Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 02 Dec 2016 18:30:39 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/02/t1480701707ii3cuuau6l0c99s.htm/, Retrieved Fri, 01 Nov 2024 03:35:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297586, Retrieved Fri, 01 Nov 2024 03:35:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact186
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2016-12-02 17:30:39] [219800a2f11ddd28e3280d87dbde8c8d] [Current]
Feedback Forum

Post a new message
Dataseries X:
5	5	4	1	14
3	3	2	5	19
5	5	3	1	17
5	4	2	2	17
5	4	2	1	15
5	5	3	4	20
5	3	3	1	15
5	5	2	1	19
5	5	2	1	15
5	5	4	2	15
4	5	2	1	19
2	4	2	4	NA
5	4	3	1	20
4	5	2	5	18
5	5	3	2	15
4	5	2	1	14
5	4	2	NA	20
5	5	NA	NA	NA
5	5	3	2	16
4	5	2	1	16
4	5	2	4	16
3	4	3	1	10
5	5	1	2	19
4	4	2	3	19
5	5	3	1	16
4	4	2	4	15
5	5	2	2	18
5	4	3	3	17
5	5	5	1	19
5	5	2	4	17
5	5	5	1	NA
5	5	2	1	19
5	5	2	1	20
5	4	4	1	5
5	4	1	3	19
4	4	2	4	16
4	4	2	2	15
5	5	3	4	16
5	5	2	2	18
5	5	3	2	16
5	5	2	1	15
5	5	3	1	17
5	5	4	1	NA
5	5	4	5	20
5	5	3	1	19
5	5	2	1	7
5	4	2	1	13
NA	NA	1	NA	16
4	5	4	1	16
5	5	4	1	NA
5	5	3	2	18
4	4	2	2	18
5	5	2	2	16
3	4	2	2	17
4	3	2	3	19
3	3	3	1	16
5	4	2	NA	19
5	5	2	2	13
5	5	3	1	16
5	4	3	3	13
5	5	2	3	12
5	5	2	1	17
5	5	4	1	17
5	5	4	2	17
4	4	3	1	16
5	5	4	3	16
4	4	4	3	14
5	5	4	NA	16
2	2	4	4	13
4	3	5	4	16
5	5	3	2	14
5	5	4	1	20
4	3	4	1	12
5	5	2	1	13
2	3	2	3	18
5	4	3	2	14
3	3	4	1	19
4	5	2	1	18
4	4	5	1	14
5	5	1	1	18
5	5	3	1	19
4	4	3	1	15
4	4	2	3	14
5	5	2	1	17
4	5	1	4	19
4	4	2	2	13
5	5	1	4	19
5	5	2	1	18
5	5	2	1	20
4	4	2	1	15
4	4	2	2	15
4	4	3	5	15
3	3	2	3	20
4	4	1	4	15
5	5	1	1	19
5	5	3	4	18
4	4	2	4	18
5	5	3	2	15
2	2	1	3	20
5	5	2	1	17
5	5	2	1	12
4	4	3	4	18
3	5	2	4	19
5	5	2	1	20
4	4	3	3	NA
5	5	1	1	17
5	5	4	5	15
5	5	3	2	16
5	5	2	2	18
5	5	3	1	18
4	5	3	3	14
5	4	3	1	15
5	5	4	1	12
5	3	3	3	17
4	4	2	1	14
5	5	3	4	18
5	5	2	1	17
2	1	1	5	17
5	5	1	1	20
5	5	2	1	16
5	4	4	4	14
5	4	3	2	15
5	5	2	1	18
5	5	2	4	20
5	5	3	1	17
5	5	3	1	17
4	5	3	2	17
3	3	2	2	17
5	4	2	1	15
5	5	2	1	17
5	5	3	1	18
5	5	4	4	17
4	4	2	4	20
4	5	2	3	15
4	4	1	4	16
5	4	3	1	15
4	4	3	5	18
NA	NA	4	3	11
4	4	3	2	15
5	5	1	3	18
2	2	1	3	20
5	5	2	1	19
4	4	1	4	14
5	5	5	1	16
5	5	3	1	15
4	4	2	3	17
5	4	2	3	18
4	2	4	2	20
5	5	2	4	17
5	5	4	4	18
5	5	4	2	15
4	4	3	4	16
5	5	4	4	11
5	5	3	2	15
5	4	4	1	18
5	5	3	1	17
5	5	4	1	16
2	2	2	3	12
5	5	4	3	19
3	3	1	4	18
5	5	4	1	15
5	4	3	NA	17
5	5	2	3	19
4	4	2	3	18
5	5	2	NA	19
5	5	4	1	16
5	5	3	2	16
5	4	3	2	16
5	2	2	4	14




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297586&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297586&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297586&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
ITH[t] = + 15.9928 -0.123154EP1[t] + 0.423966EP2[t] -0.549932EP3[t] + 0.248876EP4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ITH[t] =  +  15.9928 -0.123154EP1[t] +  0.423966EP2[t] -0.549932EP3[t] +  0.248876EP4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297586&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ITH[t] =  +  15.9928 -0.123154EP1[t] +  0.423966EP2[t] -0.549932EP3[t] +  0.248876EP4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297586&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297586&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ITH[t] = + 15.9928 -0.123154EP1[t] + 0.423966EP2[t] -0.549932EP3[t] + 0.248876EP4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15.99 1.463+1.0930e+01 7.442e-21 3.721e-21
EP1-0.1231 0.3712-3.3180e-01 0.7405 0.3702
EP2+0.424 0.3319+1.2770e+00 0.2035 0.1017
