Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationSat, 03 Dec 2016 10:29:21 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/03/t1480773925s5go8samzx3so5m.htm/, Retrieved Fri, 01 Nov 2024 03:41:46 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297626, Retrieved Fri, 01 Nov 2024 03:41:46 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact146
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2016-12-03 09:29:21] [9b171b8beffcb53bb49a1e7c02b89c12] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	2	4	3	5	4	13
5	3	3	4	5	4	16
4	4	5	4	5	4	17
3	4	3	3	4	4	15
4	4	5	4	5	4	16
3	4	4	4	5	5	16
3	4	4	3	3	4	18
3	4	5	4	4	4	16
4	5	4	4	5	5	17
4	5	5	4	5	5	17
4	4	2	4	5	4	17
4	4	5	3	5	4	15
4	4	4	3	4	5	16
3	3	5	4	4	5	14
4	4	5	4	2	5	16
3	4	5	4	4	5	17
3	4	5	4	4	5	16
5	5	4	3	4	4	15
4	4	4	4	5	4	17
3	4	5	3	4	5	16
4	4	4	4	5	5	15
4	4	5	4	4	5	16
4	4	5	4	4	4	15
4	4	5	4	4	5	17
3	4	4	4	4	4	14
3	4	4	3	5	5	16
4	4	4	4	4	4	15
2	4	5	4	5	5	16
5	4	4	4	4	4	16
4	3	5	4	4	4	13
4	5	5	4	5	5	15
5	4	5	4	4	5	17
4	3	5	4	NA	5	15
2	3	5	4	5	4	13
4	5	2	4	4	4	17
3	4	5	4	4	4	15
4	3	5	3	4	5	14
4	3	3	4	4	4	14
4	4	5	4	4	4	18
5	4	4	4	4	4	15
4	5	5	4	5	5	17
3	3	4	4	4	4	13
5	5	5	3	5	5	16
5	4	5	3	4	4	15
4	4	4	3	4	5	15
4	4	4	4	4	4	16
3	5	5	3	3	4	15
4	4	4	4	5	4	13
4	5	5	4	4	4	17
5	5	2	4	5	4	18
5	5	5	4	4	4	18
4	3	5	4	5	5	11
4	3	4	3	4	5	14
4	4	5	4	4	4	13
3	4	4	3	3	4	15
3	4	4	4	4	3	17
4	4	4	3	5	4	16
4	4	4	4	5	4	15
5	5	3	4	5	5	17
2	4	4	4	5	5	16
4	4	4	4	5	5	16
3	4	4	4	2	4	16
4	4	5	4	5	5	15
4	2	4	4	4	4	12
4	4	4	3	5	3	17
4	4	4	3	5	4	14
5	4	5	3	3	5	14
3	4	4	3	5	5	16
3	4	4	3	4	5	15
4	5	5	5	5	4	15
4	4	3	4	NA	4	14
4	4	4	4	4	4	13
4	4	4	5	5	4	18
3	4	3	4	4	4	15
4	4	4	4	5	4	16
3	4	5	3	5	5	14
3	3	5	4	4	5	15
4	3	5	4	4	4	17
4	4	5	4	4	5	16
3	3	3	4	4	4	10
4	4	4	4	5	4	16
4	4	3	4	5	5	17
4	4	4	4	5	5	17
5	4	4	4	4	4	20
5	4	3	5	4	5	17
4	4	5	4	5	5	18
3	4	5	4	4	5	15
3	NA	4	4	4	4	17
4	2	3	3	4	4	14
4	4	5	4	4	3	15
4	4	5	4	4	5	17
4	4	4	4	5	4	16
4	5	4	4	5	3	17
3	4	4	3	5	5	15
4	4	5	4	4	5	16
5	4	3	4	4	5	18
5	4	5	5	4	5	18
4	5	4	4	5	5	16
5	3	4	4	5	5	17
4	4	5	4	4	5	15
5	4	4	4	4	5	13
3	4	4	3	NA	4	15
5	4	4	5	5	5	17
4	4	5	3	NA	5	16
4	4	3	3	4	3	16
4	4	5	4	4	4	15
4	4	5	4	4	4	16
3	4	5	4	5	3	16
4	4	4	4	4	4	14
4	4	4	3	4	5	15
3	3	4	3	5	5	12
4	4	4	3	4	4	19
3	4	5	4	4	4	16
4	4	5	4	3	4	16
5	4	5	1	5	5	17
5	4	5	4	5	5	16
4	4	4	4	4	3	14
4	4	5	3	4	4	15
3	4	4	3	4	5	14
4	4	4	4	4	4	16
4	4	4	4	5	4	15
4	5	3	4	4	4	17
3	4	4	4	4	4	15
4	4	4	3	4	4	16
4	4	4	4	4	5	16
3	4	3	3	4	4	15
4	4	4	3	4	3	15
3	2	4	2	4	4	11
4	4	4	3	5	4	16
5	4	4	3	5	4	18
2	4	4	3	3	5	13
3	3	4	4	4	4	11
4	4	4	3	4	4	16
5	5	4	4	5	4	18
4	5	5	4	4	4	15
5	5	5	5	5	4	19
4	5	5	4	5	5	17
4	4	4	3	4	5	13
3	4	5	4	5	4	14
4	4	5	4	4	4	16
4	4	2	4	4	4	13
4	4	3	4	5	5	17
4	4	4	4	5	5	14
5	4	5	3	5	4	19
4	3	5	4	4	4	14
4	4	5	4	4	4	16
3	3	2	3	4	4	12
4	5	5	4	4	3	16
4	4	4	3	4	4	16
4	4	4	4	4	5	15
3	4	5	3	5	5	12
4	4	5	4	4	5	15
5	4	5	4	5	4	17
4	4	5	4	3	4	14
2	3	5	4	4	4	15
4	4	4	4	4	5	18
4	3	4	3	5	5	15
4	4	4	4	4	3	18
4	5	5	5	4	4	15
5	4	3	4	4	4	15
5	4	4	3	4	4	16
3	3	1	4	5	5	13
4	4	4	4	4	5	16
4	4	4	4	5	4	14
2	3	4	5	5	4	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Framework error message & 
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297626&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Framework error message[/C][C]
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297626&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297626&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center
R Framework error message
The field 'Names of X columns' contains a hard return which cannot be interpreted.
Please, resubmit your request without hard returns in the 'Names of X columns'.







Multiple Linear Regression - Estimated Regression Equation
TVDC [t] = + 6.60213 + 0.586942SK1[t] + 1.15724SK2[t] + 0.0710539SK3[t] + 0.277997SK4[t] + 0.195335SK5[t] -0.0317354SK6[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDC
[t] =  +  6.60213 +  0.586942SK1[t] +  1.15724SK2[t] +  0.0710539SK3[t] +  0.277997SK4[t] +  0.195335SK5[t] -0.0317354SK6[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297626&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDC
[t] =  +  6.60213 +  0.586942SK1[t] +  1.15724SK2[t] +  0.0710539SK3[t] +  0.277997SK4[t] +  0.195335SK5[t] -0.0317354SK6[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297626&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297626&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDC [t] = + 6.60213 + 0.586942SK1[t] + 1.15724SK2[t] + 0.0710539SK3[t] + 0.277997SK4[t] + 0.195335SK5[t] -0.0317354SK6[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+6.602 1.537+4.2960e+00 3.078e-05 1.539e-05
SK1+0.5869 0.1625+3.6120e+00 0.0004113 0.0002056
SK2+1.157 0.198+5.8450e+00 2.958e-08 1.479e-08
SK3+0.07105 0.1451+4.8960e-01 0.6251 0.3126
SK4+0.278 0.1974+1.4080e+00 0.1611 0.08055
SK5+0.1953 0.1866+1.0470e+00 0.2968 0.1484
SK6-0.03173 0.1936-1.6400e-01 0.87 0.435

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +6.602 &  1.537 & +4.2960e+00 &  3.078e-05 &  1.539e-05 \tabularnewline
SK1 & +0.5869 &  0.1625 & +3.6120e+00 &  0.0004113 &  0.0002056 \tabularnewline
SK2 & +1.157 &  0.198 & +5.8450e+00 &  2.958e-08 &  1.479e-08 \tabularnewline
SK3 & +0.07105 &  0.1451 & +4.8960e-01 &  0.6251 &  0.3126 \tabularnewline
SK4 & +0.278 &  0.1974 & +1.4080e+00 &  0.1611 &  0.08055 \tabularnewline
SK5 & +0.1953 &  0.1866 & +1.0470e+00 &  0.2968 &  0.1484 \tabularnewline
SK6 & -0.03173 &  0.1936 & -1.6400e-01 &  0.87 &  0.435 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297626&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+6.602[/C][C] 1.537[/C][C]+4.2960e+00[/C][C] 3.078e-05[/C][C] 1.539e-05[/C][/ROW]
[ROW][C]SK1[/C][C]+0.5869[/C][C] 0.1625[/C][C]+3.6120e+00[/C][C] 0.0004113[/C][C] 0.0002056[/C][/ROW]
[ROW][C]SK2[/C][C]+1.157[/C][C] 0.198[/C][C]+5.8450e+00[/C][C] 2.958e-08[/C][C] 1.479e-08[/C][/ROW]
[ROW][C]SK3[/C][C]+0.07105[/C][C] 0.1451[/C][C]+4.8960e-01[/C][C] 0.6251[/C][C] 0.3126[/C][/ROW]
[ROW][C]SK4[/C][C]+0.278[/C][C] 0.1974[/C][C]+1.4080e+00[/C][C] 0.1611[/C][C] 0.08055[/C][/ROW]
[ROW][C]SK5[/C][C]+0.1953[/C][C] 0.1866[/C][C]+1.0470e+00[/C][C] 0.2968[/C][C] 0.1484[/C][/ROW]
[ROW][C]SK6[/C][C]-0.03173[/C][C] 0.1936[/C][C]-1.6400e-01[/C][C] 0.87[/C][C] 0.435[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297626&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297626&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+6.602 1.537+4.2960e+00 3.078e-05 1.539e-05
SK1+0.5869 0.1625+3.6120e+00 0.0004113 0.0002056
SK2+1.157 0.198+5.8450e+00 2.958e-08 1.479e-08
SK3+0.07105 0.1451+4.8960e-01 0.6251 0.3126
SK4+0.278 0.1974+1.4080e+00 0.1611 0.08055
SK5+0.1953 0.1866+1.0470e+00 0.2968 0.1484
SK6-0.03173 0.1936-1.6400e-01 0.87 0.435







Multiple Linear Regression - Regression Statistics
Multiple R 0.5761
R-squared 0.3319
Adjusted R-squared 0.3057
F-TEST (value) 12.67
F-TEST (DF numerator)6
F-TEST (DF denominator)153
p-value 1.406e-11
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.426
Sum Squared Residuals 311.3

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.5761 \tabularnewline
R-squared &  0.3319 \tabularnewline
Adjusted R-squared &  0.3057 \tabularnewline
F-TEST (value) &  12.67 \tabularnewline
