Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationSun, 04 Dec 2016 17:04:21 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/04/t1480867579pjxykd9ys2txfrd.htm/, Retrieved Fri, 01 Nov 2024 03:39:34 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297679, Retrieved Fri, 01 Nov 2024 03:39:34 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact140
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-04 16:04:21] [6deb082de88ded72ec069288c69f9f98] [Current]
Feedback Forum

Post a new message
Dataseries X:
5410.4
5432.2
5452.9
5477.6
5472.5
5454.9
5446
5010.6
5395.9
5360
5336.9
5333.9
5329.6
5345.7
5353.8
5377.2
5334.1
5351.1
5001
5246.4
5230
5115.8
4972.6
5077.6
5056.9
5070.7
4799.3
5076
5021.5
5026.4
4981.9
4936.6
4901.8
4853.8
4839.2
4821.3
4840.5
4847.6
4832.3
4814.7
4806.4
4803.4
4770.3
4723.4
4667.1
4636.8
4613.2
4605.3
4590.4
4595.4
4600.1
4543.3
4596.4
4575.4
4547.9
4503.7
4446.3
4401.4
4354.3
4336.3
4300.9
4304.1
4273.2
4279.9
4243.1
4199.1
4177.6
4141.7
4088.3
4021.4
3981.2
3937.2
3893.1
3864.7
3847.8
3840.8
3828.4
3798.6
3773
3737.8
3699
3674
3648.8
3645.6
3331
3674.7
3714.5
3739.7
3759.7
3708.6
3717.3
3705.3
3612.8
3665
3670.8
3687.6
3708.2
3737.2
3748.7
3785.3
3787.1
3785.8
3749.7
3716.3
3650
3096.9
3703.2
3716
3736.9
3771.9
3704
3824.2
3733.5
3827.5
3827.6
3696.5
3675.8
3757.5
3753.3
3418.7
3772.9




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297679&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297679&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297679&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.457523-4.75473e-06
2-0.086388-0.89780.185653
30.0519440.53980.295216
40.0240190.24960.401679
50.004950.05140.479535
60.0181120.18820.425526
7-0.069405-0.72130.236148
80.1396741.45150.074765
9-0.1573-1.63470.05251
100.0466840.48520.314274
110.2398852.4930.007093
12-0.409269-4.25332.2e-05
130.1510621.56990.059684
140.0685250.71210.238958
15-0.005545-0.05760.477076
16-0.043687-0.4540.325365
170.0002720.00280.498876
18-0.015331-0.15930.436854
190.0664090.69010.245793
20-0.179404-1.86440.032489

