[/C][C] 1.542[/C][/ROW]
[ROW][C]117[/C][C] 10[/C][C] 14.12[/C][C]-4.122[/C][/ROW]
[ROW][C]118[/C][C] 15[/C][C] 14.64[/C][C] 0.363[/C][/ROW]
[ROW][C]119[/C][C] 16[/C][C] 13.39[/C][C] 2.607[/C][/ROW]
[ROW][C]120[/C][C] 17[/C][C] 15.48[/C][C] 1.521[/C][/ROW]
[ROW][C]121[/C][C] 12[/C][C] 13.73[/C][C]-1.728[/C][/ROW]
[ROW][C]122[/C][C] 15[/C][C] 13.25[/C][C] 1.749[/C][/ROW]
[ROW][C]123[/C][C] 10[/C][C] 13.44[/C][C]-3.439[/C][/ROW]
[ROW][C]124[/C][C] 13[/C][C] 14.25[/C][C]-1.254[/C][/ROW]
[ROW][C]125[/C][C] 17[/C][C] 13.26[/C][C] 3.738[/C][/ROW]
[ROW][C]126[/C][C] 16[/C][C] 13.79[/C][C] 2.205[/C][/ROW]
[ROW][C]127[/C][C] 15[/C][C] 14.03[/C][C] 0.9714[/C][/ROW]
[ROW][C]128[/C][C] 16[/C][C] 14.02[/C][C] 1.98[/C][/ROW]
[ROW][C]129[/C][C] 16[/C][C] 13.13[/C][C] 2.869[/C][/ROW]
[ROW][C]130[/C][C] 15[/C][C] 13.95[/C][C] 1.054[/C][/ROW]
[ROW][C]131[/C][C] 16[/C][C] 14.55[/C][C] 1.446[/C][/ROW]
[ROW][C]132[/C][C] 14[/C][C] 14.03[/C][C]-0.02858[/C][/ROW]
[ROW][C]133[/C][C] 17[/C][C] 14.76[/C][C] 2.242[/C][/ROW]
[ROW][C]134[/C][C] 14[/C][C] 13.32[/C][C] 0.6792[/C][/ROW]
[ROW][C]135[/C][C] 12[/C][C] 14.26[/C][C]-2.262[/C][/ROW]
[ROW][C]136[/C][C] 15[/C][C] 14.56[/C][C] 0.4376[/C][/ROW]
[ROW][C]137[/C][C] 14[/C][C] 13.7[/C][C] 0.2978[/C][/ROW]
[ROW][C]138[/C][C] 14[/C][C] 13.27[/C][C] 0.7297[/C][/ROW]
[ROW][C]139[/C][C] 13[/C][C] 13.75[/C][C]-0.7472[/C][/ROW]
[ROW][C]140[/C][C] 13[/C][C] 13.71[/C][C]-0.712[/C][/ROW]
[ROW][C]141[/C][C] 14[/C][C] 13.06[/C][C] 0.9443[/C][/ROW]
[ROW][C]142[/C][C] 13[/C][C] 13.24[/C][C]-0.2351[/C][/ROW]
[ROW][C]143[/C][C] 13[/C][C] 14.73[/C][C]-1.731[/C][/ROW]
[ROW][C]144[/C][C] 15[/C][C] 14.98[/C][C] 0.01654[/C][/ROW]
[ROW][C]145[/C][C] 13[/C][C] 14.28[/C][C]-1.281[/C][/ROW]
[ROW][C]146[/C][C] 14[/C][C] 14.07[/C][C]-0.06654[/C][/ROW]
[ROW][C]147[/C][C] 13[/C][C] 13.81[/C][C]-0.814[/C][/ROW]
[ROW][C]148[/C][C] 12[/C][C] 14.27[/C][C]-2.272[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297683&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297683&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 11 14.25-3.254
2 11 14.73-3.731
3 15 14.04 0.9606
4 15 14.12 0.8776
5 14 14.18-0.1791
6 13 13.73-0.7283
7 15 13.47 1.531
8 15 12.38 2.618
9 15 14.96 0.03552
10 10 12.64-2.643
11 11 14.02-3.02
12 16 15.05 0.9525
13 17 13.54 3.459
14 14 13.32 0.6819
15 13 13.93-0.9266
16 10 13.63-3.635
17 17 14.24 2.757
18 17 14.45 2.55
19 11 13.96-2.965
20 15 14.54 0.4647
21 12 13.72-1.72
22 15 13.55 1.448
23 15 14.95 0.05451
24 12 13.72-1.72
25 19 14.82 4.175
26 13 14.18-1.179
27 15 13.66 1.336
28 13 14.28-1.283
29 10 12.45-2.447
30 12 14.74-2.739
31 15 14.68 0.325
32 13 13.95-0.9455
33 18 14.38 3.615
34 15 13.74 1.261
35 14 14.52-0.5163
36 11 13.97-2.973
37 9 12.43-3.428
38 13 13.91-0.9079
39 13 14.45-1.45
40 12 13.93-1.935
41 16 14.45 1.55
42 16 14.77 1.231
43 16 13.93 2.065
44 13 14.06-1.056
45 13 14.76-1.761
46 12 12.94-0.9432
47 11 13.75-2.747
48 13 13.45-0.4496
49 15 13.48 1.523
50 13 14.05-1.048
51 14 14.04-0.03672
52 13 13.74-0.7391
53 15 13.56 1.438
54 14 13.63 0.3735
55 14 14.54-0.5353
56 13 13.63-0.6265
57 11 13.72-2.72
58 14 14.72-0.7201
59 17 13.91 3.092
60 15 15.26-0.2648
61 13 13.35-0.3452
62 12 14.47-2.469
63 11 13.32-2.318
64 18 14.95 3.055
65 15 13.63 1.373
66 18 14.12 3.878
67 16 14.64 1.363
68 12 13.96-1.965
69 14 13.47 0.5314
70 14 14.66-0.656
71 14 13.79 0.205
72 14 13.43 0.5693
73 13 13.45-0.4496
74 12 13.38-1.382
75 13 14.14-1.141
76 17 14.24 2.757
77 13 12.85 0.1507
78 15 14.11 0.8857
79 13 14.36-1.364
80 14 13.96 0.03548
81 17 13.43 3.569
82 15 14.24 0.7568
83 13 13.74-0.7391
84 14 14.24-0.2432
85 17 13.53 3.467
86 8 12.99-4.991
87 15 13.54 1.459
88 15 14.47 0.5314
89 15 13.26 1.738
90 14 13.22 0.7758
91 18 13.66 4.336