F-TEST (DF numerator) & 6 \tabularnewline
F-TEST (DF denominator) & 153 \tabularnewline
p-value &  1.406e-11 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.426 \tabularnewline
Sum Squared Residuals &  311.3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297626&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.5761[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.3319[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.3057[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 12.67[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]6[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]153[/C][/ROW]
[ROW][C]p-value[/C][C] 1.406e-11[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.426[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 311.3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297626&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297626&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.5761
R-squared 0.3319
Adjusted R-squared 0.3057
F-TEST (value) 12.67
F-TEST (DF numerator)6
F-TEST (DF denominator)153
p-value 1.406e-11
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.426
Sum Squared Residuals 311.3







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13.23-0.2323
2 16 15.18 0.8166
3 17 15.9 1.104
4 15 14.69 0.3065
5 16 15.9 0.1042
6 16 15.21 0.7939
7 18 14.57 3.431
8 16 15.11 0.8864
9 17 16.95 0.04971
10 17 17.02-0.02134
11 17 15.68 1.317
12 15 15.62-0.6178
13 16 15.32 0.6803
14 14 13.92 0.07541
15 16 15.28 0.7219
16 17 15.08 1.918
17 16 15.08 0.9182
18 15 17.1-2.096
19 17 15.82 1.175
20 16 14.8 1.196
21 15 15.79-0.7931
22 16 15.67 0.3312
23 15 15.7-0.7005
24 17 15.67 1.331
25 14 15.04-1.043
26 16 14.93 1.072
27 15 15.63-0.6295
28 16 14.69 1.31
29 16 16.22-0.2164
30 13 14.54-1.543
31 15 17.02-2.021
32 17 16.26 0.7443
33 13 13.56-0.5647
34 17 16.64 0.3554
35 15 15.11-0.1136
36 14 14.23-0.2335
37 14 14.4-0.4012
38 18 15.7 2.299
39 15 16.22-1.216
40 17 17.02-0.02134
41 13 13.89-0.8853
42 16 17.33-1.33
43 15 16.01-1.009
44 15 15.32-0.3197
45 16 15.63 0.3705
46 15 15.8-0.7975
47 13 15.82-2.825
48 17 16.86 0.1423
49 18 17.43 0.5731
50 18 17.44 0.5553
51 11 14.71-3.707
52 14 14.16-0.1625
53 13 15.7-2.701
54 15 14.57 0.4308
55 17 15.07 1.926
56 16 15.55 0.4532
57 15 15.82-0.8248
58 17 17.47-0.4662
59 16 14.62 1.381
60 16 15.79 0.2069
61 16 14.65 1.348
62 15 15.86-0.8641
63 12 13.31-1.315
64 17 15.58 1.421
65 14 15.55-1.547
66 14 15.78-1.782
67 16 14.93 1.072
68 15 14.73 0.2672
69 15 17.33-2.331
70 13 15.63-2.629
71 18 16.1 1.897
72 15 14.97 0.02854
73 16 15.82 0.1752
74 14 15-0.9992
75 15 13.92 1.075
76 17 14.54 2.457
77 16 15.67 0.3312
78 10 13.81-3.814
79 16 15.82 0.1752
80 17 15.72 1.278
81 17 15.79 1.207
82 20 16.22 3.784
83 17 16.39 0.6084
84 18 15.86 2.136
85 15 15.08-0.08183
86 14 12.97 1.034
87 15 15.73-0.7322
88 17 15.67 1.331
89 16 15.82 0.1752
90 17 17.01-0.01376
91 15 14.93 0.07189
92 16 15.67 0.3312
93 18 16.11 1.886
94 18 16.53 1.466
95 16 16.95-0.9503
96 17 15.22 1.777
97 15 15.67-0.6688
98 13 16.18-3.185
99 17 16.66 0.342
100 16 15.31 0.6879
101 15 15.7-0.7005
102 16 15.7 0.2995
103 16 15.34 0.6594
104 14 15.63-1.629
105 15 15.32-0.3197
106 12 13.77-1.771
107 19 15.35 3.649
108 16 15.11 0.8864
109 16 15.51 0.4948
110 17 15.62 1.383
111 16 16.45-0.451
112 14 15.66-1.661
113 15 15.42-0.4225
114 14 14.73-0.7328
115 16 15.63 0.3705
116 15 15.82-0.8248
117 17 16.72 0.2844
118 15 15.04-0.04251
119 16 15.35 0.6485
120 16 15.6 0.4023
121 15 14.69 0.3065
122 15 15.38-0.3832
123 11 12.17-1.172
124 16 15.55 0.4532
125 18 16.13 1.866
126 13 13.95-0.9505
127 11 13.89-2.885
128 16 15.35 0.6485
129 18 17.57 0.431
130 15 16.86-1.858
131 19 17.92 1.082
132 17 17.02-0.02134
133 13 15.32-2.32
134 14 15.31-1.309
135 16 15.7 0.2995
136 13 15.49-2.487
137 17 15.72 1.278
138 14 15.79-1.793
139 19 16.2 2.795
140 14 14.54-0.5433
141 16 15.7 0.2995
142 12 13.47-1.465
143 16 16.89-0.8895
144 16 15.35 0.6485
145 15 15.6-0.5977
146 12 15-2.999
147 15 15.67-0.6688
148 17 16.48 0.5172
149 14 15.51-1.505
150 15 13.37 1.631
151 18 15.6 2.402
152 15 14.36 0.6422
153 18 15.66 2.339
154 15 17.14-2.136
155 15 16.15-1.145
156 16 15.94 0.0616
157 13 13.84-0.8357
158 16 15.6 0.4023
159 14 15.82-1.825
160 16 13.77 2.228

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  13.23 & -0.2323 \tabularnewline
2 &  16 &  15.18 &  0.8166 \tabularnewline
3 &  17 &  15.9 &  1.104 \tabularnewline
4 &  15 &  14.69 &  0.3065 \tabularnewline
5 &  16 &  15.9 &  0.1042 \tabularnewline
6 &  16 &  15.21 &  0.7939 \tabularnewline
7 &  18 &  14.57 &  3.431 \tabularnewline
8 &  16 &  15.11 &  0.8864 \tabularnewline
9 &  17 &  16.95 &  0.04971 \tabularnewline
10 &  17 &  17.02 & -0.02134 \tabularnewline
11 &  17 &  15.68 &  1.317 \tabularnewline
12 &  15 &  15.62 & -0.6178 \tabularnewline
13 &  16 &  15.32 &  0.6803 \tabularnewline
14 &  14 &  13.92 &  0.07541 \tabularnewline
15 &  16 &  15.28 &  0.7219 \tabularnewline
16 &  17 &  15.08 &  1.918 \tabularnewline
17 &  16 &  15.08 &  0.9182 \tabularnewline
18 &  15 &  17.1 & -2.096 \tabularnewline
19 &  17 &  15.82 &  1.175 \tabularnewline
20 &  16 &  14.8 &  1.196 \tabularnewline
21 &  15 &  15.79 & -0.7931 \tabularnewline
22 &  16 &  15.67 &  0.3312 \tabularnewline
23 &  15 &  15.7 & -0.7005 \tabularnewline
24 &  17 &  15.67 &  1.331 \tabularnewline
25 &  14 &  15.04 & -1.043 \tabularnewline
26 &  16 &  14.93 &  1.072 \tabularnewline
27 &  15 &  15.63 & -0.6295 \tabularnewline
28 &  16 &  14.69 &  1.31 \tabularnewline
29 &  16 &  16.22 & -0.2164 \tabularnewline
30 &  13 &  14.54 & -1.543 \tabularnewline
31 &  15 &  17.02 & -2.021 \tabularnewline
32 &  17 &  16.26 &  0.7443 \tabularnewline
33 &  13 &  13.56 & -0.5647 \tabularnewline
34 &  17 &  16.64 &  0.3554 \tabularnewline
35 &  15 &  15.11 & -0.1136 \tabularnewline
36 &  14 &  14.23 & -0.2335 \tabularnewline
37 &  14 &  14.4 & -0.4012 \tabularnewline
38 &  18 &  15.7 &  2.299 \tabularnewline
39 &  15 &  16.22 & -1.216 \tabularnewline
40 &  17 &  17.02 & -0.02134 \tabularnewline
41 &  13 &  13.89 & -0.8853 \tabularnewline
42 &  16 &  17.33 & -1.33 \tabularnewline
43 &  15 &  16.01 & -1.009 \tabularnewline
44 &  15 &  15.32 & -0.3197 \tabularnewline
45 &  16 &  15.63 &  0.3705 \tabularnewline
46 &  15 &  15.8 & -0.7975 \tabularnewline
47 &  13 &  15.82 & -2.825 \tabularnewline
48 &  17 &  16.86 &  0.1423 \tabularnewline
49 &  18 &  17.43 &  0.5731 \tabularnewline
50 &  18 &  17.44 &  0.5553 \tabularnewline
51 &  11 &  14.71 & -3.707 \tabularnewline
52 &  14 &  14.16 & -0.1625 \tabularnewline
53 &  13 &  15.7 & -2.701 \tabularnewline
54 &  15 &  14.57 &  0.4308 \tabularnewline
55 &  17 &  15.07 &  1.926 \tabularnewline
56 &  16 &  15.55 &  0.4532 \tabularnewline
57 &  15 &  15.82 & -0.8248 \tabularnewline
58 &  17 &  17.47 & -0.4662 \tabularnewline
59 &  16 &  14.62 &  1.381 \tabularnewline
60 &  16 &  15.79 &  0.2069 \tabularnewline
61 &  16 &  14.65 &  1.348 \tabularnewline
62 &  15 &  15.86 & -0.8641 \tabularnewline
63 &  12 &  13.31 & -1.315 \tabularnewline
64 &  17 &  15.58 &  1.421 \tabularnewline
65 &  14 &  15.55 & -1.547 \tabularnewline
66 &  14 &  15.78 & -1.782 \tabularnewline
67 &  16 &  14.93 &  1.072 \tabularnewline