EP3-0.5499 0.2065-2.6630e+00 0.008581 0.004291
EP4+0.2489 0.1604+1.5510e+00 0.1229 0.06145

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +15.99 &  1.463 & +1.0930e+01 &  7.442e-21 &  3.721e-21 \tabularnewline
EP1 & -0.1231 &  0.3712 & -3.3180e-01 &  0.7405 &  0.3702 \tabularnewline
EP2 & +0.424 &  0.3319 & +1.2770e+00 &  0.2035 &  0.1017 \tabularnewline
EP3 & -0.5499 &  0.2065 & -2.6630e+00 &  0.008581 &  0.004291 \tabularnewline
EP4 & +0.2489 &  0.1604 & +1.5510e+00 &  0.1229 &  0.06145 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297586&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+15.99[/C][C] 1.463[/C][C]+1.0930e+01[/C][C] 7.442e-21[/C][C] 3.721e-21[/C][/ROW]
[ROW][C]EP1[/C][C]-0.1231[/C][C] 0.3712[/C][C]-3.3180e-01[/C][C] 0.7405[/C][C] 0.3702[/C][/ROW]
[ROW][C]EP2[/C][C]+0.424[/C][C] 0.3319[/C][C]+1.2770e+00[/C][C] 0.2035[/C][C] 0.1017[/C][/ROW]
[ROW][C]EP3[/C][C]-0.5499[/C][C] 0.2065[/C][C]-2.6630e+00[/C][C] 0.008581[/C][C] 0.004291[/C][/ROW]
[ROW][C]EP4[/C][C]+0.2489[/C][C] 0.1604[/C][C]+1.5510e+00[/C][C] 0.1229[/C][C] 0.06145[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297586&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297586&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15.99 1.463+1.0930e+01 7.442e-21 3.721e-21
EP1-0.1231 0.3712-3.3180e-01 0.7405 0.3702
EP2+0.424 0.3319+1.2770e+00 0.2035 0.1017
EP3-0.5499 0.2065-2.6630e+00 0.008581 0.004291
EP4+0.2489 0.1604+1.5510e+00 0.1229 0.06145







Multiple Linear Regression - Regression Statistics
Multiple R 0.2709
R-squared 0.07339
Adjusted R-squared 0.04885
F-TEST (value) 2.99
F-TEST (DF numerator)4
F-TEST (DF denominator)151
p-value 0.02071
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.422
Sum Squared Residuals 886

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2709 \tabularnewline
R-squared &  0.07339 \tabularnewline
Adjusted R-squared &  0.04885 \tabularnewline
F-TEST (value) &  2.99 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 151 \tabularnewline
p-value &  0.02071 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.422 \tabularnewline
Sum Squared Residuals &  886 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297586&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2709[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.07339[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.04885[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 2.99[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]151[/C][/ROW]
[ROW][C]p-value[/C][C] 0.02071[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.422[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 886[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297586&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297586&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2709
R-squared 0.07339
Adjusted R-squared 0.04885
F-TEST (value) 2.99
F-TEST (DF numerator)4
F-TEST (DF denominator)151
p-value 0.02071
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.422
Sum Squared Residuals 886







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 15.55-1.546
2 19 17.04 1.96
3 17 16.1 0.9041
4 17 16.47 0.5292
5 15 16.22-1.222
6 20 16.84 3.157
7 15 15.25-0.248
8 19 16.65 2.354
9 15 16.65-1.646
10 15 15.79-0.7949
11 19 16.77 2.231
12 20 15.67 4.328
13 18 17.76 0.2355
14 15 16.34-1.345
15 14 16.77-2.769
16 16 16.34-0.3448
17 16 16.77-0.769
18 16 17.52-1.516
19 10 15.92-5.918
20 19 17.44 1.555
21 19 16.84 2.157
22 16 16.1-0.09593