92 14 14.26-0.2621
93 19 14.03 4.971
94 16 14.76 1.242
95 17 14.33 2.671
96 18 14.72 3.28
97 13 14.12-1.122
98 10 14.06-4.056
99 14 14.76-0.758
100 13 14.66-1.656
101 12 12.81-0.814
102 13 14.46-1.46
103 12 14.75-2.75
104 13 15.24-2.238
105 12 14.23-2.227
106 14 13.61 0.3924
107 17 14.43 2.569
108 14 13.26 0.7378
109 12 15.13-3.133
110 14 14.23-0.235
111 17 14.33 2.671
112 13 13.72-0.7201
113 14 14.24-0.2432
114 11 13.51-2.506
115 17 13.83 3.167
116 15 13.46 1.542
117 10 14.12-4.122
118 15 14.64 0.363
119 16 13.39 2.607
120 17 15.48 1.521
121 12 13.73-1.728
122 15 13.25 1.749
123 10 13.44-3.439
124 13 14.25-1.254
125 17 13.26 3.738
126 16 13.79 2.205
127 15 14.03 0.9714
128 16 14.02 1.98
129 16 13.13 2.869
130 15 13.95 1.054
131 16 14.55 1.446
132 14 14.03-0.02858
133 17 14.76 2.242
134 14 13.32 0.6792
135 12 14.26-2.262
136 15 14.56 0.4376
137 14 13.7 0.2978
138 14 13.27 0.7297
139 13 13.75-0.7472
140 13 13.71-0.712
141 14 13.06 0.9443
142 13 13.24-0.2351
143 13 14.73-1.731
144 15 14.98 0.01654
145 13 14.28-1.281
146 14 14.07-0.06654
147 13 13.81-0.814
148 12 14.27-2.272







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.4438 0.8876 0.5562
9 0.4895 0.9791 0.5105
10 0.7357 0.5286 0.2643
11 0.821 0.358 0.179
12 0.8541 0.2918 0.1459
13 0.9104 0.1792 0.0896
14 0.869 0.2619 0.131
15 0.8151 0.3697 0.1849
16 0.8928 0.2144 0.1072
17 0.9134 0.1732 0.08659
18 0.9167 0.1666 0.08329
19 0.9189 0.1623 0.08113
20 0.9046 0.1908 0.09541
21 0.8989 0.2022 0.1011
22 0.8848 0.2304 0.1152
23 0.8472 0.3056 0.1528
24 0.8303 0.3395 0.1697
25 0.9205 0.1591 0.07953
26 0.8962 0.2075 0.1038
27 0.8886 0.2229 0.1114
28 0.8649 0.2701 0.1351
29 0.8642 0.2717 0.1358
30 0.8887 0.2227 0.1113
31 0.8595 0.281 0.1405
32 0.8271 0.3458 0.1729
33 0.8744 0.2512 0.1256
34 0.8579 0.2842 0.1421
35 0.8265 0.347 0.1735
36 0.8423 0.3154 0.1577
37 0.8741 0.2519 0.1259
38 0.8488 0.3024 0.1512
39 0.8287 0.3427 0.1713
40 0.8176 0.3647 0.1824
41 0.8048 0.3905 0.1952
42 0.7821 0.4357 0.2179
43 0.7865 0.427 0.2135
44 0.7539 0.4923 0.2461
45 0.733 0.534 0.267
46 0.6961 0.6079 0.3039
47 0.7193 0.5615 0.2807
48 0.6775 0.645 0.3225
49 0.6821 0.6358 0.3179
50 0.6443 0.7115 0.3557
51 0.5958 0.8085 0.4042
52 0.5503 0.8995 0.4497
53 0.5427 0.9145 0.4573
54 0.496 0.9919 0.504
55 0.4489 0.8977 0.5511
56 0.4037 0.8075 0.5963
57 0.4326 0.8653 0.5674
58 0.3901 0.7802 0.6099
59 0.4476 0.8952 0.5524
60 0.4009 0.8017 0.5991
61 0.3572 0.7145 0.6428
62 0.3714 0.7429 0.6286
63 0.3806 0.7613 0.6194
64 0.4424 0.8847 0.5576
65 0.4163 0.8327 0.5837
66 0.5505 0.8991 0.4495
67 0.5268 0.9465 0.4732
68 0.5182 0.9636 0.4818
69 0.4837 0.9674 0.5163
70 0.4392 0.8784 0.5608
71 0.3931 0.7862 0.6069
72 0.3521 0.7043 0.6479
73 0.3127 0.6254 0.6873
74 0.293 0.586 0.707
75 0.2679 0.5357 0.7321
76 0.3034 0.6068 0.6966
77 0.2746 0.5492 0.7254
78 0.2416 0.4831 0.7584
79 0.2289 0.4579 0.7711
80 0.1952 0.3904 0.8048
81 0.2765 0.553 0.7235
82 0.2424 0.4849 0.7576
83 0.211 0.4219 0.789
84 0.1781 0.3561 0.8219
85 0.2359 0.4717 0.7641
86 0.4572 0.9145 0.5428
87 0.4271 0.8542 0.5729
88 0.3827 0.7655 0.6173
89 0.3654 0.7309 0.6346
90 0.3251 0.6501 0.6749
91 0.4955 0.991 0.5045
92 0.4475 0.8949 0.5525
93 0.6772 0.6457 0.3229
94 0.6505 0.699 0.3495
95 0.6781 0.6438 0.3219
96 0.7972 0.4056 0.2028
97 0.7762 0.4475 0.2238
98 0.895 0.21 0.105
99 0.8722 0.2555 0.1278
100 0.8528 0.2945 0.1472
101 0.8386 0.3228 0.1614
102 0.8173 0.3653 0.1827
103 0.8407 0.3186 0.1593
104 0.8382 0.3235 0.1618
105 0.8448 0.3104 0.1552
106 0.8097 0.3806 0.1903
107 0.8831 0.2339 0.1169
108 0.856 0.2881 0.144
109 0.8578 0.2844 0.1422
110 0.8226 0.3548 0.1774
111 0.8358 0.3284 0.1642
112 0.7983 0.4034 0.2017
113 0.7548 0.4905 0.2452
114 0.7822 0.4356 0.2178