68 &  15 &  14.73 &  0.2672 \tabularnewline
69 &  15 &  17.33 & -2.331 \tabularnewline
70 &  13 &  15.63 & -2.629 \tabularnewline
71 &  18 &  16.1 &  1.897 \tabularnewline
72 &  15 &  14.97 &  0.02854 \tabularnewline
73 &  16 &  15.82 &  0.1752 \tabularnewline
74 &  14 &  15 & -0.9992 \tabularnewline
75 &  15 &  13.92 &  1.075 \tabularnewline
76 &  17 &  14.54 &  2.457 \tabularnewline
77 &  16 &  15.67 &  0.3312 \tabularnewline
78 &  10 &  13.81 & -3.814 \tabularnewline
79 &  16 &  15.82 &  0.1752 \tabularnewline
80 &  17 &  15.72 &  1.278 \tabularnewline
81 &  17 &  15.79 &  1.207 \tabularnewline
82 &  20 &  16.22 &  3.784 \tabularnewline
83 &  17 &  16.39 &  0.6084 \tabularnewline
84 &  18 &  15.86 &  2.136 \tabularnewline
85 &  15 &  15.08 & -0.08183 \tabularnewline
86 &  14 &  12.97 &  1.034 \tabularnewline
87 &  15 &  15.73 & -0.7322 \tabularnewline
88 &  17 &  15.67 &  1.331 \tabularnewline
89 &  16 &  15.82 &  0.1752 \tabularnewline
90 &  17 &  17.01 & -0.01376 \tabularnewline
91 &  15 &  14.93 &  0.07189 \tabularnewline
92 &  16 &  15.67 &  0.3312 \tabularnewline
93 &  18 &  16.11 &  1.886 \tabularnewline
94 &  18 &  16.53 &  1.466 \tabularnewline
95 &  16 &  16.95 & -0.9503 \tabularnewline
96 &  17 &  15.22 &  1.777 \tabularnewline
97 &  15 &  15.67 & -0.6688 \tabularnewline
98 &  13 &  16.18 & -3.185 \tabularnewline
99 &  17 &  16.66 &  0.342 \tabularnewline
100 &  16 &  15.31 &  0.6879 \tabularnewline
101 &  15 &  15.7 & -0.7005 \tabularnewline
102 &  16 &  15.7 &  0.2995 \tabularnewline
103 &  16 &  15.34 &  0.6594 \tabularnewline
104 &  14 &  15.63 & -1.629 \tabularnewline
105 &  15 &  15.32 & -0.3197 \tabularnewline
106 &  12 &  13.77 & -1.771 \tabularnewline
107 &  19 &  15.35 &  3.649 \tabularnewline
108 &  16 &  15.11 &  0.8864 \tabularnewline
109 &  16 &  15.51 &  0.4948 \tabularnewline
110 &  17 &  15.62 &  1.383 \tabularnewline
111 &  16 &  16.45 & -0.451 \tabularnewline
112 &  14 &  15.66 & -1.661 \tabularnewline
113 &  15 &  15.42 & -0.4225 \tabularnewline
114 &  14 &  14.73 & -0.7328 \tabularnewline
115 &  16 &  15.63 &  0.3705 \tabularnewline
116 &  15 &  15.82 & -0.8248 \tabularnewline
117 &  17 &  16.72 &  0.2844 \tabularnewline
118 &  15 &  15.04 & -0.04251 \tabularnewline
119 &  16 &  15.35 &  0.6485 \tabularnewline
120 &  16 &  15.6 &  0.4023 \tabularnewline
121 &  15 &  14.69 &  0.3065 \tabularnewline
122 &  15 &  15.38 & -0.3832 \tabularnewline
123 &  11 &  12.17 & -1.172 \tabularnewline
124 &  16 &  15.55 &  0.4532 \tabularnewline
125 &  18 &  16.13 &  1.866 \tabularnewline
126 &  13 &  13.95 & -0.9505 \tabularnewline
127 &  11 &  13.89 & -2.885 \tabularnewline
128 &  16 &  15.35 &  0.6485 \tabularnewline
129 &  18 &  17.57 &  0.431 \tabularnewline
130 &  15 &  16.86 & -1.858 \tabularnewline
131 &  19 &  17.92 &  1.082 \tabularnewline
132 &  17 &  17.02 & -0.02134 \tabularnewline
133 &  13 &  15.32 & -2.32 \tabularnewline
134 &  14 &  15.31 & -1.309 \tabularnewline
135 &  16 &  15.7 &  0.2995 \tabularnewline
136 &  13 &  15.49 & -2.487 \tabularnewline
137 &  17 &  15.72 &  1.278 \tabularnewline
138 &  14 &  15.79 & -1.793 \tabularnewline
139 &  19 &  16.2 &  2.795 \tabularnewline
140 &  14 &  14.54 & -0.5433 \tabularnewline
141 &  16 &  15.7 &  0.2995 \tabularnewline
142 &  12 &  13.47 & -1.465 \tabularnewline
143 &  16 &  16.89 & -0.8895 \tabularnewline
144 &  16 &  15.35 &  0.6485 \tabularnewline
145 &  15 &  15.6 & -0.5977 \tabularnewline
146 &  12 &  15 & -2.999 \tabularnewline
147 &  15 &  15.67 & -0.6688 \tabularnewline
148 &  17 &  16.48 &  0.5172 \tabularnewline
149 &  14 &  15.51 & -1.505 \tabularnewline
150 &  15 &  13.37 &  1.631 \tabularnewline
151 &  18 &  15.6 &  2.402 \tabularnewline
152 &  15 &  14.36 &  0.6422 \tabularnewline
153 &  18 &  15.66 &  2.339 \tabularnewline
154 &  15 &  17.14 & -2.136 \tabularnewline
155 &  15 &  16.15 & -1.145 \tabularnewline
156 &  16 &  15.94 &  0.0616 \tabularnewline
157 &  13 &  13.84 & -0.8357 \tabularnewline
158 &  16 &  15.6 &  0.4023 \tabularnewline
159 &  14 &  15.82 & -1.825 \tabularnewline
160 &  16 &  13.77 &  2.228 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297626&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 13.23[/C][C]-0.2323[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 15.18[/C][C] 0.8166[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 15.9[/C][C] 1.104[/C][/ROW]
[ROW][C]4[/C][C] 15[/C][C] 14.69[/C][C] 0.3065[/C][/ROW]
[ROW][C]5[/C][C] 16[/C][C] 15.9[/C][C] 0.1042[/C][/ROW]
[ROW][C]6[/C][C] 16[/C][C] 15.21[/C][C] 0.7939[/C][/ROW]
[ROW][C]7[/C][C] 18[/C][C] 14.57[/C][C] 3.431[/C][/ROW]
[ROW][C]8[/C][C] 16[/C][C] 15.11[/C][C] 0.8864[/C][/ROW]
[ROW][C]9[/C][C] 17[/C][C] 16.95[/C][C] 0.04971[/C][/ROW]
[ROW][C]10[/C][C] 17[/C][C] 17.02[/C][C]-0.02134[/C][/ROW]
[ROW][C]11[/C][C] 17[/C][C] 15.68[/C][C] 1.317[/C][/ROW]
[ROW][C]12[/C][C] 15[/C][C] 15.62[/C][C]-0.6178[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 15.32[/C][C] 0.6803[/C][/ROW]
[ROW][C]14[/C][C] 14[/C][C] 13.92[/C][C] 0.07541[/C][/ROW]
[ROW][C]15[/C][C] 16[/C][C] 15.28[/C][C] 0.7219[/C][/ROW]
[ROW][C]16[/C][C] 17[/C][C] 15.08[/C][C] 1.918[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 15.08[/C][C] 0.9182[/C][/ROW]
[ROW][C]18[/C][C] 15[/C][C] 17.1[/C][C]-2.096[/C][/ROW]
[ROW][C]19[/C][C] 17[/C][C] 15.82[/C][C] 1.175[/C][/ROW]
[ROW][C]20[/C][C] 16[/C][C] 14.8[/C][C] 1.196[/C][/ROW]
[ROW][C]21[/C][C] 15[/C][C] 15.79[/C][C]-0.7931[/C][/ROW]
[ROW][C]22[/C][C] 16[/C][C] 15.67[/C][C] 0.3312[/C][/ROW]
[ROW][C]23[/C][C] 15[/C][C] 15.7[/C][C]-0.7005[/C][/ROW]
[ROW][C]24[/C][C] 17[/C][C] 15.67[/C][C] 1.331[/C][/ROW]
[ROW][C]25[/C][C] 14[/C][C] 15.04[/C][C]-1.043[/C][/ROW]
[ROW][C]26[/C][C] 16[/C][C] 14.93[/C][C] 1.072[/C][/ROW]
[ROW][C]27[/C][C] 15[/C][C] 15.63[/C][C]-0.6295[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 14.69[/C][C] 1.31[/C][/ROW]
[ROW][C]29[/C][C] 16[/C][C] 16.22[/C][C]-0.2164[/C][/ROW]
[ROW][C]30[/C][C] 13[/C][C] 14.54[/C][C]-1.543[/C][/ROW]
[ROW][C]31[/C][C] 15[/C][C] 17.02[/C][C]-2.021[/C][/ROW]
[ROW][C]32[/C][C] 17[/C][C] 16.26[/C][C] 0.7443[/C][/ROW]
[ROW][C]33[/C][C] 13[/C][C] 13.56[/C][C]-0.5647[/C][/ROW]
[ROW][C]34[/C][C] 17[/C][C] 16.64[/C][C] 0.3554[/C][/ROW]
[ROW][C]35[/C][C] 15[/C][C] 15.11[/C][C]-0.1136[/C][/ROW]
[ROW][C]36[/C][C] 14[/C][C] 14.23[/C][C]-0.2335[/C][/ROW]
[ROW][C]37[/C][C] 14[/C][C] 14.4[/C][C]-0.4012[/C][/ROW]
[ROW][C]38[/C][C] 18[/C][C] 15.7[/C][C] 2.299[/C][/ROW]
[ROW][C]39[/C][C] 15[/C][C] 16.22[/C][C]-1.216[/C][/ROW]
[ROW][C]40[/C][C] 17[/C][C] 17.02[/C][C]-0.02134[/C][/ROW]
[ROW][C]41[/C][C] 13[/C][C] 13.89[/C][C]-0.8853[/C][/ROW]
[ROW][C]42[/C][C] 16[/C][C] 17.33[/C][C]-1.33[/C][/ROW]
[ROW][C]43[/C][C] 15[/C][C] 16.01[/C][C]-1.009[/C][/ROW]
[ROW][C]44[/C][C] 15[/C][C] 15.32[/C][C]-0.3197[/C][/ROW]
[ROW][C]45[/C][C] 16[/C][C] 15.63[/C][C] 0.3705[/C][/ROW]
[ROW][C]46[/C][C] 15[/C][C] 15.8[/C][C]-0.7975[/C][/ROW]
[ROW][C]47[/C][C] 13[/C][C] 15.82[/C][C]-2.825[/C][/ROW]
[ROW][C]48[/C][C] 17[/C][C] 16.86[/C][C] 0.1423[/C][/ROW]
[ROW][C]49[/C][C] 18[/C][C] 17.43[/C][C] 0.5731[/C][/ROW]
[ROW][C]50[/C][C] 18[/C][C] 17.44[/C][C] 0.5553[/C][/ROW]
[ROW][C]51[/C][C] 11[/C][C] 14.71[/C][C]-3.707[/C][/ROW]