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.457523 & -4.7547 & 3e-06 \tabularnewline
2 & -0.086388 & -0.8978 & 0.185653 \tabularnewline
3 & 0.051944 & 0.5398 & 0.295216 \tabularnewline
4 & 0.024019 & 0.2496 & 0.401679 \tabularnewline
5 & 0.00495 & 0.0514 & 0.479535 \tabularnewline
6 & 0.018112 & 0.1882 & 0.425526 \tabularnewline
7 & -0.069405 & -0.7213 & 0.236148 \tabularnewline
8 & 0.139674 & 1.4515 & 0.074765 \tabularnewline
9 & -0.1573 & -1.6347 & 0.05251 \tabularnewline
10 & 0.046684 & 0.4852 & 0.314274 \tabularnewline
11 & 0.239885 & 2.493 & 0.007093 \tabularnewline
12 & -0.409269 & -4.2533 & 2.2e-05 \tabularnewline
13 & 0.151062 & 1.5699 & 0.059684 \tabularnewline
14 & 0.068525 & 0.7121 & 0.238958 \tabularnewline
15 & -0.005545 & -0.0576 & 0.477076 \tabularnewline
16 & -0.043687 & -0.454 & 0.325365 \tabularnewline
17 & 0.000272 & 0.0028 & 0.498876 \tabularnewline
18 & -0.015331 & -0.1593 & 0.436854 \tabularnewline
19 & 0.066409 & 0.6901 & 0.245793 \tabularnewline
20 & -0.179404 & -1.8644 & 0.032489 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297679&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.457523[/C][C]-4.7547[/C][C]3e-06[/C][/ROW]
[ROW][C]2[/C][C]-0.086388[/C][C]-0.8978[/C][C]0.185653[/C][/ROW]
[ROW][C]3[/C][C]0.051944[/C][C]0.5398[/C][C]0.295216[/C][/ROW]
[ROW][C]4[/C][C]0.024019[/C][C]0.2496[/C][C]0.401679[/C][/ROW]
[ROW][C]5[/C][C]0.00495[/C][C]0.0514[/C][C]0.479535[/C][/ROW]
[ROW][C]6[/C][C]0.018112[/C][C]0.1882[/C][C]0.425526[/C][/ROW]
[ROW][C]7[/C][C]-0.069405[/C][C]-0.7213[/C][C]0.236148[/C][/ROW]
[ROW][C]8[/C][C]0.139674[/C][C]1.4515[/C][C]0.074765[/C][/ROW]
[ROW][C]9[/C][C]-0.1573[/C][C]-1.6347[/C][C]0.05251[/C][/ROW]
[ROW][C]10[/C][C]0.046684[/C][C]0.4852[/C][C]0.314274[/C][/ROW]
[ROW][C]11[/C][C]0.239885[/C][C]2.493[/C][C]0.007093[/C][/ROW]
[ROW][C]12[/C][C]-0.409269[/C][C]-4.2533[/C][C]2.2e-05[/C][/ROW]
[ROW][C]13[/C][C]0.151062[/C][C]1.5699[/C][C]0.059684[/C][/ROW]
[ROW][C]14[/C][C]0.068525[/C][C]0.7121[/C][C]0.238958[/C][/ROW]
[ROW][C]15[/C][C]-0.005545[/C][C]-0.0576[/C][C]0.477076[/C][/ROW]
[ROW][C]16[/C][C]-0.043687[/C][C]-0.454[/C][C]0.325365[/C][/ROW]
[ROW][C]17[/C][C]0.000272[/C][C]0.0028[/C][C]0.498876[/C][/ROW]
[ROW][C]18[/C][C]-0.015331[/C][C]-0.1593[/C][C]0.436854[/C][/ROW]
[ROW][C]19[/C][C]0.066409[/C][C]0.6901[/C][C]0.245793[/C][/ROW]
[ROW][C]20[/C][C]-0.179404[/C][C]-1.8644[/C][C]0.032489[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297679&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297679&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.457523-4.75473e-06
2-0.086388-0.89780.185653
30.0519440.53980.295216
40.0240190.24960.401679
50.004950.05140.479535
60.0181120.18820.425526
7-0.069405-0.72130.236148
80.1396741.45150.074765
9-0.1573-1.63470.05251
100.0466840.48520.314274
110.2398852.4930.007093
12-0.409269-4.25332.2e-05
130.1510621.56990.059684
140.0685250.71210.238958
15-0.005545-0.05760.477076
16-0.043687-0.4540.325365
170.0002720.00280.498876
18-0.015331-0.15930.436854
190.0664090.69010.245793
20-0.179404-1.86440.032489







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.457523-4.75473e-06
2-0.374005-3.88688.8e-05
3-0.255087-2.65090.004617
4-0.159229-1.65480.050438
5-0.079641-0.82770.204846
60.0063250.06570.473857
7-0.055952-0.58150.281066
80.1342671.39530.082887
9-0.036476-0.37910.35269
10-0.029228-0.30370.380954
110.324873.37620.000511
12-0.167875-1.74460.041949
13-0.116538-1.21110.114251
14-0.088084-0.91540.181012
15-0.031913-0.33160.370398
16-0.047457-0.49320.31144
17-0.010236-0.10640.457741
18-0.019459-0.20220.420063
19-0.024072-0.25020.401469
20-0.127987-1.33010.093146