23 15 17.09-2.092
24 18 16.89 1.105
25 17 16.17 0.8303
26 19 15 4.004
27 17 17.39-0.3925
28 19 16.65 2.354
29 20 16.65 3.354
30 5 15.12-10.12
31 19 17.27 1.73
32 16 17.09-1.092
33 15 16.59-1.594
34 16 16.84-0.8426
35 18 16.89 1.105
36 16 16.34-0.3448
37 15 16.65-1.646
38 17 16.1 0.9041
39 20 16.54 3.458
40 19 16.1 2.904
41 7 16.65-9.646
42 13 16.22-3.222
43 16 15.67 0.3308
44 18 16.34 1.655
45 18 16.59 1.406
46 16 16.89-0.8947
47 17 16.72 0.2829
48 19 16.42 2.581
49 16 15.49 0.5057
50 13 16.89-3.895
51 16 16.1-0.09593
52 13 16.17-3.17
53 12 17.14-5.144
54 17 16.65 0.3541
55 17 15.55 1.454
56 17 15.79 1.205
57 16 15.8 0.2049
58 16 16.04-0.04375
59 14 15.74-1.743
60 13 15.39-2.39
61 16 15.02 0.9821
62 14 16.34-2.345
63 20 15.55 4.454
64 12 14.82-2.821
65 13 16.65-3.646
66 18 16.67 1.335
67 14 15.92-1.921
68 19 14.94 4.056
69 18 16.77 1.231
70 14 14.7-0.6953
71 18 17.2 0.8042
72 19 16.1 2.904
73 15 15.8-0.7951
74 14 16.84-2.843
75 17 16.65 0.3541
76 19 18.07 0.9344
77 13 16.59-3.594
78 19 17.94 1.058
79 18 16.65 1.354
80 20 16.65 3.354
81 15 16.34-1.345
82 15 16.59-1.594
83 15 16.79-1.791
84 20 16.54 3.458
85 15 17.64-2.642
86 19 17.2 1.804
87 18 16.84 1.157
88 18 17.09 0.9083
89 15 16.34-1.345
90 20 16.79 3.209
91 17 16.65 0.3541
92 12 16.65-4.646
93 18 16.54 1.458
94 19 17.64 1.361
95 20 16.65 3.354
96 17 17.2-0.1958
97 15 16.54-1.542
98 16 16.34-0.3448
99 18 16.89 1.105
100 18 16.1 1.904
101 14 16.72-2.717
102 15 15.67-0.672
103 12 15.55-3.546
104 17 15.75 1.254
105 14 16.34-2.345
106 18 16.84 1.157
107 17 16.65 0.3541
108 17 16.86 0.1351
109 20 17.2 2.804
110 16 16.65-0.6459
111 14 15.87-1.869
112 15 15.92-0.9208
113 18 16.65 1.354
114 20 17.39 2.608
115 17 16.1 0.9041
116 17 16.1 0.9041
117 17 16.47 0.532
118 17 16.29 0.7069
119 15 16.22-1.222
120 17 16.65 0.3541
121 18 16.1 1.904
122 17 16.29 0.7074
123 20 17.09 2.908
124 15 17.27-2.267
125 16 17.64-1.642
126 15 15.67-0.672
127 18 16.79 1.209
128 15 16.04-1.044
129 18 17.69 0.3065
130 20 16.79 3.209
131 19 16.65 2.354
132 14 17.64-3.642
133 16 15 1.004
134 15 16.1-1.096
135 17 16.84 0.1572
136 18 16.72 1.28
137 20 14.65 5.354
138 17 17.39-0.3925
139 18 16.29 1.707
140 15 15.79-0.7949
141 16 16.54-0.5417
142 11 16.29-5.293
143 15 16.34-1.345
144 18 15.12 2.878
145 17 16.1 0.9041
146 16 15.55 0.454
147 12 16.24-4.241
148 19 16.04 2.956
149 18 17.34 0.6592
150 15 15.55-0.546
151 19 17.14 1.856
152 18 16.84 1.157
153 16 15.55 0.454
154 16 16.34-0.3448
155 16 15.92 0.07916
156 14 16.12-2.121

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  14 &  15.55 & -1.546 \tabularnewline
2 &  19 &  17.04 &  1.96 \tabularnewline
3 &  17 &  16.1 &  0.9041 \tabularnewline
4 &  17 &  16.47 &  0.5292 \tabularnewline
5 &  15 &  16.22 & -1.222 \tabularnewline
6 &  20 &  16.84 &  3.157 \tabularnewline
7 &  15 &  15.25 & -0.248 \tabularnewline
8 &  19 &  16.65 &  2.354 \tabularnewline
9 &  15 &  16.65 & -1.646 \tabularnewline
10 &  15 &  15.79 & -0.7949 \tabularnewline
11 &  19 &  16.77 &  2.231 \tabularnewline
12 &  20 &  15.67 &  4.328 \tabularnewline
13 &  18 &  17.76 &  0.2355 \tabularnewline
14 &  15 &  16.34 & -1.345 \tabularnewline
15 &  14 &  16.77 & -2.769 \tabularnewline
16 &  16 &  16.34 & -0.3448 \tabularnewline
17 &  16 &  16.77 & -0.769 \tabularnewline
18 &  16 &  17.52 & -1.516 \tabularnewline
19 &  10 &  15.92 & -5.918 \tabularnewline
20 &  19 &  17.44 &  1.555 \tabularnewline
21 &  19 &  16.84 &  2.157 \tabularnewline
22 &  16 &  16.1 & -0.09593 \tabularnewline