[ROW][C]52[/C][C] 14[/C][C] 14.16[/C][C]-0.1625[/C][/ROW]
[ROW][C]53[/C][C] 13[/C][C] 15.7[/C][C]-2.701[/C][/ROW]
[ROW][C]54[/C][C] 15[/C][C] 14.57[/C][C] 0.4308[/C][/ROW]
[ROW][C]55[/C][C] 17[/C][C] 15.07[/C][C] 1.926[/C][/ROW]
[ROW][C]56[/C][C] 16[/C][C] 15.55[/C][C] 0.4532[/C][/ROW]
[ROW][C]57[/C][C] 15[/C][C] 15.82[/C][C]-0.8248[/C][/ROW]
[ROW][C]58[/C][C] 17[/C][C] 17.47[/C][C]-0.4662[/C][/ROW]
[ROW][C]59[/C][C] 16[/C][C] 14.62[/C][C] 1.381[/C][/ROW]
[ROW][C]60[/C][C] 16[/C][C] 15.79[/C][C] 0.2069[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 14.65[/C][C] 1.348[/C][/ROW]
[ROW][C]62[/C][C] 15[/C][C] 15.86[/C][C]-0.8641[/C][/ROW]
[ROW][C]63[/C][C] 12[/C][C] 13.31[/C][C]-1.315[/C][/ROW]
[ROW][C]64[/C][C] 17[/C][C] 15.58[/C][C] 1.421[/C][/ROW]
[ROW][C]65[/C][C] 14[/C][C] 15.55[/C][C]-1.547[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 15.78[/C][C]-1.782[/C][/ROW]
[ROW][C]67[/C][C] 16[/C][C] 14.93[/C][C] 1.072[/C][/ROW]
[ROW][C]68[/C][C] 15[/C][C] 14.73[/C][C] 0.2672[/C][/ROW]
[ROW][C]69[/C][C] 15[/C][C] 17.33[/C][C]-2.331[/C][/ROW]
[ROW][C]70[/C][C] 13[/C][C] 15.63[/C][C]-2.629[/C][/ROW]
[ROW][C]71[/C][C] 18[/C][C] 16.1[/C][C] 1.897[/C][/ROW]
[ROW][C]72[/C][C] 15[/C][C] 14.97[/C][C] 0.02854[/C][/ROW]
[ROW][C]73[/C][C] 16[/C][C] 15.82[/C][C] 0.1752[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 15[/C][C]-0.9992[/C][/ROW]
[ROW][C]75[/C][C] 15[/C][C] 13.92[/C][C] 1.075[/C][/ROW]
[ROW][C]76[/C][C] 17[/C][C] 14.54[/C][C] 2.457[/C][/ROW]
[ROW][C]77[/C][C] 16[/C][C] 15.67[/C][C] 0.3312[/C][/ROW]
[ROW][C]78[/C][C] 10[/C][C] 13.81[/C][C]-3.814[/C][/ROW]
[ROW][C]79[/C][C] 16[/C][C] 15.82[/C][C] 0.1752[/C][/ROW]
[ROW][C]80[/C][C] 17[/C][C] 15.72[/C][C] 1.278[/C][/ROW]
[ROW][C]81[/C][C] 17[/C][C] 15.79[/C][C] 1.207[/C][/ROW]
[ROW][C]82[/C][C] 20[/C][C] 16.22[/C][C] 3.784[/C][/ROW]
[ROW][C]83[/C][C] 17[/C][C] 16.39[/C][C] 0.6084[/C][/ROW]
[ROW][C]84[/C][C] 18[/C][C] 15.86[/C][C] 2.136[/C][/ROW]
[ROW][C]85[/C][C] 15[/C][C] 15.08[/C][C]-0.08183[/C][/ROW]
[ROW][C]86[/C][C] 14[/C][C] 12.97[/C][C] 1.034[/C][/ROW]
[ROW][C]87[/C][C] 15[/C][C] 15.73[/C][C]-0.7322[/C][/ROW]
[ROW][C]88[/C][C] 17[/C][C] 15.67[/C][C] 1.331[/C][/ROW]
[ROW][C]89[/C][C] 16[/C][C] 15.82[/C][C] 0.1752[/C][/ROW]
[ROW][C]90[/C][C] 17[/C][C] 17.01[/C][C]-0.01376[/C][/ROW]
[ROW][C]91[/C][C] 15[/C][C] 14.93[/C][C] 0.07189[/C][/ROW]
[ROW][C]92[/C][C] 16[/C][C] 15.67[/C][C] 0.3312[/C][/ROW]
[ROW][C]93[/C][C] 18[/C][C] 16.11[/C][C] 1.886[/C][/ROW]
[ROW][C]94[/C][C] 18[/C][C] 16.53[/C][C] 1.466[/C][/ROW]
[ROW][C]95[/C][C] 16[/C][C] 16.95[/C][C]-0.9503[/C][/ROW]
[ROW][C]96[/C][C] 17[/C][C] 15.22[/C][C] 1.777[/C][/ROW]
[ROW][C]97[/C][C] 15[/C][C] 15.67[/C][C]-0.6688[/C][/ROW]
[ROW][C]98[/C][C] 13[/C][C] 16.18[/C][C]-3.185[/C][/ROW]
[ROW][C]99[/C][C] 17[/C][C] 16.66[/C][C] 0.342[/C][/ROW]
[ROW][C]100[/C][C] 16[/C][C] 15.31[/C][C] 0.6879[/C][/ROW]
[ROW][C]101[/C][C] 15[/C][C] 15.7[/C][C]-0.7005[/C][/ROW]
[ROW][C]102[/C][C] 16[/C][C] 15.7[/C][C] 0.2995[/C][/ROW]
[ROW][C]103[/C][C] 16[/C][C] 15.34[/C][C] 0.6594[/C][/ROW]
[ROW][C]104[/C][C] 14[/C][C] 15.63[/C][C]-1.629[/C][/ROW]
[ROW][C]105[/C][C] 15[/C][C] 15.32[/C][C]-0.3197[/C][/ROW]
[ROW][C]106[/C][C] 12[/C][C] 13.77[/C][C]-1.771[/C][/ROW]
[ROW][C]107[/C][C] 19[/C][C] 15.35[/C][C] 3.649[/C][/ROW]
[ROW][C]108[/C][C] 16[/C][C] 15.11[/C][C] 0.8864[/C][/ROW]
[ROW][C]109[/C][C] 16[/C][C] 15.51[/C][C] 0.4948[/C][/ROW]
[ROW][C]110[/C][C] 17[/C][C] 15.62[/C][C] 1.383[/C][/ROW]
[ROW][C]111[/C][C] 16[/C][C] 16.45[/C][C]-0.451[/C][/ROW]
[ROW][C]112[/C][C] 14[/C][C] 15.66[/C][C]-1.661[/C][/ROW]
[ROW][C]113[/C][C] 15[/C][C] 15.42[/C][C]-0.4225[/C][/ROW]
[ROW][C]114[/C][C] 14[/C][C] 14.73[/C][C]-0.7328[/C][/ROW]
[ROW][C]115[/C][C] 16[/C][C] 15.63[/C][C] 0.3705[/C][/ROW]
[ROW][C]116[/C][C] 15[/C][C] 15.82[/C][C]-0.8248[/C][/ROW]
[ROW][C]117[/C][C] 17[/C][C] 16.72[/C][C] 0.2844[/C][/ROW]
[ROW][C]118[/C][C] 15[/C][C] 15.04[/C][C]-0.04251[/C][/ROW]
[ROW][C]119[/C][C] 16[/C][C] 15.35[/C][C] 0.6485[/C][/ROW]
[ROW][C]120[/C][C] 16[/C][C] 15.6[/C][C] 0.4023[/C][/ROW]
[ROW][C]121[/C][C] 15[/C][C] 14.69[/C][C] 0.3065[/C][/ROW]
[ROW][C]122[/C][C] 15[/C][C] 15.38[/C][C]-0.3832[/C][/ROW]
[ROW][C]123[/C][C] 11[/C][C] 12.17[/C][C]-1.172[/C][/ROW]
[ROW][C]124[/C][C] 16[/C][C] 15.55[/C][C] 0.4532[/C][/ROW]
[ROW][C]125[/C][C] 18[/C][C] 16.13[/C][C] 1.866[/C][/ROW]
[ROW][C]126[/C][C] 13[/C][C] 13.95[/C][C]-0.9505[/C][/ROW]
[ROW][C]127[/C][C] 11[/C][C] 13.89[/C][C]-2.885[/C][/ROW]
[ROW][C]128[/C][C] 16[/C][C] 15.35[/C][C] 0.6485[/C][/ROW]
[ROW][C]129[/C][C] 18[/C][C] 17.57[/C][C] 0.431[/C][/ROW]
[ROW][C]130[/C][C] 15[/C][C] 16.86[/C][C]-1.858[/C][/ROW]
[ROW][C]131[/C][C] 19[/C][C] 17.92[/C][C] 1.082[/C][/ROW]
[ROW][C]132[/C][C] 17[/C][C] 17.02[/C][C]-0.02134[/C][/ROW]
[ROW][C]133[/C][C] 13[/C][C] 15.32[/C][C]-2.32[/C][/ROW]
[ROW][C]134[/C][C] 14[/C][C] 15.31[/C][C]-1.309[/C][/ROW]
[ROW][C]135[/C][C] 16[/C][C] 15.7[/C][C] 0.2995[/C][/ROW]
[ROW][C]136[/C][C] 13[/C][C] 15.49[/C][C]-2.487[/C][/ROW]
[ROW][C]137[/C][C] 17[/C][C] 15.72[/C][C] 1.278[/C][/ROW]
[ROW][C]138[/C][C] 14[/C][C] 15.79[/C][C]-1.793[/C][/ROW]
[ROW][C]139[/C][C] 19[/C][C] 16.2[/C][C] 2.795[/C][/ROW]
[ROW][C]140[/C][C] 14[/C][C] 14.54[/C][C]-0.5433[/C][/ROW]
[ROW][C]141[/C][C] 16[/C][C] 15.7[/C][C] 0.2995[/C][/ROW]
[ROW][C]142[/C][C] 12[/C][C] 13.47[/C][C]-1.465[/C][/ROW]
[ROW][C]143[/C][C] 16[/C][C] 16.89[/C][C]-0.8895[/C][/ROW]
[ROW][C]144[/C][C] 16[/C][C] 15.35[/C][C] 0.6485[/C][/ROW]
[ROW][C]145[/C][C] 15[/C][C] 15.6[/C][C]-0.5977[/C][/ROW]
[ROW][C]146[/C][C] 12[/C][C] 15[/C][C]-2.999[/C][/ROW]
[ROW][C]147[/C][C] 15[/C][C] 15.67[/C][C]-0.6688[/C][/ROW]
[ROW][C]148[/C][C] 17[/C][C] 16.48[/C][C] 0.5172[/C][/ROW]
[ROW][C]149[/C][C] 14[/C][C] 15.51[/C][C]-1.505[/C][/ROW]
[ROW][C]150[/C][C] 15[/C][C] 13.37[/C][C] 1.631[/C][/ROW]
[ROW][C]151[/C][C] 18[/C][C] 15.6[/C][C] 2.402[/C][/ROW]
[ROW][C]152[/C][C] 15[/C][C] 14.36[/C][C] 0.6422[/C][/ROW]
[ROW][C]153[/C][C] 18[/C][C] 15.66[/C][C] 2.339[/C][/ROW]
[ROW][C]154[/C][C] 15[/C][C] 17.14[/C][C]-2.136[/C][/ROW]
[ROW][C]155[/C][C] 15[/C][C] 16.15[/C][C]-1.145[/C][/ROW]
[ROW][C]156[/C][C] 16[/C][C] 15.94[/C][C] 0.0616[/C][/ROW]
[ROW][C]157[/C][C] 13[/C][C] 13.84[/C][C]-0.8357[/C][/ROW]
[ROW][C]158[/C][C] 16[/C][C] 15.6[/C][C] 0.4023[/C][/ROW]
[ROW][C]159[/C][C] 14[/C][C] 15.82[/C][C]-1.825[/C][/ROW]
[ROW][C]160[/C][C] 16[/C][C] 13.77[/C][C] 2.228[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297626&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297626&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13.23-0.2323
2 16 15.18 0.8166
3 17 15.9 1.104
4 15 14.69 0.3065
5 16 15.9 0.1042
6 16 15.21 0.7939
7 18 14.57 3.431
8 16 15.11 0.8864
9 17 16.95 0.04971
10 17 17.02-0.02134
11 17 15.68 1.317
12 15 15.62-0.6178
13 16 15.32 0.6803
14 14 13.92 0.07541
15 16 15.28 0.7219
16 17 15.08 1.918
17 16 15.08 0.9182
18 15 17.1-2.096
19 17 15.82 1.175
20 16 14.8 1.196
21 15 15.79-0.7931
22 16 15.67 0.3312
23 15 15.7-0.7005
24 17 15.67 1.331
25 14 15.04-1.043
26 16 14.93 1.072
27 15 15.63-0.6295
28 16 14.69 1.31
29 16 16.22-0.2164
30 13 14.54-1.543
31 15 17.02-2.021
32 17 16.26 0.7443
33 13 13.56-0.5647
34 17 16.64 0.3554