115 0.8146 0.3708 0.1854
116 0.7955 0.409 0.2045
117 0.9544 0.09129 0.04564
118 0.9599 0.08016 0.04008
119 0.9511 0.0978 0.0489
120 0.9553 0.0894 0.0447
121 0.942 0.1159 0.05797
122 0.9395 0.1211 0.06053
123 0.9616 0.07672 0.03836
124 0.9541 0.09173 0.04587
125 0.9799 0.04017 0.02008
126 0.9862 0.02768 0.01384
127 0.9821 0.03578 0.01789
128 0.9876 0.02476 0.01238
129 0.9929 0.01422 0.007111
130 0.9924 0.01524 0.007618
131 0.9891 0.02183 0.01091
132 0.9813 0.03739 0.0187
133 0.9996 0.0008334 0.0004167
134 0.9989 0.002208 0.001104
135 0.9995 0.0009705 0.0004853
136 0.9992 0.001511 0.0007554
137 0.9976 0.004701 0.002351
138 0.993 0.01398 0.006991
139 0.9759 0.04817 0.02409
140 0.9253 0.1494 0.07469

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.4438 &  0.8876 &  0.5562 \tabularnewline
9 &  0.4895 &  0.9791 &  0.5105 \tabularnewline
10 &  0.7357 &  0.5286 &  0.2643 \tabularnewline
11 &  0.821 &  0.358 &  0.179 \tabularnewline
12 &  0.8541 &  0.2918 &  0.1459 \tabularnewline
13 &  0.9104 &  0.1792 &  0.0896 \tabularnewline
14 &  0.869 &  0.2619 &  0.131 \tabularnewline
15 &  0.8151 &  0.3697 &  0.1849 \tabularnewline
16 &  0.8928 &  0.2144 &  0.1072 \tabularnewline
17 &  0.9134 &  0.1732 &  0.08659 \tabularnewline
18 &  0.9167 &  0.1666 &  0.08329 \tabularnewline
19 &  0.9189 &  0.1623 &  0.08113 \tabularnewline
20 &  0.9046 &  0.1908 &  0.09541 \tabularnewline
21 &  0.8989 &  0.2022 &  0.1011 \tabularnewline
22 &  0.8848 &  0.2304 &  0.1152 \tabularnewline
23 &  0.8472 &  0.3056 &  0.1528 \tabularnewline
24 &  0.8303 &  0.3395 &  0.1697 \tabularnewline
25 &  0.9205 &  0.1591 &  0.07953 \tabularnewline
26 &  0.8962 &  0.2075 &  0.1038 \tabularnewline
27 &  0.8886 &  0.2229 &  0.1114 \tabularnewline
28 &  0.8649 &  0.2701 &  0.1351 \tabularnewline
29 &  0.8642 &  0.2717 &  0.1358 \tabularnewline
30 &  0.8887 &  0.2227 &  0.1113 \tabularnewline
31 &  0.8595 &  0.281 &  0.1405 \tabularnewline
32 &  0.8271 &  0.3458 &  0.1729 \tabularnewline
33 &  0.8744 &  0.2512 &  0.1256 \tabularnewline
34 &  0.8579 &  0.2842 &  0.1421 \tabularnewline
35 &  0.8265 &  0.347 &  0.1735 \tabularnewline
36 &  0.8423 &  0.3154 &  0.1577 \tabularnewline
37 &  0.8741 &  0.2519 &  0.1259 \tabularnewline
38 &  0.8488 &  0.3024 &  0.1512 \tabularnewline
39 &  0.8287 &  0.3427 &  0.1713 \tabularnewline
40 &  0.8176 &  0.3647 &  0.1824 \tabularnewline
41 &  0.8048 &  0.3905 &  0.1952 \tabularnewline
42 &  0.7821 &  0.4357 &  0.2179 \tabularnewline
43 &  0.7865 &  0.427 &  0.2135 \tabularnewline
44 &  0.7539 &  0.4923 &  0.2461 \tabularnewline
45 &  0.733 &  0.534 &  0.267 \tabularnewline
46 &  0.6961 &  0.6079 &  0.3039 \tabularnewline
47 &  0.7193 &  0.5615 &  0.2807 \tabularnewline
48 &  0.6775 &  0.645 &  0.3225 \tabularnewline
49 &  0.6821 &  0.6358 &  0.3179 \tabularnewline
50 &  0.6443 &  0.7115 &  0.3557 \tabularnewline
51 &  0.5958 &  0.8085 &  0.4042 \tabularnewline
52 &  0.5503 &  0.8995 &  0.4497 \tabularnewline
53 &  0.5427 &  0.9145 &  0.4573 \tabularnewline
54 &  0.496 &  0.9919 &  0.504 \tabularnewline
55 &  0.4489 &  0.8977 &  0.5511 \tabularnewline
56 &  0.4037 &  0.8075 &  0.5963 \tabularnewline
57 &  0.4326 &  0.8653 &  0.5674 \tabularnewline
58 &  0.3901 &  0.7802 &  0.6099 \tabularnewline
59 &  0.4476 &  0.8952 &  0.5524 \tabularnewline
60 &  0.4009 &  0.8017 &  0.5991 \tabularnewline
61 &  0.3572 &  0.7145 &  0.6428 \tabularnewline
62 &  0.3714 &  0.7429 &  0.6286 \tabularnewline
63 &  0.3806 &  0.7613 &  0.6194 \tabularnewline
64 &  0.4424 &  0.8847 &  0.5576 \tabularnewline
65 &  0.4163 &  0.8327 &  0.5837 \tabularnewline
66 &  0.5505 &  0.8991 &  0.4495 \tabularnewline
67 &  0.5268 &  0.9465 &  0.4732 \tabularnewline
68 &  0.5182 &  0.9636 &  0.4818 \tabularnewline