23 &  15 &  17.09 & -2.092 \tabularnewline
24 &  18 &  16.89 &  1.105 \tabularnewline
25 &  17 &  16.17 &  0.8303 \tabularnewline
26 &  19 &  15 &  4.004 \tabularnewline
27 &  17 &  17.39 & -0.3925 \tabularnewline
28 &  19 &  16.65 &  2.354 \tabularnewline
29 &  20 &  16.65 &  3.354 \tabularnewline
30 &  5 &  15.12 & -10.12 \tabularnewline
31 &  19 &  17.27 &  1.73 \tabularnewline
32 &  16 &  17.09 & -1.092 \tabularnewline
33 &  15 &  16.59 & -1.594 \tabularnewline
34 &  16 &  16.84 & -0.8426 \tabularnewline
35 &  18 &  16.89 &  1.105 \tabularnewline
36 &  16 &  16.34 & -0.3448 \tabularnewline
37 &  15 &  16.65 & -1.646 \tabularnewline
38 &  17 &  16.1 &  0.9041 \tabularnewline
39 &  20 &  16.54 &  3.458 \tabularnewline
40 &  19 &  16.1 &  2.904 \tabularnewline
41 &  7 &  16.65 & -9.646 \tabularnewline
42 &  13 &  16.22 & -3.222 \tabularnewline
43 &  16 &  15.67 &  0.3308 \tabularnewline
44 &  18 &  16.34 &  1.655 \tabularnewline
45 &  18 &  16.59 &  1.406 \tabularnewline
46 &  16 &  16.89 & -0.8947 \tabularnewline
47 &  17 &  16.72 &  0.2829 \tabularnewline
48 &  19 &  16.42 &  2.581 \tabularnewline
49 &  16 &  15.49 &  0.5057 \tabularnewline
50 &  13 &  16.89 & -3.895 \tabularnewline
51 &  16 &  16.1 & -0.09593 \tabularnewline
52 &  13 &  16.17 & -3.17 \tabularnewline
53 &  12 &  17.14 & -5.144 \tabularnewline
54 &  17 &  16.65 &  0.3541 \tabularnewline
55 &  17 &  15.55 &  1.454 \tabularnewline
56 &  17 &  15.79 &  1.205 \tabularnewline
57 &  16 &  15.8 &  0.2049 \tabularnewline
58 &  16 &  16.04 & -0.04375 \tabularnewline
59 &  14 &  15.74 & -1.743 \tabularnewline
60 &  13 &  15.39 & -2.39 \tabularnewline
61 &  16 &  15.02 &  0.9821 \tabularnewline
62 &  14 &  16.34 & -2.345 \tabularnewline
63 &  20 &  15.55 &  4.454 \tabularnewline
64 &  12 &  14.82 & -2.821 \tabularnewline
65 &  13 &  16.65 & -3.646 \tabularnewline
66 &  18 &  16.67 &  1.335 \tabularnewline
67 &  14 &  15.92 & -1.921 \tabularnewline
68 &  19 &  14.94 &  4.056 \tabularnewline
69 &  18 &  16.77 &  1.231 \tabularnewline
70 &  14 &  14.7 & -0.6953 \tabularnewline
71 &  18 &  17.2 &  0.8042 \tabularnewline
72 &  19 &  16.1 &  2.904 \tabularnewline
73 &  15 &  15.8 & -0.7951 \tabularnewline
74 &  14 &  16.84 & -2.843 \tabularnewline
75 &  17 &  16.65 &  0.3541 \tabularnewline
76 &  19 &  18.07 &  0.9344 \tabularnewline
77 &  13 &  16.59 & -3.594 \tabularnewline
78 &  19 &  17.94 &  1.058 \tabularnewline
79 &  18 &  16.65 &  1.354 \tabularnewline
80 &  20 &  16.65 &  3.354 \tabularnewline
81 &  15 &  16.34 & -1.345 \tabularnewline
82 &  15 &  16.59 & -1.594 \tabularnewline
83 &  15 &  16.79 & -1.791 \tabularnewline
84 &  20 &  16.54 &  3.458 \tabularnewline
85 &  15 &  17.64 & -2.642 \tabularnewline
86 &  19 &  17.2 &  1.804 \tabularnewline
87 &  18 &  16.84 &  1.157 \tabularnewline
88 &  18 &  17.09 &  0.9083 \tabularnewline
89 &  15 &  16.34 & -1.345 \tabularnewline
90 &  20 &  16.79 &  3.209 \tabularnewline
91 &  17 &  16.65 &  0.3541 \tabularnewline
92 &  12 &  16.65 & -4.646 \tabularnewline
93 &  18 &  16.54 &  1.458 \tabularnewline
94 &  19 &  17.64 &  1.361 \tabularnewline
95 &  20 &  16.65 &  3.354 \tabularnewline
96 &  17 &  17.2 & -0.1958 \tabularnewline
97 &  15 &  16.54 & -1.542 \tabularnewline
98 &  16 &  16.34 & -0.3448 \tabularnewline
99 &  18 &  16.89 &  1.105 \tabularnewline
100 &  18 &  16.1 &  1.904 \tabularnewline
101 &  14 &  16.72 & -2.717 \tabularnewline
102 &  15 &  15.67 & -0.672 \tabularnewline
103 &  12 &  15.55 & -3.546 \tabularnewline