35 15 15.11-0.1136
36 14 14.23-0.2335
37 14 14.4-0.4012
38 18 15.7 2.299
39 15 16.22-1.216
40 17 17.02-0.02134
41 13 13.89-0.8853
42 16 17.33-1.33
43 15 16.01-1.009
44 15 15.32-0.3197
45 16 15.63 0.3705
46 15 15.8-0.7975
47 13 15.82-2.825
48 17 16.86 0.1423
49 18 17.43 0.5731
50 18 17.44 0.5553
51 11 14.71-3.707
52 14 14.16-0.1625
53 13 15.7-2.701
54 15 14.57 0.4308
55 17 15.07 1.926
56 16 15.55 0.4532
57 15 15.82-0.8248
58 17 17.47-0.4662
59 16 14.62 1.381
60 16 15.79 0.2069
61 16 14.65 1.348
62 15 15.86-0.8641
63 12 13.31-1.315
64 17 15.58 1.421
65 14 15.55-1.547
66 14 15.78-1.782
67 16 14.93 1.072
68 15 14.73 0.2672
69 15 17.33-2.331
70 13 15.63-2.629
71 18 16.1 1.897
72 15 14.97 0.02854
73 16 15.82 0.1752
74 14 15-0.9992
75 15 13.92 1.075
76 17 14.54 2.457
77 16 15.67 0.3312
78 10 13.81-3.814
79 16 15.82 0.1752
80 17 15.72 1.278
81 17 15.79 1.207
82 20 16.22 3.784
83 17 16.39 0.6084
84 18 15.86 2.136
85 15 15.08-0.08183
86 14 12.97 1.034
87 15 15.73-0.7322
88 17 15.67 1.331
89 16 15.82 0.1752
90 17 17.01-0.01376
91 15 14.93 0.07189
92 16 15.67 0.3312
93 18 16.11 1.886
94 18 16.53 1.466
95 16 16.95-0.9503
96 17 15.22 1.777
97 15 15.67-0.6688
98 13 16.18-3.185
99 17 16.66 0.342
100 16 15.31 0.6879
101 15 15.7-0.7005
102 16 15.7 0.2995
103 16 15.34 0.6594
104 14 15.63-1.629
105 15 15.32-0.3197
106 12 13.77-1.771
107 19 15.35 3.649
108 16 15.11 0.8864
109 16 15.51 0.4948
110 17 15.62 1.383
111 16 16.45-0.451
112 14 15.66-1.661
113 15 15.42-0.4225
114 14 14.73-0.7328
115 16 15.63 0.3705
116 15 15.82-0.8248
117 17 16.72 0.2844
118 15 15.04-0.04251
119 16 15.35 0.6485
120 16 15.6 0.4023
121 15 14.69 0.3065
122 15 15.38-0.3832
123 11 12.17-1.172
124 16 15.55 0.4532
125 18 16.13 1.866
126 13 13.95-0.9505
127 11 13.89-2.885
128 16 15.35 0.6485
129 18 17.57 0.431
130 15 16.86-1.858
131 19 17.92 1.082
132 17 17.02-0.02134
133 13 15.32-2.32
134 14 15.31-1.309
135 16 15.7 0.2995
136 13 15.49-2.487
137 17 15.72 1.278
138 14 15.79-1.793
139 19 16.2 2.795
140 14 14.54-0.5433
141 16 15.7 0.2995
142 12 13.47-1.465
143 16 16.89-0.8895
144 16 15.35 0.6485
145 15 15.6-0.5977
146 12 15-2.999
147 15 15.67-0.6688
148 17 16.48 0.5172
149 14 15.51-1.505
150 15 13.37 1.631
151 18 15.6 2.402
152 15 14.36 0.6422
153 18 15.66 2.339
154 15 17.14-2.136
155 15 16.15-1.145
156 16 15.94 0.0616
157 13 13.84-0.8357
158 16 15.6 0.4023
159 14 15.82-1.825
160 16 13.77 2.228







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.2753 0.5506 0.7247
11 0.1987 0.3974 0.8013
12 0.105 0.21 0.895
13 0.05591 0.1118 0.9441
14 0.05236 0.1047 0.9476
15 0.07159 0.1432 0.9284
16 0.07889 0.1578 0.9211
17 0.04627 0.09253 0.9537
18 0.09839 0.1968 0.9016
19 0.06984 0.1397 0.9302
20 0.05433 0.1087 0.9457
21 0.045 0.09 0.955
22 0.02788 0.05577 0.9721
23 0.02898 0.05795 0.971
24 0.02844 0.05689 0.9716
25 0.08643 0.1729 0.9136
26 0.06303 0.1261 0.937
27 0.05415 0.1083 0.9458
28 0.0392 0.07841 0.9608
29 0.02625 0.05249 0.9738
30 0.03518 0.07036 0.9648
31 0.05187 0.1037 0.9481
32 0.04935 0.09871 0.9506
33 0.0476 0.09519 0.9524
34 0.03488 0.06976 0.9651
35 0.02461 0.04921 0.9754
36 0.01889 0.03777 0.9811
37 0.01589 0.03177 0.9841
38 0.04016 0.08033 0.9598
39 0.03504 0.07008 0.965
40 0.02494 0.04987 0.9751
41 0.02633 0.05265 0.9737
42 0.02251 0.04502 0.9775
43 0.01692 0.03384 0.9831
44 0.01302 0.02605 0.987
45 0.009101 0.0182 0.9909
46 0.008262 0.01652 0.9917
47 0.02431 0.04862 0.9757
48 0.01821 0.03642 0.9818
49 0.0146 0.0292 0.9854
50 0.0132 0.02639 0.9868
51 0.07631 0.1526 0.9237
52 0.05957 0.1191 0.9404
53 0.1072 0.2145 0.8928
54 0.08896 0.1779 0.911
55 0.1049 0.2099 0.8951
56 0.08928 0.1786 0.9107
57 0.07503 0.1501 0.925
58 0.06007 0.1201 0.9399
59 0.05475 0.1095 0.9453
60 0.04263 0.08525 0.9574
61 0.04177 0.08353 0.9582
62 0.03447 0.06894 0.9655
63 0.03378 0.06757 0.9662
64 0.03808 0.07616 0.9619
65 0.04109 0.08217 0.9589
66 0.04373 0.08747 0.9563
67 0.03853 0.07706 0.9615
68 0.03168 0.06335 0.9683
69 0.04692 0.09385 0.9531
70 0.08997 0.1799 0.91
71 0.1187 0.2374 0.8813
72 0.1071 0.2141 0.8929
73 0.08784 0.1757 0.9122
74 0.0795 0.159 0.9205
75 0.07247 0.1449 0.9275
76 0.1255 0.251 0.8745
77 0.105 0.2101 0.895
78 0.3521 0.7042 0.6479
79 0.3117 0.6235 0.6883
80 0.3049 0.6098 0.6951
81 0.2955 0.591 0.7045
82 0.58 0.8399 0.4199
83 0.541 0.918 0.459
84 0.6006 0.7989 0.3994
85 0.5603 0.8795 0.4397
86 0.5314 0.9371 0.4686
87 0.4981 0.9962 0.5019
88 0.4989 0.9978 0.5011
89 0.4526 0.9052 0.5474
90 0.4066 0.8132 0.5934
91 0.3654 0.7308 0.6346
92 0.3269 0.6539 0.6731
93 0.3645 0.729 0.6355
94 0.3754 0.7507 0.6246
95 0.3472 0.6943 0.6528
96 0.3704 0.7408 0.6296
97 0.3329 0.6657 0.6671
98 0.4973 0.9947 0.5027
99 0.4524 0.9048 0.5476
100 0.4135 0.827 0.5865
101 0.3758 0.7515 0.6242
102 0.333 0.666 0.667
103 0.2971 0.5942 0.7029
104 0.3051 0.6102 0.6949
105 0.2643 0.5285 0.7357
106 0.2814 0.5629 0.7186
107 0.5594 0.8812 0.4406
108 0.5411 0.9179 0.4589
109 0.5112 0.9775 0.4888
110 0.5012 0.9975 0.4988
111 0.4629 0.9258 0.5371
112 0.4806 0.9613 0.5194
113 0.431 0.8619 0.569
114 0.3901 0.7802 0.6099
115 0.3463 0.6926 0.6537
116 0.3212 0.6423 0.6788
117 0.2916 0.5832 0.7084
118 0.2527 0.5053 0.7473
119 0.2271 0.4542 0.7729
120 0.2018 0.4035 0.7982
121 0.1903 0.3806 0.8097
122 0.1554 0.3108 0.8446
123 0.1529 0.3059 0.8471
124 0.1233 0.2466 0.8767
125 0.1259 0.2519 0.8741
126 0.1308 0.2616 0.8692
127 0.2595 0.5189 0.7405
128 0.2486 0.4972 0.7514
129 0.2148 0.4297 0.7852
130 0.1907 0.3814 0.8093
131 0.1621 0.3241 0.8379
132 0.1514 0.3028 0.8486
133 0.1492 0.2985 0.8508
134 0.1368 0.2736 0.8632
135 0.1035 0.207 0.8965
136 0.1166 0.2332 0.8834
137 0.1398 0.2796 0.8602
138 0.1293 0.2586 0.8707
139 0.2304 0.4608 0.7696
140 0.3245 0.6489 0.6755
141 0.2539 0.5078 0.7461
142 0.28 0.5601 0.72
143 0.2183 0.4366 0.7817
144 0.2091 0.4182 0.7909
145 0.1467 0.2935 0.8532
146 0.1387 0.2775 0.8613
147 0.09406 0.1881 0.9059
148 0.05663 0.1133 0.9434
149 0.1536 0.3071 0.8464
150 0.5763 0.8473 0.4237

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
10 &  0.2753 &  0.5506 &  0.7247 \tabularnewline
11 &  0.1987 &  0.3974 &  0.8013 \tabularnewline
12 &  0.105 &  0.21 &  0.895 \tabularnewline
13 &  0.05591 &  0.1118 &  0.9441 \tabularnewline
14 &  0.05236 &  0.1047 &  0.9476 \tabularnewline
15 &  0.07159 &  0.1432 &  0.9284 \tabularnewline
16 &  0.07889 &  0.1578 &  0.9211 \tabularnewline
17 &  0.04627 &  0.09253 &  0.9537 \tabularnewline
18 &  0.09839 &  0.1968 &  0.9016 \tabularnewline
19 &  0.06984 &  0.1397 &  0.9302 \tabularnewline
20 &  0.05433 &  0.1087 &  0.9457 \tabularnewline
21 &  0.045 &  0.09 &  0.955 \tabularnewline
22 &  0.02788 &  0.05577 &  0.9721 \tabularnewline
23 &  0.02898 &  0.05795 &  0.971 \tabularnewline
24 &  0.02844 &  0.05689 &  0.9716 \tabularnewline
25 &  0.08643 &  0.1729 &  0.9136 \tabularnewline
26 &  0.06303 &  0.1261 &  0.937 \tabularnewline
27 &  0.05415 &  0.1083 &  0.9458 \tabularnewline
28 &  0.0392 &  0.07841 &  0.9608 \tabularnewline
29 &  0.02625 &  0.05249 &  0.9738 \tabularnewline
30 &  0.03518 &  0.07036 &  0.9648 \tabularnewline
31 &  0.05187 &  0.1037 &  0.9481 \tabularnewline
32 &  0.04935 &  0.09871 &  0.9506 \tabularnewline
33 &  0.0476 &  0.09519 &  0.9524 \tabularnewline