69 &  0.4837 &  0.9674 &  0.5163 \tabularnewline
70 &  0.4392 &  0.8784 &  0.5608 \tabularnewline
71 &  0.3931 &  0.7862 &  0.6069 \tabularnewline
72 &  0.3521 &  0.7043 &  0.6479 \tabularnewline
73 &  0.3127 &  0.6254 &  0.6873 \tabularnewline
74 &  0.293 &  0.586 &  0.707 \tabularnewline
75 &  0.2679 &  0.5357 &  0.7321 \tabularnewline
76 &  0.3034 &  0.6068 &  0.6966 \tabularnewline
77 &  0.2746 &  0.5492 &  0.7254 \tabularnewline
78 &  0.2416 &  0.4831 &  0.7584 \tabularnewline
79 &  0.2289 &  0.4579 &  0.7711 \tabularnewline
80 &  0.1952 &  0.3904 &  0.8048 \tabularnewline
81 &  0.2765 &  0.553 &  0.7235 \tabularnewline
82 &  0.2424 &  0.4849 &  0.7576 \tabularnewline
83 &  0.211 &  0.4219 &  0.789 \tabularnewline
84 &  0.1781 &  0.3561 &  0.8219 \tabularnewline
85 &  0.2359 &  0.4717 &  0.7641 \tabularnewline
86 &  0.4572 &  0.9145 &  0.5428 \tabularnewline
87 &  0.4271 &  0.8542 &  0.5729 \tabularnewline
88 &  0.3827 &  0.7655 &  0.6173 \tabularnewline
89 &  0.3654 &  0.7309 &  0.6346 \tabularnewline
90 &  0.3251 &  0.6501 &  0.6749 \tabularnewline
91 &  0.4955 &  0.991 &  0.5045 \tabularnewline
92 &  0.4475 &  0.8949 &  0.5525 \tabularnewline
93 &  0.6772 &  0.6457 &  0.3229 \tabularnewline
94 &  0.6505 &  0.699 &  0.3495 \tabularnewline
95 &  0.6781 &  0.6438 &  0.3219 \tabularnewline
96 &  0.7972 &  0.4056 &  0.2028 \tabularnewline
97 &  0.7762 &  0.4475 &  0.2238 \tabularnewline
98 &  0.895 &  0.21 &  0.105 \tabularnewline
99 &  0.8722 &  0.2555 &  0.1278 \tabularnewline
100 &  0.8528 &  0.2945 &  0.1472 \tabularnewline
101 &  0.8386 &  0.3228 &  0.1614 \tabularnewline
102 &  0.8173 &  0.3653 &  0.1827 \tabularnewline
103 &  0.8407 &  0.3186 &  0.1593 \tabularnewline
104 &  0.8382 &  0.3235 &  0.1618 \tabularnewline
105 &  0.8448 &  0.3104 &  0.1552 \tabularnewline
106 &  0.8097 &  0.3806 &  0.1903 \tabularnewline
107 &  0.8831 &  0.2339 &  0.1169 \tabularnewline
108 &  0.856 &  0.2881 &  0.144 \tabularnewline
109 &  0.8578 &  0.2844 &  0.1422 \tabularnewline
110 &  0.8226 &  0.3548 &  0.1774 \tabularnewline
111 &  0.8358 &  0.3284 &  0.1642 \tabularnewline
112 &  0.7983 &  0.4034 &  0.2017 \tabularnewline
113 &  0.7548 &  0.4905 &  0.2452 \tabularnewline
114 &  0.7822 &  0.4356 &  0.2178 \tabularnewline
115 &  0.8146 &  0.3708 &  0.1854 \tabularnewline
116 &  0.7955 &  0.409 &  0.2045 \tabularnewline
117 &  0.9544 &  0.09129 &  0.04564 \tabularnewline
118 &  0.9599 &  0.08016 &  0.04008 \tabularnewline
119 &  0.9511 &  0.0978 &  0.0489 \tabularnewline
120 &  0.9553 &  0.0894 &  0.0447 \tabularnewline
121 &  0.942 &  0.1159 &  0.05797 \tabularnewline
122 &  0.9395 &  0.1211 &  0.06053 \tabularnewline
123 &  0.9616 &  0.07672 &  0.03836 \tabularnewline
124 &  0.9541 &  0.09173 &  0.04587 \tabularnewline
125 &  0.9799 &  0.04017 &  0.02008 \tabularnewline
126 &  0.9862 &  0.02768 &  0.01384 \tabularnewline
127 &  0.9821 &  0.03578 &  0.01789 \tabularnewline
128 &  0.9876 &  0.02476 &  0.01238 \tabularnewline
129 &  0.9929 &  0.01422 &  0.007111 \tabularnewline
130 &  0.9924 &  0.01524 &  0.007618 \tabularnewline
131 &  0.9891 &  0.02183 &  0.01091 \tabularnewline
132 &  0.9813 &  0.03739 &  0.0187 \tabularnewline
133 &  0.9996 &  0.0008334 &  0.0004167 \tabularnewline
134 &  0.9989 &  0.002208 &  0.001104 \tabularnewline
135 &  0.9995 &  0.0009705 &  0.0004853 \tabularnewline
136 &  0.9992 &  0.001511 &  0.0007554 \tabularnewline
137 &  0.9976 &  0.004701 &  0.002351 \tabularnewline
138 &  0.993 &  0.01398 &  0.006991 \tabularnewline
139 &  0.9759 &  0.04817 &  0.02409 \tabularnewline
140 &  0.9253 &  0.1494 &  0.07469 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297683&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.4438[/C][C] 0.8876[/C][C] 0.5562[/C][/ROW]