104 &  17 &  15.75 &  1.254 \tabularnewline
105 &  14 &  16.34 & -2.345 \tabularnewline
106 &  18 &  16.84 &  1.157 \tabularnewline
107 &  17 &  16.65 &  0.3541 \tabularnewline
108 &  17 &  16.86 &  0.1351 \tabularnewline
109 &  20 &  17.2 &  2.804 \tabularnewline
110 &  16 &  16.65 & -0.6459 \tabularnewline
111 &  14 &  15.87 & -1.869 \tabularnewline
112 &  15 &  15.92 & -0.9208 \tabularnewline
113 &  18 &  16.65 &  1.354 \tabularnewline
114 &  20 &  17.39 &  2.608 \tabularnewline
115 &  17 &  16.1 &  0.9041 \tabularnewline
116 &  17 &  16.1 &  0.9041 \tabularnewline
117 &  17 &  16.47 &  0.532 \tabularnewline
118 &  17 &  16.29 &  0.7069 \tabularnewline
119 &  15 &  16.22 & -1.222 \tabularnewline
120 &  17 &  16.65 &  0.3541 \tabularnewline
121 &  18 &  16.1 &  1.904 \tabularnewline
122 &  17 &  16.29 &  0.7074 \tabularnewline
123 &  20 &  17.09 &  2.908 \tabularnewline
124 &  15 &  17.27 & -2.267 \tabularnewline
125 &  16 &  17.64 & -1.642 \tabularnewline
126 &  15 &  15.67 & -0.672 \tabularnewline
127 &  18 &  16.79 &  1.209 \tabularnewline
128 &  15 &  16.04 & -1.044 \tabularnewline
129 &  18 &  17.69 &  0.3065 \tabularnewline
130 &  20 &  16.79 &  3.209 \tabularnewline
131 &  19 &  16.65 &  2.354 \tabularnewline
132 &  14 &  17.64 & -3.642 \tabularnewline
133 &  16 &  15 &  1.004 \tabularnewline
134 &  15 &  16.1 & -1.096 \tabularnewline
135 &  17 &  16.84 &  0.1572 \tabularnewline
136 &  18 &  16.72 &  1.28 \tabularnewline
137 &  20 &  14.65 &  5.354 \tabularnewline
138 &  17 &  17.39 & -0.3925 \tabularnewline
139 &  18 &  16.29 &  1.707 \tabularnewline
140 &  15 &  15.79 & -0.7949 \tabularnewline
141 &  16 &  16.54 & -0.5417 \tabularnewline
142 &  11 &  16.29 & -5.293 \tabularnewline
143 &  15 &  16.34 & -1.345 \tabularnewline
144 &  18 &  15.12 &  2.878 \tabularnewline
145 &  17 &  16.1 &  0.9041 \tabularnewline
146 &  16 &  15.55 &  0.454 \tabularnewline
147 &  12 &  16.24 & -4.241 \tabularnewline
148 &  19 &  16.04 &  2.956 \tabularnewline
149 &  18 &  17.34 &  0.6592 \tabularnewline
150 &  15 &  15.55 & -0.546 \tabularnewline
151 &  19 &  17.14 &  1.856 \tabularnewline
152 &  18 &  16.84 &  1.157 \tabularnewline
153 &  16 &  15.55 &  0.454 \tabularnewline
154 &  16 &  16.34 & -0.3448 \tabularnewline
155 &  16 &  15.92 &  0.07916 \tabularnewline
156 &  14 &  16.12 & -2.121 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297586&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 14[/C][C] 15.55[/C][C]-1.546[/C][/ROW]
[ROW][C]2[/C][C] 19[/C][C] 17.04[/C][C] 1.96[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 16.1[/C][C] 0.9041[/C][/ROW]
[ROW][C]4[/C][C] 17[/C][C] 16.47[/C][C] 0.5292[/C][/ROW]
[ROW][C]5[/C][C] 15[/C][C] 16.22[/C][C]-1.222[/C][/ROW]
[ROW][C]6[/C][C] 20[/C][C] 16.84[/C][C] 3.157[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 15.25[/C][C]-0.248[/C][/ROW]
[ROW][C]8[/C][C] 19[/C][C] 16.65[/C][C] 2.354[/C][/ROW]
[ROW][C]9[/C][C] 15[/C][C] 16.65[/C][C]-1.646[/C][/ROW]
[ROW][C]10[/C][C] 15[/C][C] 15.79[/C][C]-0.7949[/C][/ROW]
[ROW][C]11[/C][C] 19[/C][C] 16.77[/C][C] 2.231[/C][/ROW]
[ROW][C]12[/C][C] 20[/C][C] 15.67[/C][C] 4.328[/C][/ROW]
[ROW][C]13[/C][C] 18[/C][C] 17.76[/C][C] 0.2355[/C][/ROW]
[ROW][C]14[/C][C] 15[/C][C] 16.34[/C][C]-1.345[/C][/ROW]
[ROW][C]15[/C][C] 14[/C][C] 16.77[/C][C]-2.769[/C][/ROW]
[ROW][C]16[/C][C] 16[/C][C] 16.34[/C][C]-0.3448[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 16.77[/C][C]-0.769[/C][/ROW]