34 &  0.03488 &  0.06976 &  0.9651 \tabularnewline
35 &  0.02461 &  0.04921 &  0.9754 \tabularnewline
36 &  0.01889 &  0.03777 &  0.9811 \tabularnewline
37 &  0.01589 &  0.03177 &  0.9841 \tabularnewline
38 &  0.04016 &  0.08033 &  0.9598 \tabularnewline
39 &  0.03504 &  0.07008 &  0.965 \tabularnewline
40 &  0.02494 &  0.04987 &  0.9751 \tabularnewline
41 &  0.02633 &  0.05265 &  0.9737 \tabularnewline
42 &  0.02251 &  0.04502 &  0.9775 \tabularnewline
43 &  0.01692 &  0.03384 &  0.9831 \tabularnewline
44 &  0.01302 &  0.02605 &  0.987 \tabularnewline
45 &  0.009101 &  0.0182 &  0.9909 \tabularnewline
46 &  0.008262 &  0.01652 &  0.9917 \tabularnewline
47 &  0.02431 &  0.04862 &  0.9757 \tabularnewline
48 &  0.01821 &  0.03642 &  0.9818 \tabularnewline
49 &  0.0146 &  0.0292 &  0.9854 \tabularnewline
50 &  0.0132 &  0.02639 &  0.9868 \tabularnewline
51 &  0.07631 &  0.1526 &  0.9237 \tabularnewline
52 &  0.05957 &  0.1191 &  0.9404 \tabularnewline
53 &  0.1072 &  0.2145 &  0.8928 \tabularnewline
54 &  0.08896 &  0.1779 &  0.911 \tabularnewline
55 &  0.1049 &  0.2099 &  0.8951 \tabularnewline
56 &  0.08928 &  0.1786 &  0.9107 \tabularnewline
57 &  0.07503 &  0.1501 &  0.925 \tabularnewline
58 &  0.06007 &  0.1201 &  0.9399 \tabularnewline
59 &  0.05475 &  0.1095 &  0.9453 \tabularnewline
60 &  0.04263 &  0.08525 &  0.9574 \tabularnewline
61 &  0.04177 &  0.08353 &  0.9582 \tabularnewline
62 &  0.03447 &  0.06894 &  0.9655 \tabularnewline
63 &  0.03378 &  0.06757 &  0.9662 \tabularnewline
64 &  0.03808 &  0.07616 &  0.9619 \tabularnewline
65 &  0.04109 &  0.08217 &  0.9589 \tabularnewline
66 &  0.04373 &  0.08747 &  0.9563 \tabularnewline
67 &  0.03853 &  0.07706 &  0.9615 \tabularnewline
68 &  0.03168 &  0.06335 &  0.9683 \tabularnewline
69 &  0.04692 &  0.09385 &  0.9531 \tabularnewline
70 &  0.08997 &  0.1799 &  0.91 \tabularnewline
71 &  0.1187 &  0.2374 &  0.8813 \tabularnewline
72 &  0.1071 &  0.2141 &  0.8929 \tabularnewline
73 &  0.08784 &  0.1757 &  0.9122 \tabularnewline
74 &  0.0795 &  0.159 &  0.9205 \tabularnewline
75 &  0.07247 &  0.1449 &  0.9275 \tabularnewline
76 &  0.1255 &  0.251 &  0.8745 \tabularnewline
77 &  0.105 &  0.2101 &  0.895 \tabularnewline
78 &  0.3521 &  0.7042 &  0.6479 \tabularnewline
79 &  0.3117 &  0.6235 &  0.6883 \tabularnewline
80 &  0.3049 &  0.6098 &  0.6951 \tabularnewline
81 &  0.2955 &  0.591 &  0.7045 \tabularnewline
82 &  0.58 &  0.8399 &  0.4199 \tabularnewline
83 &  0.541 &  0.918 &  0.459 \tabularnewline
84 &  0.6006 &  0.7989 &  0.3994 \tabularnewline
85 &  0.5603 &  0.8795 &  0.4397 \tabularnewline
86 &  0.5314 &  0.9371 &  0.4686 \tabularnewline
87 &  0.4981 &  0.9962 &  0.5019 \tabularnewline
88 &  0.4989 &  0.9978 &  0.5011 \tabularnewline
89 &  0.4526 &  0.9052 &  0.5474 \tabularnewline
90 &  0.4066 &  0.8132 &  0.5934 \tabularnewline
91 &  0.3654 &  0.7308 &  0.6346 \tabularnewline
92 &  0.3269 &  0.6539 &  0.6731 \tabularnewline
93 &  0.3645 &  0.729 &  0.6355 \tabularnewline
94 &  0.3754 &  0.7507 &  0.6246 \tabularnewline
95 &  0.3472 &  0.6943 &  0.6528 \tabularnewline
96 &  0.3704 &  0.7408 &  0.6296 \tabularnewline
97 &  0.3329 &  0.6657 &  0.6671 \tabularnewline
98 &  0.4973 &  0.9947 &  0.5027 \tabularnewline
99 &  0.4524 &  0.9048 &  0.5476 \tabularnewline
100 &  0.4135 &  0.827 &  0.5865 \tabularnewline
101 &  0.3758 &  0.7515 &  0.6242 \tabularnewline
102 &  0.333 &  0.666 &  0.667 \tabularnewline
103 &  0.2971 &  0.5942 &  0.7029 \tabularnewline
104 &  0.3051 &  0.6102 &  0.6949 \tabularnewline
105 &  0.2643 &  0.5285 &  0.7357 \tabularnewline
106 &  0.2814 &  0.5629 &  0.7186 \tabularnewline
107 &  0.5594 &  0.8812 &  0.4406 \tabularnewline
108 &  0.5411 &  0.9179 &  0.4589 \tabularnewline
109 &  0.5112 &  0.9775 &  0.4888 \tabularnewline
110 &  0.5012 &  0.9975 &  0.4988 \tabularnewline
111 &  0.4629 &  0.9258 &  0.5371 \tabularnewline
112 &  0.4806 &  0.9613 &  0.5194 \tabularnewline
113 &  0.431 &  0.8619 &  0.569 \tabularnewline
114 &  0.3901 &  0.7802 &  0.6099 \tabularnewline
115 &  0.3463 &  0.6926 &  0.6537 \tabularnewline
116 &  0.3212 &  0.6423 &  0.6788 \tabularnewline
117 &  0.2916 &  0.5832 &  0.7084 \tabularnewline
118 &  0.2527 &  0.5053 &  0.7473 \tabularnewline
119 &  0.2271 &  0.4542 &  0.7729 \tabularnewline
120 &  0.2018 &  0.4035 &  0.7982 \tabularnewline
121 &  0.1903 &  0.3806 &  0.8097 \tabularnewline
122 &  0.1554 &  0.3108 &  0.8446 \tabularnewline
123 &  0.1529 &  0.3059 &  0.8471 \tabularnewline
124 &  0.1233 &  0.2466 &  0.8767 \tabularnewline
125 &  0.1259 &  0.2519 &  0.8741 \tabularnewline
126 &  0.1308 &  0.2616 &  0.8692 \tabularnewline
127 &  0.2595 &  0.5189 &  0.7405 \tabularnewline
128 &  0.2486 &  0.4972 &  0.7514 \tabularnewline
129 &  0.2148 &  0.4297 &  0.7852 \tabularnewline
130 &  0.1907 &  0.3814 &  0.8093 \tabularnewline
131 &  0.1621 &  0.3241 &  0.8379 \tabularnewline
132 &  0.1514 &  0.3028 &  0.8486 \tabularnewline
133 &  0.1492 &  0.2985 &  0.8508 \tabularnewline
134 &  0.1368 &  0.2736 &  0.8632 \tabularnewline
135 &  0.1035 &  0.207 &  0.8965 \tabularnewline
136 &  0.1166 &  0.2332 &  0.8834 \tabularnewline
137 &  0.1398 &  0.2796 &  0.8602 \tabularnewline
138 &  0.1293 &  0.2586 &  0.8707 \tabularnewline
139 &  0.2304 &  0.4608 &  0.7696 \tabularnewline
140 &  0.3245 &  0.6489 &  0.6755 \tabularnewline
141 &  0.2539 &  0.5078 &  0.7461 \tabularnewline
142 &  0.28 &  0.5601 &  0.72 \tabularnewline
143 &  0.2183 &  0.4366 &  0.7817 \tabularnewline
144 &  0.2091 &  0.4182 &  0.7909 \tabularnewline
145 &  0.1467 &  0.2935 &  0.8532 \tabularnewline
146 &  0.1387 &  0.2775 &  0.8613 \tabularnewline
147 &  0.09406 &  0.1881 &  0.9059 \tabularnewline
148 &  0.05663 &  0.1133 &  0.9434 \tabularnewline
149 &  0.1536 &  0.3071 &  0.8464 \tabularnewline
150 &  0.5763 &  0.8473 &  0.4237 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297626&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]10[/C][C] 0.2753[/C][C] 0.5506[/C][C] 0.7247[/C][/ROW]
[ROW][C]11[/C][C] 0.1987[/C][C] 0.3974[/C][C] 0.8013[/C][/ROW]
[ROW][C]12[/C][C] 0.105[/C][C] 0.21[/C][C] 0.895[/C][/ROW]
[ROW][C]13[/C][C] 0.05591[/C][C] 0.1118[/C][C] 0.9441[/C][/ROW]
[ROW][C]14[/C][C] 0.05236[/C][C] 0.1047[/C][C] 0.9476[/C][/ROW]
[ROW][C]15[/C][C] 0.07159[/C][C] 0.1432[/C][C] 0.9284[/C][/ROW]
[ROW][C]16[/C][C] 0.07889[/C][C] 0.1578[/C][C] 0.9211[/C][/ROW]
[ROW][C]17[/C][C] 0.04627[/C][C] 0.09253[/C][C] 0.9537[/C][/ROW]
[ROW][C]18[/C][C] 0.09839[/C][C] 0.1968[/C][C] 0.9016[/C][/ROW]
[ROW][C]19[/C][C] 0.06984[/C][C] 0.1397[/C][C] 0.9302[/C][/ROW]
[ROW][C]20[/C][C] 0.05433[/C][C] 0.1087[/C][C] 0.9457[/C][/ROW]
[ROW][C]21[/C][C] 0.045[/C][C] 0.09[/C][C] 0.955[/C][/ROW]
[ROW][C]22[/C][C] 0.02788[/C][C] 0.05577[/C][C] 0.9721[/C][/ROW]
[ROW][C]23[/C][C] 0.02898[/C][C] 0.05795[/C][C] 0.971[/C][/ROW]
[ROW][C]24[/C][C] 0.02844[/C][C] 0.05689[/C][C] 0.9716[/C][/ROW]
[ROW][C]25[/C][C] 0.08643[/C][C] 0.1729[/C][C] 0.9136[/C][/ROW]
[ROW][C]26[/C][C] 0.06303[/C][C] 0.1261[/C][C] 0.937[/C][/ROW]
[ROW][C]27[/C][C] 0.05415[/C][C] 0.1083[/C][C] 0.9458[/C][/ROW]
[ROW][C]28[/C][C] 0.0392[/C][C] 0.07841[/C][C] 0.9608[/C][/ROW]
[ROW][C]29[/C][C] 0.02625[/C][C] 0.05249[/C][C] 0.9738[/C][/ROW]