[ROW][C]9[/C][C] 0.4895[/C][C] 0.9791[/C][C] 0.5105[/C][/ROW]
[ROW][C]10[/C][C] 0.7357[/C][C] 0.5286[/C][C] 0.2643[/C][/ROW]
[ROW][C]11[/C][C] 0.821[/C][C] 0.358[/C][C] 0.179[/C][/ROW]
[ROW][C]12[/C][C] 0.8541[/C][C] 0.2918[/C][C] 0.1459[/C][/ROW]
[ROW][C]13[/C][C] 0.9104[/C][C] 0.1792[/C][C] 0.0896[/C][/ROW]
[ROW][C]14[/C][C] 0.869[/C][C] 0.2619[/C][C] 0.131[/C][/ROW]
[ROW][C]15[/C][C] 0.8151[/C][C] 0.3697[/C][C] 0.1849[/C][/ROW]
[ROW][C]16[/C][C] 0.8928[/C][C] 0.2144[/C][C] 0.1072[/C][/ROW]
[ROW][C]17[/C][C] 0.9134[/C][C] 0.1732[/C][C] 0.08659[/C][/ROW]
[ROW][C]18[/C][C] 0.9167[/C][C] 0.1666[/C][C] 0.08329[/C][/ROW]
[ROW][C]19[/C][C] 0.9189[/C][C] 0.1623[/C][C] 0.08113[/C][/ROW]
[ROW][C]20[/C][C] 0.9046[/C][C] 0.1908[/C][C] 0.09541[/C][/ROW]
[ROW][C]21[/C][C] 0.8989[/C][C] 0.2022[/C][C] 0.1011[/C][/ROW]
[ROW][C]22[/C][C] 0.8848[/C][C] 0.2304[/C][C] 0.1152[/C][/ROW]
[ROW][C]23[/C][C] 0.8472[/C][C] 0.3056[/C][C] 0.1528[/C][/ROW]
[ROW][C]24[/C][C] 0.8303[/C][C] 0.3395[/C][C] 0.1697[/C][/ROW]
[ROW][C]25[/C][C] 0.9205[/C][C] 0.1591[/C][C] 0.07953[/C][/ROW]
[ROW][C]26[/C][C] 0.8962[/C][C] 0.2075[/C][C] 0.1038[/C][/ROW]
[ROW][C]27[/C][C] 0.8886[/C][C] 0.2229[/C][C] 0.1114[/C][/ROW]
[ROW][C]28[/C][C] 0.8649[/C][C] 0.2701[/C][C] 0.1351[/C][/ROW]
[ROW][C]29[/C][C] 0.8642[/C][C] 0.2717[/C][C] 0.1358[/C][/ROW]
[ROW][C]30[/C][C] 0.8887[/C][C] 0.2227[/C][C] 0.1113[/C][/ROW]
[ROW][C]31[/C][C] 0.8595[/C][C] 0.281[/C][C] 0.1405[/C][/ROW]
[ROW][C]32[/C][C] 0.8271[/C][C] 0.3458[/C][C] 0.1729[/C][/ROW]
[ROW][C]33[/C][C] 0.8744[/C][C] 0.2512[/C][C] 0.1256[/C][/ROW]
[ROW][C]34[/C][C] 0.8579[/C][C] 0.2842[/C][C] 0.1421[/C][/ROW]
[ROW][C]35[/C][C] 0.8265[/C][C] 0.347[/C][C] 0.1735[/C][/ROW]
[ROW][C]36[/C][C] 0.8423[/C][C] 0.3154[/C][C] 0.1577[/C][/ROW]
[ROW][C]37[/C][C] 0.8741[/C][C] 0.2519[/C][C] 0.1259[/C][/ROW]
[ROW][C]38[/C][C] 0.8488[/C][C] 0.3024[/C][C] 0.1512[/C][/ROW]
[ROW][C]39[/C][C] 0.8287[/C][C] 0.3427[/C][C] 0.1713[/C][/ROW]
[ROW][C]40[/C][C] 0.8176[/C][C] 0.3647[/C][C] 0.1824[/C][/ROW]
[ROW][C]41[/C][C] 0.8048[/C][C] 0.3905[/C][C] 0.1952[/C][/ROW]
[ROW][C]42[/C][C] 0.7821[/C][C] 0.4357[/C][C] 0.2179[/C][/ROW]
[ROW][C]43[/C][C] 0.7865[/C][C] 0.427[/C][C] 0.2135[/C][/ROW]
[ROW][C]44[/C][C] 0.7539[/C][C] 0.4923[/C][C] 0.2461[/C][/ROW]
[ROW][C]45[/C][C] 0.733[/C][C] 0.534[/C][C] 0.267[/C][/ROW]
[ROW][C]46[/C][C] 0.6961[/C][C] 0.6079[/C][C] 0.3039[/C][/ROW]
[ROW][C]47[/C][C] 0.7193[/C][C] 0.5615[/C][C] 0.2807[/C][/ROW]
[ROW][C]48[/C][C] 0.6775[/C][C] 0.645[/C][C] 0.3225[/C][/ROW]
[ROW][C]49[/C][C] 0.6821[/C][C] 0.6358[/C][C] 0.3179[/C][/ROW]
[ROW][C]50[/C][C] 0.6443[/C][C] 0.7115[/C][C] 0.3557[/C][/ROW]
[ROW][C]51[/C][C] 0.5958[/C][C] 0.8085[/C][C] 0.4042[/C][/ROW]
[ROW][C]52[/C][C] 0.5503[/C][C] 0.8995[/C][C] 0.4497[/C][/ROW]
[ROW][C]53[/C][C] 0.5427[/C][C] 0.9145[/C][C] 0.4573[/C][/ROW]
[ROW][C]54[/C][C] 0.496[/C][C] 0.9919[/C][C] 0.504[/C][/ROW]
[ROW][C]55[/C][C] 0.4489[/C][C] 0.8977[/C][C] 0.5511[/C][/ROW]
[ROW][C]56[/C][C] 0.4037[/C][C] 0.8075[/C][C] 0.5963[/C][/ROW]
[ROW][C]57[/C][C] 0.4326[/C][C] 0.8653[/C][C] 0.5674[/C][/ROW]
[ROW][C]58[/C][C] 0.3901[/C][C] 0.7802[/C][C] 0.6099[/C][/ROW]
[ROW][C]59[/C][C] 0.4476[/C][C] 0.8952[/C][C] 0.5524[/C][/ROW]
[ROW][C]60[/C][C] 0.4009[/C][C] 0.8017[/C][C] 0.5991[/C][/ROW]
[ROW][C]61[/C][C] 0.3572[/C][C] 0.7145[/C][C] 0.6428[/C][/ROW]
[ROW][C]62[/C][C] 0.3714[/C][C] 0.7429[/C][C] 0.6286[/C][/ROW]
[ROW][C]63[/C][C] 0.3806[/C][C] 0.7613[/C][C] 0.6194[/C][/ROW]
[ROW][C]64[/C][C] 0.4424[/C][C] 0.8847[/C][C] 0.5576[/C][/ROW]
[ROW][C]65[/C][C] 0.4163[/C][C] 0.8327[/C][C] 0.5837[/C][/ROW]
[ROW][C]66[/C][C] 0.5505[/C][C] 0.8991[/C][C] 0.4495[/C][/ROW]