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.457523 & -4.7547 & 3e-06 \tabularnewline
2 & -0.374005 & -3.8868 & 8.8e-05 \tabularnewline
3 & -0.255087 & -2.6509 & 0.004617 \tabularnewline
4 & -0.159229 & -1.6548 & 0.050438 \tabularnewline
5 & -0.079641 & -0.8277 & 0.204846 \tabularnewline
6 & 0.006325 & 0.0657 & 0.473857 \tabularnewline
7 & -0.055952 & -0.5815 & 0.281066 \tabularnewline
8 & 0.134267 & 1.3953 & 0.082887 \tabularnewline
9 & -0.036476 & -0.3791 & 0.35269 \tabularnewline
10 & -0.029228 & -0.3037 & 0.380954 \tabularnewline
11 & 0.32487 & 3.3762 & 0.000511 \tabularnewline
12 & -0.167875 & -1.7446 & 0.041949 \tabularnewline
13 & -0.116538 & -1.2111 & 0.114251 \tabularnewline
14 & -0.088084 & -0.9154 & 0.181012 \tabularnewline
15 & -0.031913 & -0.3316 & 0.370398 \tabularnewline
16 & -0.047457 & -0.4932 & 0.31144 \tabularnewline
17 & -0.010236 & -0.1064 & 0.457741 \tabularnewline
18 & -0.019459 & -0.2022 & 0.420063 \tabularnewline
19 & -0.024072 & -0.2502 & 0.401469 \tabularnewline
20 & -0.127987 & -1.3301 & 0.093146 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297679&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.457523[/C][C]-4.7547[/C][C]3e-06[/C][/ROW]
[ROW][C]2[/C][C]-0.374005[/C][C]-3.8868[/C][C]8.8e-05[/C][/ROW]
[ROW][C]3[/C][C]-0.255087[/C][C]-2.6509[/C][C]0.004617[/C][/ROW]
[ROW][C]4[/C][C]-0.159229[/C][C]-1.6548[/C][C]0.050438[/C][/ROW]
[ROW][C]5[/C][C]-0.079641[/C][C]-0.8277[/C][C]0.204846[/C][/ROW]
[ROW][C]6[/C][C]0.006325[/C][C]0.0657[/C][C]0.473857[/C][/ROW]
[ROW][C]7[/C][C]-0.055952[/C][C]-0.5815[/C][C]0.281066[/C][/ROW]
[ROW][C]8[/C][C]0.134267[/C][C]1.3953[/C][C]0.082887[/C][/ROW]
[ROW][C]9[/C][C]-0.036476[/C][C]-0.3791[/C][C]0.35269[/C][/ROW]
[ROW][C]10[/C][C]-0.029228[/C][C]-0.3037[/C][C]0.380954[/C][/ROW]
[ROW][C]11[/C][C]0.32487[/C][C]3.3762[/C][C]0.000511[/C][/ROW]
[ROW][C]12[/C][C]-0.167875[/C][C]-1.7446[/C][C]0.041949[/C][/ROW]
[ROW][C]13[/C][C]-0.116538[/C][C]-1.2111[/C][C]0.114251[/C][/ROW]
[ROW][C]14[/C][C]-0.088084[/C][C]-0.9154[/C][C]0.181012[/C][/ROW]
[ROW][C]15[/C][C]-0.031913[/C][C]-0.3316[/C][C]0.370398[/C][/ROW]
[ROW][C]16[/C][C]-0.047457[/C][C]-0.4932[/C][C]0.31144[/C][/ROW]
[ROW][C]17[/C][C]-0.010236[/C][C]-0.1064[/C][C]0.457741[/C][/ROW]
[ROW][C]18[/C][C]-0.019459[/C][C]-0.2022[/C][C]0.420063[/C][/ROW]
[ROW][C]19[/C][C]-0.024072[/C][C]-0.2502[/C][C]0.401469[/C][/ROW]
[ROW][C]20[/C][C]-0.127987[/C][C]-1.3301[/C][C]0.093146[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297679&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297679&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.457523-4.75473e-06
2-0.374005-3.88688.8e-05
3-0.255087-2.65090.004617
4-0.159229-1.65480.050438
5-0.079641-0.82770.204846
60.0063250.06570.473857
7-0.055952-0.58150.281066
80.1342671.39530.082887
9-0.036476-0.37910.35269
10-0.029228-0.30370.380954
110.324873.37620.000511
12-0.167875-1.74460.041949
13-0.116538-1.21110.114251
14-0.088084-0.91540.181012
15-0.031913-0.33160.370398
16-0.047457-0.49320.31144
17-0.010236-0.10640.457741
18-0.019459-0.20220.420063
19-0.024072-0.25020.401469
20-0.127987-1.33010.093146



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')