[ROW][C]30[/C][C] 0.03518[/C][C] 0.07036[/C][C] 0.9648[/C][/ROW]
[ROW][C]31[/C][C] 0.05187[/C][C] 0.1037[/C][C] 0.9481[/C][/ROW]
[ROW][C]32[/C][C] 0.04935[/C][C] 0.09871[/C][C] 0.9506[/C][/ROW]
[ROW][C]33[/C][C] 0.0476[/C][C] 0.09519[/C][C] 0.9524[/C][/ROW]
[ROW][C]34[/C][C] 0.03488[/C][C] 0.06976[/C][C] 0.9651[/C][/ROW]
[ROW][C]35[/C][C] 0.02461[/C][C] 0.04921[/C][C] 0.9754[/C][/ROW]
[ROW][C]36[/C][C] 0.01889[/C][C] 0.03777[/C][C] 0.9811[/C][/ROW]
[ROW][C]37[/C][C] 0.01589[/C][C] 0.03177[/C][C] 0.9841[/C][/ROW]
[ROW][C]38[/C][C] 0.04016[/C][C] 0.08033[/C][C] 0.9598[/C][/ROW]
[ROW][C]39[/C][C] 0.03504[/C][C] 0.07008[/C][C] 0.965[/C][/ROW]
[ROW][C]40[/C][C] 0.02494[/C][C] 0.04987[/C][C] 0.9751[/C][/ROW]
[ROW][C]41[/C][C] 0.02633[/C][C] 0.05265[/C][C] 0.9737[/C][/ROW]
[ROW][C]42[/C][C] 0.02251[/C][C] 0.04502[/C][C] 0.9775[/C][/ROW]
[ROW][C]43[/C][C] 0.01692[/C][C] 0.03384[/C][C] 0.9831[/C][/ROW]
[ROW][C]44[/C][C] 0.01302[/C][C] 0.02605[/C][C] 0.987[/C][/ROW]
[ROW][C]45[/C][C] 0.009101[/C][C] 0.0182[/C][C] 0.9909[/C][/ROW]
[ROW][C]46[/C][C] 0.008262[/C][C] 0.01652[/C][C] 0.9917[/C][/ROW]
[ROW][C]47[/C][C] 0.02431[/C][C] 0.04862[/C][C] 0.9757[/C][/ROW]
[ROW][C]48[/C][C] 0.01821[/C][C] 0.03642[/C][C] 0.9818[/C][/ROW]
[ROW][C]49[/C][C] 0.0146[/C][C] 0.0292[/C][C] 0.9854[/C][/ROW]
[ROW][C]50[/C][C] 0.0132[/C][C] 0.02639[/C][C] 0.9868[/C][/ROW]
[ROW][C]51[/C][C] 0.07631[/C][C] 0.1526[/C][C] 0.9237[/C][/ROW]
[ROW][C]52[/C][C] 0.05957[/C][C] 0.1191[/C][C] 0.9404[/C][/ROW]
[ROW][C]53[/C][C] 0.1072[/C][C] 0.2145[/C][C] 0.8928[/C][/ROW]
[ROW][C]54[/C][C] 0.08896[/C][C] 0.1779[/C][C] 0.911[/C][/ROW]
[ROW][C]55[/C][C] 0.1049[/C][C] 0.2099[/C][C] 0.8951[/C][/ROW]
[ROW][C]56[/C][C] 0.08928[/C][C] 0.1786[/C][C] 0.9107[/C][/ROW]
[ROW][C]57[/C][C] 0.07503[/C][C] 0.1501[/C][C] 0.925[/C][/ROW]
[ROW][C]58[/C][C] 0.06007[/C][C] 0.1201[/C][C] 0.9399[/C][/ROW]
[ROW][C]59[/C][C] 0.05475[/C][C] 0.1095[/C][C] 0.9453[/C][/ROW]
[ROW][C]60[/C][C] 0.04263[/C][C] 0.08525[/C][C] 0.9574[/C][/ROW]
[ROW][C]61[/C][C] 0.04177[/C][C] 0.08353[/C][C] 0.9582[/C][/ROW]
[ROW][C]62[/C][C] 0.03447[/C][C] 0.06894[/C][C] 0.9655[/C][/ROW]
[ROW][C]63[/C][C] 0.03378[/C][C] 0.06757[/C][C] 0.9662[/C][/ROW]
[ROW][C]64[/C][C] 0.03808[/C][C] 0.07616[/C][C] 0.9619[/C][/ROW]
[ROW][C]65[/C][C] 0.04109[/C][C] 0.08217[/C][C] 0.9589[/C][/ROW]
[ROW][C]66[/C][C] 0.04373[/C][C] 0.08747[/C][C] 0.9563[/C][/ROW]
[ROW][C]67[/C][C] 0.03853[/C][C] 0.07706[/C][C] 0.9615[/C][/ROW]
[ROW][C]68[/C][C] 0.03168[/C][C] 0.06335[/C][C] 0.9683[/C][/ROW]
[ROW][C]69[/C][C] 0.04692[/C][C] 0.09385[/C][C] 0.9531[/C][/ROW]
[ROW][C]70[/C][C] 0.08997[/C][C] 0.1799[/C][C] 0.91[/C][/ROW]
[ROW][C]71[/C][C] 0.1187[/C][C] 0.2374[/C][C] 0.8813[/C][/ROW]
[ROW][C]72[/C][C] 0.1071[/C][C] 0.2141[/C][C] 0.8929[/C][/ROW]
[ROW][C]73[/C][C] 0.08784[/C][C] 0.1757[/C][C] 0.9122[/C][/ROW]
[ROW][C]74[/C][C] 0.0795[/C][C] 0.159[/C][C] 0.9205[/C][/ROW]
[ROW][C]75[/C][C] 0.07247[/C][C] 0.1449[/C][C] 0.9275[/C][/ROW]
[ROW][C]76[/C][C] 0.1255[/C][C] 0.251[/C][C] 0.8745[/C][/ROW]
[ROW][C]77[/C][C] 0.105[/C][C] 0.2101[/C][C] 0.895[/C][/ROW]
[ROW][C]78[/C][C] 0.3521[/C][C] 0.7042[/C][C] 0.6479[/C][/ROW]
[ROW][C]79[/C][C] 0.3117[/C][C] 0.6235[/C][C] 0.6883[/C][/ROW]
[ROW][C]80[/C][C] 0.3049[/C][C] 0.6098[/C][C] 0.6951[/C][/ROW]
[ROW][C]81[/C][C] 0.2955[/C][C] 0.591[/C][C] 0.7045[/C][/ROW]
[ROW][C]82[/C][C] 0.58[/C][C] 0.8399[/C][C] 0.4199[/C][/ROW]
[ROW][C]83[/C][C] 0.541[/C][C] 0.918[/C][C] 0.459[/C][/ROW]
[ROW][C]84[/C][C] 0.6006[/C][C] 0.7989[/C][C] 0.3994[/C][/ROW]
[ROW][C]85[/C][C] 0.5603[/C][C] 0.8795[/C][C] 0.4397[/C][/ROW]
[ROW][C]86[/C][C] 0.5314[/C][C] 0.9371[/C][C] 0.4686[/C][/ROW]
[ROW][C]87[/C][C] 0.4981[/C][C] 0.9962[/C][C] 0.5019[/C][/ROW]
[ROW][C]88[/C][C] 0.4989[/C][C] 0.9978[/C][C] 0.5011[/C][/ROW]
[ROW][C]89[/C][C] 0.4526[/C][C] 0.9052[/C][C] 0.5474[/C][/ROW]
[ROW][C]90[/C][C] 0.4066[/C][C] 0.8132[/C][C] 0.5934[/C][/ROW]
[ROW][C]91[/C][C] 0.3654[/C][C] 0.7308[/C][C] 0.6346[/C][/ROW]
[ROW][C]92[/C][C] 0.3269[/C][C] 0.6539[/C][C] 0.6731[/C][/ROW]
[ROW][C]93[/C][C] 0.3645[/C][C] 0.729[/C][C] 0.6355[/C][/ROW]
[ROW][C]94[/C][C] 0.3754[/C][C] 0.7507[/C][C] 0.6246[/C][/ROW]
[ROW][C]95[/C][C] 0.3472[/C][C] 0.6943[/C][C] 0.6528[/C][/ROW]
[ROW][C]96[/C][C] 0.3704[/C][C] 0.7408[/C][C] 0.6296[/C][/ROW]
[ROW][C]97[/C][C] 0.3329[/C][C] 0.6657[/C][C] 0.6671[/C][/ROW]
[ROW][C]98[/C][C] 0.4973[/C][C] 0.9947[/C][C] 0.5027[/C][/ROW]
[ROW][C]99[/C][C] 0.4524[/C][C] 0.9048[/C][C] 0.5476[/C][/ROW]
[ROW][C]100[/C][C] 0.4135[/C][C] 0.827[/C][C] 0.5865[/C][/ROW]
[ROW][C]101[/C][C] 0.3758[/C][C] 0.7515[/C][C] 0.6242[/C][/ROW]
[ROW][C]102[/C][C] 0.333[/C][C] 0.666[/C][C] 0.667[/C][/ROW]
[ROW][C]103[/C][C] 0.2971[/C][C] 0.5942[/C][C] 0.7029[/C][/ROW]
[ROW][C]104[/C][C] 0.3051[/C][C] 0.6102[/C][C] 0.6949[/C][/ROW]
[ROW][C]105[/C][C] 0.2643[/C][C] 0.5285[/C][C] 0.7357[/C][/ROW]
[ROW][C]106[/C][C] 0.2814[/C][C] 0.5629[/C][C] 0.7186[/C][/ROW]
[ROW][C]107[/C][C] 0.5594[/C][C] 0.8812[/C][C] 0.4406[/C][/ROW]
[ROW][C]108[/C][C] 0.5411[/C][C] 0.9179[/C][C] 0.4589[/C][/ROW]
[ROW][C]109[/C][C] 0.5112[/C][C] 0.9775[/C][C] 0.4888[/C][/ROW]
[ROW][C]110[/C][C] 0.5012[/C][C] 0.9975[/C][C] 0.4988[/C][/ROW]
[ROW][C]111[/C][C] 0.4629[/C][C] 0.9258[/C][C] 0.5371[/C][/ROW]
[ROW][C]112[/C][C] 0.4806[/C][C] 0.9613[/C][C] 0.5194[/C][/ROW]
[ROW][C]113[/C][C] 0.431[/C][C] 0.8619[/C][C] 0.569[/C][/ROW]
[ROW][C]114[/C][C] 0.3901[/C][C] 0.7802[/C][C] 0.6099[/C][/ROW]
[ROW][C]115[/C][C] 0.3463[/C][C] 0.6926[/C][C] 0.6537[/C][/ROW]
[ROW][C]116[/C][C] 0.3212[/C][C] 0.6423[/C][C] 0.6788[/C][/ROW]
[ROW][C]117[/C][C] 0.2916[/C][C] 0.5832[/C][C] 0.7084[/C][/ROW]
[ROW][C]118[/C][C] 0.2527[/C][C] 0.5053[/C][C] 0.7473[/C][/ROW]
[ROW][C]119[/C][C] 0.2271[/C][C] 0.4542[/C][C] 0.7729[/C][/ROW]
[ROW][C]120[/C][C] 0.2018[/C][C] 0.4035[/C][C] 0.7982[/C][/ROW]
[ROW][C]121[/C][C] 0.1903[/C][C] 0.3806[/C][C] 0.8097[/C][/ROW]
[ROW][C]122[/C][C] 0.1554[/C][C] 0.3108[/C][C] 0.8446[/C][/ROW]
[ROW][C]123[/C][C] 0.1529[/C][C] 0.3059[/C][C] 0.8471[/C][/ROW]
[ROW][C]124[/C][C] 0.1233[/C][C] 0.2466[/C][C] 0.8767[/C][/ROW]
[ROW][C]125[/C][C] 0.1259[/C][C] 0.2519[/C][C] 0.8741[/C][/ROW]
[ROW][C]126[/C][C] 0.1308[/C][C] 0.2616[/C][C] 0.8692[/C][/ROW]
[ROW][C]127[/C][C] 0.2595[/C][C] 0.5189[/C][C] 0.7405[/C][/ROW]
[ROW][C]128[/C][C] 0.2486[/C][C] 0.4972[/C][C] 0.7514[/C][/ROW]
[ROW][C]129[/C][C] 0.2148[/C][C] 0.4297[/C][C] 0.7852[/C][/ROW]
[ROW][C]130[/C][C] 0.1907[/C][C] 0.3814[/C][C] 0.8093[/C][/ROW]
[ROW][C]131[/C][C] 0.1621[/C][C] 0.3241[/C][C] 0.8379[/C][/ROW]
[ROW][C]132[/C][C] 0.1514[/C][C] 0.3028[/C][C] 0.8486[/C][/ROW]
[ROW][C]133[/C][C] 0.1492[/C][C] 0.2985[/C][C] 0.8508[/C][/ROW]
[ROW][C]134[/C][C] 0.1368[/C][C] 0.2736[/C][C] 0.8632[/C][/ROW]
[ROW][C]135[/C][C] 0.1035[/C][C] 0.207[/C][C] 0.8965[/C][/ROW]
[ROW][C]136[/C][C] 0.1166[/C][C] 0.2332[/C][C] 0.8834[/C][/ROW]
[ROW][C]137[/C][C] 0.1398[/C][C] 0.2796[/C][C] 0.8602[/C][/ROW]
[ROW][C]138[/C][C] 0.1293[/C][C] 0.2586[/C][C] 0.8707[/C][/ROW]
[ROW][C]139[/C][C] 0.2304[/C][C] 0.4608[/C][C] 0.7696[/C][/ROW]
[ROW][C]140[/C][C] 0.3245[/C][C] 0.6489[/C][C] 0.6755[/C][/ROW]
[ROW][C]141[/C][C] 0.2539[/C][C] 0.5078[/C][C] 0.7461[/C][/ROW]