[ROW][C]18[/C][C] 16[/C][C] 17.52[/C][C]-1.516[/C][/ROW]
[ROW][C]19[/C][C] 10[/C][C] 15.92[/C][C]-5.918[/C][/ROW]
[ROW][C]20[/C][C] 19[/C][C] 17.44[/C][C] 1.555[/C][/ROW]
[ROW][C]21[/C][C] 19[/C][C] 16.84[/C][C] 2.157[/C][/ROW]
[ROW][C]22[/C][C] 16[/C][C] 16.1[/C][C]-0.09593[/C][/ROW]
[ROW][C]23[/C][C] 15[/C][C] 17.09[/C][C]-2.092[/C][/ROW]
[ROW][C]24[/C][C] 18[/C][C] 16.89[/C][C] 1.105[/C][/ROW]
[ROW][C]25[/C][C] 17[/C][C] 16.17[/C][C] 0.8303[/C][/ROW]
[ROW][C]26[/C][C] 19[/C][C] 15[/C][C] 4.004[/C][/ROW]
[ROW][C]27[/C][C] 17[/C][C] 17.39[/C][C]-0.3925[/C][/ROW]
[ROW][C]28[/C][C] 19[/C][C] 16.65[/C][C] 2.354[/C][/ROW]
[ROW][C]29[/C][C] 20[/C][C] 16.65[/C][C] 3.354[/C][/ROW]
[ROW][C]30[/C][C] 5[/C][C] 15.12[/C][C]-10.12[/C][/ROW]
[ROW][C]31[/C][C] 19[/C][C] 17.27[/C][C] 1.73[/C][/ROW]
[ROW][C]32[/C][C] 16[/C][C] 17.09[/C][C]-1.092[/C][/ROW]
[ROW][C]33[/C][C] 15[/C][C] 16.59[/C][C]-1.594[/C][/ROW]
[ROW][C]34[/C][C] 16[/C][C] 16.84[/C][C]-0.8426[/C][/ROW]
[ROW][C]35[/C][C] 18[/C][C] 16.89[/C][C] 1.105[/C][/ROW]
[ROW][C]36[/C][C] 16[/C][C] 16.34[/C][C]-0.3448[/C][/ROW]
[ROW][C]37[/C][C] 15[/C][C] 16.65[/C][C]-1.646[/C][/ROW]
[ROW][C]38[/C][C] 17[/C][C] 16.1[/C][C] 0.9041[/C][/ROW]
[ROW][C]39[/C][C] 20[/C][C] 16.54[/C][C] 3.458[/C][/ROW]
[ROW][C]40[/C][C] 19[/C][C] 16.1[/C][C] 2.904[/C][/ROW]
[ROW][C]41[/C][C] 7[/C][C] 16.65[/C][C]-9.646[/C][/ROW]
[ROW][C]42[/C][C] 13[/C][C] 16.22[/C][C]-3.222[/C][/ROW]
[ROW][C]43[/C][C] 16[/C][C] 15.67[/C][C] 0.3308[/C][/ROW]
[ROW][C]44[/C][C] 18[/C][C] 16.34[/C][C] 1.655[/C][/ROW]
[ROW][C]45[/C][C] 18[/C][C] 16.59[/C][C] 1.406[/C][/ROW]
[ROW][C]46[/C][C] 16[/C][C] 16.89[/C][C]-0.8947[/C][/ROW]
[ROW][C]47[/C][C] 17[/C][C] 16.72[/C][C] 0.2829[/C][/ROW]
[ROW][C]48[/C][C] 19[/C][C] 16.42[/C][C] 2.581[/C][/ROW]
[ROW][C]49[/C][C] 16[/C][C] 15.49[/C][C] 0.5057[/C][/ROW]
[ROW][C]50[/C][C] 13[/C][C] 16.89[/C][C]-3.895[/C][/ROW]
[ROW][C]51[/C][C] 16[/C][C] 16.1[/C][C]-0.09593[/C][/ROW]
[ROW][C]52[/C][C] 13[/C][C] 16.17[/C][C]-3.17[/C][/ROW]
[ROW][C]53[/C][C] 12[/C][C] 17.14[/C][C]-5.144[/C][/ROW]
[ROW][C]54[/C][C] 17[/C][C] 16.65[/C][C] 0.3541[/C][/ROW]
[ROW][C]55[/C][C] 17[/C][C] 15.55[/C][C] 1.454[/C][/ROW]
[ROW][C]56[/C][C] 17[/C][C] 15.79[/C][C] 1.205[/C][/ROW]
[ROW][C]57[/C][C] 16[/C][C] 15.8[/C][C] 0.2049[/C][/ROW]
[ROW][C]58[/C][C] 16[/C][C] 16.04[/C][C]-0.04375[/C][/ROW]
[ROW][C]59[/C][C] 14[/C][C] 15.74[/C][C]-1.743[/C][/ROW]
[ROW][C]60[/C][C] 13[/C][C] 15.39[/C][C]-2.39[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 15.02[/C][C] 0.9821[/C][/ROW]
[ROW][C]62[/C][C] 14[/C][C] 16.34[/C][C]-2.345[/C][/ROW]
[ROW][C]63[/C][C] 20[/C][C] 15.55[/C][C] 4.454[/C][/ROW]
[ROW][C]64[/C][C] 12[/C][C] 14.82[/C][C]-2.821[/C][/ROW]
[ROW][C]65[/C][C] 13[/C][C] 16.65[/C][C]-3.646[/C][/ROW]
[ROW][C]66[/C][C] 18[/C][C] 16.67[/C][C] 1.335[/C][/ROW]
[ROW][C]67[/C][C] 14[/C][C] 15.92[/C][C]-1.921[/C][/ROW]
[ROW][C]68[/C][C] 19[/C][C] 14.94[/C][C] 4.056[/C][/ROW]
[ROW][C]69[/C][C] 18[/C][C] 16.77[/C][C] 1.231[/C][/ROW]
[ROW][C]70[/C][C] 14[/C][C] 14.7[/C][C]-0.6953[/C][/ROW]
[ROW][C]71[/C][C] 18[/C][C] 17.2[/C][C] 0.8042[/C][/ROW]
[ROW][C]72[/C][C] 19[/C][C] 16.1[/C][C] 2.904[/C][/ROW]
[ROW][C]73[/C][C] 15[/C][C] 15.8[/C][C]-0.7951[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 16.84[/C][C]-2.843[/C][/ROW]
[ROW][C]75[/C][C] 17[/C][C] 16.65[/C][C] 0.3541[/C][/ROW]
[ROW][C]76[/C][C] 19[/C][C] 18.07[/C][C] 0.9344[/C][/ROW]
[ROW][C]77[/C][C] 13[/C][C] 16.59[/C][C]-3.594[/C][/ROW]
[ROW][C]78[/C][C] 19[/C][C] 17.94[/C][C] 1.058[/C][/ROW]