[ROW][C]67[/C][C] 0.5268[/C][C] 0.9465[/C][C] 0.4732[/C][/ROW]
[ROW][C]68[/C][C] 0.5182[/C][C] 0.9636[/C][C] 0.4818[/C][/ROW]
[ROW][C]69[/C][C] 0.4837[/C][C] 0.9674[/C][C] 0.5163[/C][/ROW]
[ROW][C]70[/C][C] 0.4392[/C][C] 0.8784[/C][C] 0.5608[/C][/ROW]
[ROW][C]71[/C][C] 0.3931[/C][C] 0.7862[/C][C] 0.6069[/C][/ROW]
[ROW][C]72[/C][C] 0.3521[/C][C] 0.7043[/C][C] 0.6479[/C][/ROW]
[ROW][C]73[/C][C] 0.3127[/C][C] 0.6254[/C][C] 0.6873[/C][/ROW]
[ROW][C]74[/C][C] 0.293[/C][C] 0.586[/C][C] 0.707[/C][/ROW]
[ROW][C]75[/C][C] 0.2679[/C][C] 0.5357[/C][C] 0.7321[/C][/ROW]
[ROW][C]76[/C][C] 0.3034[/C][C] 0.6068[/C][C] 0.6966[/C][/ROW]
[ROW][C]77[/C][C] 0.2746[/C][C] 0.5492[/C][C] 0.7254[/C][/ROW]
[ROW][C]78[/C][C] 0.2416[/C][C] 0.4831[/C][C] 0.7584[/C][/ROW]
[ROW][C]79[/C][C] 0.2289[/C][C] 0.4579[/C][C] 0.7711[/C][/ROW]
[ROW][C]80[/C][C] 0.1952[/C][C] 0.3904[/C][C] 0.8048[/C][/ROW]
[ROW][C]81[/C][C] 0.2765[/C][C] 0.553[/C][C] 0.7235[/C][/ROW]
[ROW][C]82[/C][C] 0.2424[/C][C] 0.4849[/C][C] 0.7576[/C][/ROW]
[ROW][C]83[/C][C] 0.211[/C][C] 0.4219[/C][C] 0.789[/C][/ROW]
[ROW][C]84[/C][C] 0.1781[/C][C] 0.3561[/C][C] 0.8219[/C][/ROW]
[ROW][C]85[/C][C] 0.2359[/C][C] 0.4717[/C][C] 0.7641[/C][/ROW]
[ROW][C]86[/C][C] 0.4572[/C][C] 0.9145[/C][C] 0.5428[/C][/ROW]
[ROW][C]87[/C][C] 0.4271[/C][C] 0.8542[/C][C] 0.5729[/C][/ROW]
[ROW][C]88[/C][C] 0.3827[/C][C] 0.7655[/C][C] 0.6173[/C][/ROW]
[ROW][C]89[/C][C] 0.3654[/C][C] 0.7309[/C][C] 0.6346[/C][/ROW]
[ROW][C]90[/C][C] 0.3251[/C][C] 0.6501[/C][C] 0.6749[/C][/ROW]
[ROW][C]91[/C][C] 0.4955[/C][C] 0.991[/C][C] 0.5045[/C][/ROW]
[ROW][C]92[/C][C] 0.4475[/C][C] 0.8949[/C][C] 0.5525[/C][/ROW]
[ROW][C]93[/C][C] 0.6772[/C][C] 0.6457[/C][C] 0.3229[/C][/ROW]
[ROW][C]94[/C][C] 0.6505[/C][C] 0.699[/C][C] 0.3495[/C][/ROW]
[ROW][C]95[/C][C] 0.6781[/C][C] 0.6438[/C][C] 0.3219[/C][/ROW]
[ROW][C]96[/C][C] 0.7972[/C][C] 0.4056[/C][C] 0.2028[/C][/ROW]
[ROW][C]97[/C][C] 0.7762[/C][C] 0.4475[/C][C] 0.2238[/C][/ROW]
[ROW][C]98[/C][C] 0.895[/C][C] 0.21[/C][C] 0.105[/C][/ROW]
[ROW][C]99[/C][C] 0.8722[/C][C] 0.2555[/C][C] 0.1278[/C][/ROW]
[ROW][C]100[/C][C] 0.8528[/C][C] 0.2945[/C][C] 0.1472[/C][/ROW]
[ROW][C]101[/C][C] 0.8386[/C][C] 0.3228[/C][C] 0.1614[/C][/ROW]
[ROW][C]102[/C][C] 0.8173[/C][C] 0.3653[/C][C] 0.1827[/C][/ROW]
[ROW][C]103[/C][C] 0.8407[/C][C] 0.3186[/C][C] 0.1593[/C][/ROW]
[ROW][C]104[/C][C] 0.8382[/C][C] 0.3235[/C][C] 0.1618[/C][/ROW]
[ROW][C]105[/C][C] 0.8448[/C][C] 0.3104[/C][C] 0.1552[/C][/ROW]
[ROW][C]106[/C][C] 0.8097[/C][C] 0.3806[/C][C] 0.1903[/C][/ROW]
[ROW][C]107[/C][C] 0.8831[/C][C] 0.2339[/C][C] 0.1169[/C][/ROW]
[ROW][C]108[/C][C] 0.856[/C][C] 0.2881[/C][C] 0.144[/C][/ROW]
[ROW][C]109[/C][C] 0.8578[/C][C] 0.2844[/C][C] 0.1422[/C][/ROW]
[ROW][C]110[/C][C] 0.8226[/C][C] 0.3548[/C][C] 0.1774[/C][/ROW]
[ROW][C]111[/C][C] 0.8358[/C][C] 0.3284[/C][C] 0.1642[/C][/ROW]
[ROW][C]112[/C][C] 0.7983[/C][C] 0.4034[/C][C] 0.2017[/C][/ROW]
[ROW][C]113[/C][C] 0.7548[/C][C] 0.4905[/C][C] 0.2452[/C][/ROW]
[ROW][C]114[/C][C] 0.7822[/C][C] 0.4356[/C][C] 0.2178[/C][/ROW]
[ROW][C]115[/C][C] 0.8146[/C][C] 0.3708[/C][C] 0.1854[/C][/ROW]
[ROW][C]116[/C][C] 0.7955[/C][C] 0.409[/C][C] 0.2045[/C][/ROW]
[ROW][C]117[/C][C] 0.9544[/C][C] 0.09129[/C][C] 0.04564[/C][/ROW]
[ROW][C]118[/C][C] 0.9599[/C][C] 0.08016[/C][C] 0.04008[/C][/ROW]
[ROW][C]119[/C][C] 0.9511[/C][C] 0.0978[/C][C] 0.0489[/C][/ROW]
[ROW][C]120[/C][C] 0.9553[/C][C] 0.0894[/C][C] 0.0447[/C][/ROW]
[ROW][C]121[/C][C] 0.942[/C][C] 0.1159[/C][C] 0.05797[/C][/ROW]
[ROW][C]122[/C][C] 0.9395[/C][C] 0.1211[/C][C] 0.06053[/C][/ROW]
[ROW][C]123[/C][C] 0.9616[/C][C] 0.07672[/C][C] 0.03836[/C][/ROW]
[ROW][C]124[/C][C] 0.9541[/C][C] 0.09173[/C][C] 0.04587[/C][/ROW]
[ROW][C]125[/C][C] 0.9799[/C][C] 0.04017[/C][C] 0.02008[/C][/ROW]