[ROW][C]142[/C][C] 0.28[/C][C] 0.5601[/C][C] 0.72[/C][/ROW]
[ROW][C]143[/C][C] 0.2183[/C][C] 0.4366[/C][C] 0.7817[/C][/ROW]
[ROW][C]144[/C][C] 0.2091[/C][C] 0.4182[/C][C] 0.7909[/C][/ROW]
[ROW][C]145[/C][C] 0.1467[/C][C] 0.2935[/C][C] 0.8532[/C][/ROW]
[ROW][C]146[/C][C] 0.1387[/C][C] 0.2775[/C][C] 0.8613[/C][/ROW]
[ROW][C]147[/C][C] 0.09406[/C][C] 0.1881[/C][C] 0.9059[/C][/ROW]
[ROW][C]148[/C][C] 0.05663[/C][C] 0.1133[/C][C] 0.9434[/C][/ROW]
[ROW][C]149[/C][C] 0.1536[/C][C] 0.3071[/C][C] 0.8464[/C][/ROW]
[ROW][C]150[/C][C] 0.5763[/C][C] 0.8473[/C][C] 0.4237[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297626&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297626&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
10 0.2753 0.5506 0.7247
11 0.1987 0.3974 0.8013
12 0.105 0.21 0.895
13 0.05591 0.1118 0.9441
14 0.05236 0.1047 0.9476
15 0.07159 0.1432 0.9284
16 0.07889 0.1578 0.9211
17 0.04627 0.09253 0.9537
18 0.09839 0.1968 0.9016
19 0.06984 0.1397 0.9302
20 0.05433 0.1087 0.9457
21 0.045 0.09 0.955
22 0.02788 0.05577 0.9721
23 0.02898 0.05795 0.971
24 0.02844 0.05689 0.9716
25 0.08643 0.1729 0.9136
26 0.06303 0.1261 0.937
27 0.05415 0.1083 0.9458
28 0.0392 0.07841 0.9608
29 0.02625 0.05249 0.9738
30 0.03518 0.07036 0.9648
31 0.05187 0.1037 0.9481
32 0.04935 0.09871 0.9506
33 0.0476 0.09519 0.9524
34 0.03488 0.06976 0.9651
35 0.02461 0.04921 0.9754
36 0.01889 0.03777 0.9811
37 0.01589 0.03177 0.9841
38 0.04016 0.08033 0.9598
39 0.03504 0.07008 0.965
40 0.02494 0.04987 0.9751
41 0.02633 0.05265 0.9737
42 0.02251 0.04502 0.9775
43 0.01692 0.03384 0.9831
44 0.01302 0.02605 0.987
45 0.009101 0.0182 0.9909
46 0.008262 0.01652 0.9917
47 0.02431 0.04862 0.9757
48 0.01821 0.03642 0.9818
49 0.0146 0.0292 0.9854
50 0.0132 0.02639 0.9868
51 0.07631 0.1526 0.9237
52 0.05957 0.1191 0.9404
53 0.1072 0.2145 0.8928
54 0.08896 0.1779 0.911
55 0.1049 0.2099 0.8951
56 0.08928 0.1786 0.9107
57 0.07503 0.1501 0.925
58 0.06007 0.1201 0.9399
59 0.05475 0.1095 0.9453
60 0.04263 0.08525 0.9574
61 0.04177 0.08353 0.9582
62 0.03447 0.06894 0.9655
63 0.03378 0.06757 0.9662
64 0.03808 0.07616 0.9619
65 0.04109 0.08217 0.9589
66 0.04373 0.08747 0.9563
67 0.03853 0.07706 0.9615
68 0.03168 0.06335 0.9683
69 0.04692 0.09385 0.9531
70 0.08997 0.1799 0.91
71 0.1187 0.2374 0.8813
72 0.1071 0.2141 0.8929
73 0.08784 0.1757 0.9122
74 0.0795 0.159 0.9205
75 0.07247 0.1449 0.9275
76 0.1255 0.251 0.8745
77 0.105 0.2101 0.895
78 0.3521 0.7042 0.6479
79 0.3117 0.6235 0.6883
80 0.3049 0.6098 0.6951
81 0.2955 0.591 0.7045
82 0.58 0.8399 0.4199
83 0.541 0.918 0.459
84 0.6006 0.7989 0.3994
85 0.5603 0.8795 0.4397
86 0.5314 0.9371 0.4686
87 0.4981 0.9962 0.5019
88 0.4989 0.9978 0.5011
89 0.4526 0.9052 0.5474
90 0.4066 0.8132 0.5934
91 0.3654 0.7308 0.6346
92 0.3269 0.6539 0.6731
93 0.3645 0.729 0.6355
94 0.3754 0.7507 0.6246
95 0.3472 0.6943 0.6528
96 0.3704 0.7408 0.6296
97 0.3329 0.6657 0.6671
98 0.4973 0.9947 0.5027
99 0.4524 0.9048 0.5476
100 0.4135 0.827 0.5865
101 0.3758 0.7515 0.6242
102 0.333 0.666 0.667
103 0.2971 0.5942 0.7029
104 0.3051 0.6102 0.6949
105 0.2643 0.5285 0.7357
106 0.2814 0.5629 0.7186
107 0.5594 0.8812 0.4406
108 0.5411 0.9179 0.4589
109 0.5112 0.9775 0.4888
110 0.5012 0.9975 0.4988
111 0.4629 0.9258 0.5371
112 0.4806 0.9613 0.5194
113 0.431 0.8619 0.569
114 0.3901 0.7802 0.6099
115 0.3463 0.6926 0.6537
116 0.3212 0.6423 0.6788
117 0.2916 0.5832 0.7084
118 0.2527 0.5053 0.7473
119 0.2271 0.4542 0.7729
120 0.2018 0.4035 0.7982
121 0.1903 0.3806 0.8097
122 0.1554 0.3108 0.8446
123 0.1529 0.3059 0.8471
124 0.1233 0.2466 0.8767
125 0.1259 0.2519 0.8741
126 0.1308 0.2616 0.8692
127 0.2595 0.5189 0.7405
128 0.2486 0.4972 0.7514
129 0.2148 0.4297 0.7852
130 0.1907 0.3814 0.8093
131 0.1621 0.3241 0.8379
132 0.1514 0.3028 0.8486
133 0.1492 0.2985 0.8508
134 0.1368 0.2736 0.8632
135 0.1035 0.207 0.8965
136 0.1166 0.2332 0.8834
137 0.1398 0.2796 0.8602
138 0.1293 0.2586 0.8707
139 0.2304 0.4608 0.7696
140 0.3245 0.6489 0.6755
141 0.2539 0.5078 0.7461
142 0.28 0.5601 0.72
143 0.2183 0.4366 0.7817
144 0.2091 0.4182 0.7909
145 0.1467 0.2935 0.8532
146 0.1387 0.2775 0.8613
147 0.09406 0.1881 0.9059
148 0.05663 0.1133 0.9434
149 0.1536 0.3071 0.8464
150 0.5763 0.8473 0.4237







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level130.0921986NOK
10% type I error level370.262411NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 13 & 0.0921986 & NOK \tabularnewline
10% type I error level & 37 & 0.262411 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297626&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]13[/C][C]0.0921986[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]37[/C][C]0.262411[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297626&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297626&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level130.0921986NOK
10% type I error level370.262411NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.632, df1 = 2, df2 = 151, p-value = 0.199
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.281, df1 = 12, df2 = 141, p-value = 0.2361
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.257, df1 = 2, df2 = 151, p-value = 0.2875

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.632, df1 = 2, df2 = 151, p-value = 0.199
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.281, df1 = 12, df2 = 141, p-value = 0.2361
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.257, df1 = 2, df2 = 151, p-value = 0.2875
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297626&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.632, df1 = 2, df2 = 151, p-value = 0.199
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.281, df1 = 12, df2 = 141, p-value = 0.2361
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.257, df1 = 2, df2 = 151, p-value = 0.2875
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297626&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297626&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.632, df1 = 2, df2 = 151, p-value = 0.199
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.281, df1 = 12, df2 = 141, p-value = 0.2361
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.257, df1 = 2, df2 = 151, p-value = 0.2875







Variance Inflation Factors (Multicollinearity)
> vif
     SK1      SK2      SK3      SK4      SK5      SK6 
1.093130 1.130790 1.045070 1.043667 1.045488 1.032797 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     SK1      SK2      SK3      SK4      SK5      SK6 
1.093130 1.130790 1.045070 1.043667 1.045488 1.032797 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297626&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     SK1      SK2      SK3      SK4      SK5      SK6 
1.093130 1.130790 1.045070 1.043667 1.045488 1.032797 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297626&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297626&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     SK1      SK2      SK3      SK4      SK5      SK6 
1.093130 1.130790 1.045070 1.043667 1.045488 1.032797 



Parameters (Session):
par1 = 7 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')