[ROW][C]79[/C][C] 18[/C][C] 16.65[/C][C] 1.354[/C][/ROW]
[ROW][C]80[/C][C] 20[/C][C] 16.65[/C][C] 3.354[/C][/ROW]
[ROW][C]81[/C][C] 15[/C][C] 16.34[/C][C]-1.345[/C][/ROW]
[ROW][C]82[/C][C] 15[/C][C] 16.59[/C][C]-1.594[/C][/ROW]
[ROW][C]83[/C][C] 15[/C][C] 16.79[/C][C]-1.791[/C][/ROW]
[ROW][C]84[/C][C] 20[/C][C] 16.54[/C][C] 3.458[/C][/ROW]
[ROW][C]85[/C][C] 15[/C][C] 17.64[/C][C]-2.642[/C][/ROW]
[ROW][C]86[/C][C] 19[/C][C] 17.2[/C][C] 1.804[/C][/ROW]
[ROW][C]87[/C][C] 18[/C][C] 16.84[/C][C] 1.157[/C][/ROW]
[ROW][C]88[/C][C] 18[/C][C] 17.09[/C][C] 0.9083[/C][/ROW]
[ROW][C]89[/C][C] 15[/C][C] 16.34[/C][C]-1.345[/C][/ROW]
[ROW][C]90[/C][C] 20[/C][C] 16.79[/C][C] 3.209[/C][/ROW]
[ROW][C]91[/C][C] 17[/C][C] 16.65[/C][C] 0.3541[/C][/ROW]
[ROW][C]92[/C][C] 12[/C][C] 16.65[/C][C]-4.646[/C][/ROW]
[ROW][C]93[/C][C] 18[/C][C] 16.54[/C][C] 1.458[/C][/ROW]
[ROW][C]94[/C][C] 19[/C][C] 17.64[/C][C] 1.361[/C][/ROW]
[ROW][C]95[/C][C] 20[/C][C] 16.65[/C][C] 3.354[/C][/ROW]
[ROW][C]96[/C][C] 17[/C][C] 17.2[/C][C]-0.1958[/C][/ROW]
[ROW][C]97[/C][C] 15[/C][C] 16.54[/C][C]-1.542[/C][/ROW]
[ROW][C]98[/C][C] 16[/C][C] 16.34[/C][C]-0.3448[/C][/ROW]
[ROW][C]99[/C][C] 18[/C][C] 16.89[/C][C] 1.105[/C][/ROW]
[ROW][C]100[/C][C] 18[/C][C] 16.1[/C][C] 1.904[/C][/ROW]
[ROW][C]101[/C][C] 14[/C][C] 16.72[/C][C]-2.717[/C][/ROW]
[ROW][C]102[/C][C] 15[/C][C] 15.67[/C][C]-0.672[/C][/ROW]
[ROW][C]103[/C][C] 12[/C][C] 15.55[/C][C]-3.546[/C][/ROW]
[ROW][C]104[/C][C] 17[/C][C] 15.75[/C][C] 1.254[/C][/ROW]
[ROW][C]105[/C][C] 14[/C][C] 16.34[/C][C]-2.345[/C][/ROW]
[ROW][C]106[/C][C] 18[/C][C] 16.84[/C][C] 1.157[/C][/ROW]
[ROW][C]107[/C][C] 17[/C][C] 16.65[/C][C] 0.3541[/C][/ROW]
[ROW][C]108[/C][C] 17[/C][C] 16.86[/C][C] 0.1351[/C][/ROW]
[ROW][C]109[/C][C] 20[/C][C] 17.2[/C][C] 2.804[/C][/ROW]
[ROW][C]110[/C][C] 16[/C][C] 16.65[/C][C]-0.6459[/C][/ROW]
[ROW][C]111[/C][C] 14[/C][C] 15.87[/C][C]-1.869[/C][/ROW]
[ROW][C]112[/C][C] 15[/C][C] 15.92[/C][C]-0.9208[/C][/ROW]
[ROW][C]113[/C][C] 18[/C][C] 16.65[/C][C] 1.354[/C][/ROW]
[ROW][C]114[/C][C] 20[/C][C] 17.39[/C][C] 2.608[/C][/ROW]
[ROW][C]115[/C][C] 17[/C][C] 16.1[/C][C] 0.9041[/C][/ROW]
[ROW][C]116[/C][C] 17[/C][C] 16.1[/C][C] 0.9041[/C][/ROW]
[ROW][C]117[/C][C] 17[/C][C] 16.47[/C][C] 0.532[/C][/ROW]
[ROW][C]118[/C][C] 17[/C][C] 16.29[/C][C] 0.7069[/C][/ROW]
[ROW][C]119[/C][C] 15[/C][C] 16.22[/C][C]-1.222[/C][/ROW]
[ROW][C]120[/C][C] 17[/C][C] 16.65[/C][C] 0.3541[/C][/ROW]
[ROW][C]121[/C][C] 18[/C][C] 16.1[/C][C] 1.904[/C][/ROW]
[ROW][C]122[/C][C] 17[/C][C] 16.29[/C][C] 0.7074[/C][/ROW]
[ROW][C]123[/C][C] 20[/C][C] 17.09[/C][C] 2.908[/C][/ROW]
[ROW][C]124[/C][C] 15[/C][C] 17.27[/C][C]-2.267[/C][/ROW]
[ROW][C]125[/C][C] 16[/C][C] 17.64[/C][C]-1.642[/C][/ROW]
[ROW][C]126[/C][C] 15[/C][C] 15.67[/C][C]-0.672[/C][/ROW]
[ROW][C]127[/C][C] 18[/C][C] 16.79[/C][C] 1.209[/C][/ROW]
[ROW][C]128[/C][C] 15[/C][C] 16.04[/C][C]-1.044[/C][/ROW]
[ROW][C]129[/C][C] 18[/C][C] 17.69[/C][C] 0.3065[/C][/ROW]
[ROW][C]130[/C][C] 20[/C][C] 16.79[/C][C] 3.209[/C][/ROW]
[ROW][C]131[/C][C] 19[/C][C] 16.65[/C][C] 2.354[/C][/ROW]
[ROW][C]132[/C][C] 14[/C][C] 17.64[/C][C]-3.642[/C][/ROW]
[ROW][C]133[/C][C] 16[/C][C] 15[/C][C] 1.004[/C][/ROW]
[ROW][C]134[/C][C] 15[/C][C] 16.1[/C][C]-1.096[/C][/ROW]
[ROW][C]135[/C][C] 17[/C][C] 16.84[/C][C] 0.1572[/C][/ROW]
[ROW][C]136[/C][C] 18[/C][C] 16.72[/C][C] 1.28[/C][/ROW]
[ROW][C]137[/C][C] 20[/C][C] 14.65[/C][C] 5.354[/C][/ROW]
[ROW][C]138[/C][C] 17[/C][C] 17.39[/C][C]-0.3925[/C][/ROW]