[ROW][C]126[/C][C] 0.9862[/C][C] 0.02768[/C][C] 0.01384[/C][/ROW]
[ROW][C]127[/C][C] 0.9821[/C][C] 0.03578[/C][C] 0.01789[/C][/ROW]
[ROW][C]128[/C][C] 0.9876[/C][C] 0.02476[/C][C] 0.01238[/C][/ROW]
[ROW][C]129[/C][C] 0.9929[/C][C] 0.01422[/C][C] 0.007111[/C][/ROW]
[ROW][C]130[/C][C] 0.9924[/C][C] 0.01524[/C][C] 0.007618[/C][/ROW]
[ROW][C]131[/C][C] 0.9891[/C][C] 0.02183[/C][C] 0.01091[/C][/ROW]
[ROW][C]132[/C][C] 0.9813[/C][C] 0.03739[/C][C] 0.0187[/C][/ROW]
[ROW][C]133[/C][C] 0.9996[/C][C] 0.0008334[/C][C] 0.0004167[/C][/ROW]
[ROW][C]134[/C][C] 0.9989[/C][C] 0.002208[/C][C] 0.001104[/C][/ROW]
[ROW][C]135[/C][C] 0.9995[/C][C] 0.0009705[/C][C] 0.0004853[/C][/ROW]
[ROW][C]136[/C][C] 0.9992[/C][C] 0.001511[/C][C] 0.0007554[/C][/ROW]
[ROW][C]137[/C][C] 0.9976[/C][C] 0.004701[/C][C] 0.002351[/C][/ROW]
[ROW][C]138[/C][C] 0.993[/C][C] 0.01398[/C][C] 0.006991[/C][/ROW]
[ROW][C]139[/C][C] 0.9759[/C][C] 0.04817[/C][C] 0.02409[/C][/ROW]
[ROW][C]140[/C][C] 0.9253[/C][C] 0.1494[/C][C] 0.07469[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297683&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297683&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.4438 0.8876 0.5562
9 0.4895 0.9791 0.5105
10 0.7357 0.5286 0.2643
11 0.821 0.358 0.179
12 0.8541 0.2918 0.1459
13 0.9104 0.1792 0.0896
14 0.869 0.2619 0.131
15 0.8151 0.3697 0.1849
16 0.8928 0.2144 0.1072
17 0.9134 0.1732 0.08659
18 0.9167 0.1666 0.08329
19 0.9189 0.1623 0.08113
20 0.9046 0.1908 0.09541
21 0.8989 0.2022 0.1011
22 0.8848 0.2304 0.1152
23 0.8472 0.3056 0.1528
24 0.8303 0.3395 0.1697
25 0.9205 0.1591 0.07953
26 0.8962 0.2075 0.1038
27 0.8886 0.2229 0.1114
28 0.8649 0.2701 0.1351
29 0.8642 0.2717 0.1358
30 0.8887 0.2227 0.1113
31 0.8595 0.281 0.1405
32 0.8271 0.3458 0.1729
33 0.8744 0.2512 0.1256
34 0.8579 0.2842 0.1421
35 0.8265 0.347 0.1735
36 0.8423 0.3154 0.1577
37 0.8741 0.2519 0.1259
38 0.8488 0.3024 0.1512
39 0.8287 0.3427 0.1713
40 0.8176 0.3647 0.1824
41 0.8048 0.3905 0.1952
42 0.7821 0.4357 0.2179
43 0.7865 0.427 0.2135
44 0.7539 0.4923 0.2461
45 0.733 0.534 0.267
46 0.6961 0.6079 0.3039
47 0.7193 0.5615 0.2807
48 0.6775 0.645 0.3225
49 0.6821 0.6358 0.3179
50 0.6443 0.7115 0.3557
51 0.5958 0.8085 0.4042
52 0.5503 0.8995 0.4497
53 0.5427 0.9145 0.4573
54 0.496 0.9919 0.504
55 0.4489 0.8977 0.5511
56 0.4037 0.8075 0.5963
57 0.4326 0.8653 0.5674
58 0.3901 0.7802 0.6099
59 0.4476 0.8952 0.5524
60 0.4009 0.8017 0.5991
61 0.3572 0.7145 0.6428
62 0.3714 0.7429 0.6286
63 0.3806 0.7613 0.6194
64 0.4424 0.8847 0.5576
65 0.4163 0.8327 0.5837
66 0.5505 0.8991 0.4495
67 0.5268 0.9465 0.4732
68 0.5182 0.9636 0.4818
69 0.4837 0.9674 0.5163
70 0.4392 0.8784 0.5608
71 0.3931 0.7862 0.6069
72 0.3521 0.7043 0.6479
73 0.3127 0.6254 0.6873
74 0.293 0.586 0.707
75 0.2679 0.5357 0.7321
76 0.3034 0.6068 0.6966
77 0.2746 0.5492 0.7254
78 0.2416 0.4831 0.7584
79 0.2289 0.4579 0.7711
80 0.1952 0.3904 0.8048
81 0.2765 0.553 0.7235
82 0.2424 0.4849 0.7576
83 0.211 0.4219 0.789
84 0.1781 0.3561 0.8219
85 0.2359 0.4717 0.7641
86 0.4572 0.9145 0.5428
87 0.4271 0.8542 0.5729
88 0.3827 0.7655 0.6173
89 0.3654 0.7309 0.6346
90 0.3251 0.6501 0.6749
91 0.4955 0.991 0.5045
92 0.4475 0.8949 0.5525
93 0.6772 0.6457 0.3229
94 0.6505 0.699 0.3495
95 0.6781 0.6438 0.3219
96 0.7972 0.4056 0.2028
97 0.7762 0.4475 0.2238
98 0.895 0.21 0.105
99 0.8722 0.2555 0.1278
100 0.8528 0.2945 0.1472
101 0.8386 0.3228 0.1614
102 0.8173 0.3653 0.1827
103 0.8407 0.3186 0.1593
104 0.8382 0.3235 0.1618
105 0.8448 0.3104 0.1552
106 0.8097 0.3806 0.1903
107 0.8831 0.2339 0.1169
108 0.856 0.2881 0.144
109 0.8578 0.2844 0.1422
110 0.8226 0.3548 0.1774
111 0.8358 0.3284 0.1642
112 0.7983 0.4034 0.2017
113 0.7548 0.4905 0.2452
114 0.7822 0.4356 0.2178
115 0.8146 0.3708 0.1854
116 0.7955 0.409 0.2045
117 0.9544 0.09129 0.04564
118 0.9599 0.08016 0.04008
119 0.9511 0.0978 0.0489
120 0.9553 0.0894 0.0447
121 0.942 0.1159 0.05797
122 0.9395 0.1211 0.06053
123 0.9616 0.07672 0.03836
124 0.9541 0.09173 0.04587
125 0.9799 0.04017 0.02008
126 0.9862 0.02768 0.01384
127 0.9821 0.03578 0.01789
128 0.9876 0.02476 0.01238
129 0.9929 0.01422 0.007111
130 0.9924 0.01524 0.007618
131 0.9891 0.02183 0.01091
132 0.9813 0.03739 0.0187
133 0.9996 0.0008334 0.0004167
134 0.9989 0.002208 0.001104
135 0.9995 0.0009705 0.0004853
136 0.9992 0.001511 0.0007554
137 0.9976 0.004701 0.002351
138 0.993 0.01398 0.006991
139 0.9759 0.04817 0.02409
140 0.9253 0.1494 0.07469







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level5 0.03759NOK
5% type I error level150.112782NOK
10% type I error level210.157895NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 5 &  0.03759 & NOK \tabularnewline
5% type I error level & 15 & 0.112782 & NOK \tabularnewline
10% type I error level & 21 & 0.157895 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297683&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]5[/C][C] 0.03759[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]15[/C][C]0.112782[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]21[/C][C]0.157895[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297683&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297683&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level5 0.03759NOK
5% type I error level150.112782NOK
10% type I error level210.157895NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1667, df1 = 2, df2 = 141, p-value = 0.3144
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.2546, df1 = 8, df2 = 135, p-value = 0.00202
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6491, df1 = 2, df2 = 141, p-value = 0.1959

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1667, df1 = 2, df2 = 141, p-value = 0.3144
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.2546, df1 = 8, df2 = 135, p-value = 0.00202
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6491, df1 = 2, df2 = 141, p-value = 0.1959
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297683&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1667, df1 = 2, df2 = 141, p-value = 0.3144
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.2546, df1 = 8, df2 = 135, p-value = 0.00202
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6491, df1 = 2, df2 = 141, p-value = 0.1959
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297683&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297683&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.1667, df1 = 2, df2 = 141, p-value = 0.3144
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 3.2546, df1 = 8, df2 = 135, p-value = 0.00202
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6491, df1 = 2, df2 = 141, p-value = 0.1959







Variance Inflation Factors (Multicollinearity)
> vif
     SN1      SN2      SN3      SN4 
1.089293 1.101367 1.042475 1.080870 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     SN1      SN2      SN3      SN4 
1.089293 1.101367 1.042475 1.080870 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297683&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     SN1      SN2      SN3      SN4 
1.089293 1.101367 1.042475 1.080870 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297683&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297683&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     SN1      SN2      SN3      SN4 
1.089293 1.101367 1.042475 1.080870 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')