[ROW][C]139[/C][C] 18[/C][C] 16.29[/C][C] 1.707[/C][/ROW]
[ROW][C]140[/C][C] 15[/C][C] 15.79[/C][C]-0.7949[/C][/ROW]
[ROW][C]141[/C][C] 16[/C][C] 16.54[/C][C]-0.5417[/C][/ROW]
[ROW][C]142[/C][C] 11[/C][C] 16.29[/C][C]-5.293[/C][/ROW]
[ROW][C]143[/C][C] 15[/C][C] 16.34[/C][C]-1.345[/C][/ROW]
[ROW][C]144[/C][C] 18[/C][C] 15.12[/C][C] 2.878[/C][/ROW]
[ROW][C]145[/C][C] 17[/C][C] 16.1[/C][C] 0.9041[/C][/ROW]
[ROW][C]146[/C][C] 16[/C][C] 15.55[/C][C] 0.454[/C][/ROW]
[ROW][C]147[/C][C] 12[/C][C] 16.24[/C][C]-4.241[/C][/ROW]
[ROW][C]148[/C][C] 19[/C][C] 16.04[/C][C] 2.956[/C][/ROW]
[ROW][C]149[/C][C] 18[/C][C] 17.34[/C][C] 0.6592[/C][/ROW]
[ROW][C]150[/C][C] 15[/C][C] 15.55[/C][C]-0.546[/C][/ROW]
[ROW][C]151[/C][C] 19[/C][C] 17.14[/C][C] 1.856[/C][/ROW]
[ROW][C]152[/C][C] 18[/C][C] 16.84[/C][C] 1.157[/C][/ROW]
[ROW][C]153[/C][C] 16[/C][C] 15.55[/C][C] 0.454[/C][/ROW]
[ROW][C]154[/C][C] 16[/C][C] 16.34[/C][C]-0.3448[/C][/ROW]
[ROW][C]155[/C][C] 16[/C][C] 15.92[/C][C] 0.07916[/C][/ROW]
[ROW][C]156[/C][C] 14[/C][C] 16.12[/C][C]-2.121[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297586&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297586&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 14 15.55-1.546
2 19 17.04 1.96
3 17 16.1 0.9041
4 17 16.47 0.5292
5 15 16.22-1.222
6 20 16.84 3.157
7 15 15.25-0.248
8 19 16.65 2.354
9 15 16.65-1.646
10 15 15.79-0.7949
11 19 16.77 2.231
12 20 15.67 4.328
13 18 17.76 0.2355
14 15 16.34-1.345
15 14 16.77-2.769
16 16 16.34-0.3448
17 16 16.77-0.769
18 16 17.52-1.516
19 10 15.92-5.918
20 19 17.44 1.555
21 19 16.84 2.157
22 16 16.1-0.09593
23 15 17.09-2.092
24 18 16.89 1.105
25 17 16.17 0.8303
26 19 15 4.004
27 17 17.39-0.3925
28 19 16.65 2.354
29 20 16.65 3.354
30 5 15.12-10.12
31 19 17.27 1.73
32 16 17.09-1.092
33 15 16.59-1.594
34 16 16.84-0.8426
35 18 16.89 1.105
36 16 16.34-0.3448
37 15 16.65-1.646
38 17 16.1 0.9041
39 20 16.54 3.458
40 19 16.1 2.904
41 7 16.65-9.646
42 13 16.22-3.222
43 16 15.67 0.3308
44 18 16.34 1.655
45 18 16.59 1.406
46 16 16.89-0.8947
47 17 16.72 0.2829
48 19 16.42 2.581
49 16 15.49 0.5057
50 13 16.89-3.895
51 16 16.1-0.09593
52 13 16.17-3.17
53 12 17.14-5.144
54 17 16.65 0.3541
55 17 15.55 1.454
56 17 15.79 1.205
57 16 15.8 0.2049
58 16 16.04-0.04375
59 14 15.74-1.743
60 13 15.39-2.39
61 16 15.02 0.9821
62 14 16.34-2.345
63 20 15.55 4.454
64 12 14.82-2.821
65 13 16.65-3.646
66 18 16.67 1.335
67 14 15.92-1.921
68 19 14.94 4.056
69 18 16.77 1.231
70 14 14.7-0.6953
71 18 17.2 0.8042
72 19 16.1 2.904
73 15 15.8-0.7951
74 14 16.84-2.843
75 17 16.65 0.3541
76 19 18.07 0.9344
77 13 16.59-3.594
78 19 17.94 1.058
79 18 16.65 1.354
80 20 16.65 3.354
81 15 16.34-1.345
82 15 16.59-1.594
83 15 16.79-1.791
84 20 16.54 3.458
85 15 17.64-2.642
86 19 17.2 1.804
87 18 16.84 1.157
88 18 17.09 0.9083
89 15 16.34-1.345
90 20 16.79 3.209
91 17 16.65 0.3541
92 12 16.65-4.646
93 18 16.54 1.458
94 19 17.64 1.361
95 20 16.65 3.354
96 17 17.2-0.1958
97 15 16.54-1.542
98 16 16.34-0.3448
99 18 16.89 1.105
100 18 16.1 1.904
101 14 16.72-2.717
102 15 15.67-0.672
103 12 15.55-3.546
104 17 15.75 1.254
105 14 16.34-2.345
106 18 16.84 1.157
107 17 16.65 0.3541
108 17 16.86 0.1351
109 20 17.2 2.804
110 16 16.65-0.6459
111 14 15.87-1.869
112 15 15.92-0.9208
113 18 16.65 1.354
114 20 17.39 2.608
115 17 16.1 0.9041
116 17 16.1 0.9041
117 17 16.47 0.532
118 17 16.29 0.7069
119 15 16.22-1.222
120 17 16.65 0.3541
121 18 16.1 1.904
122 17 16.29 0.7074
123 20 17.09 2.908
124 15 17.27-2.267
125 16 17.64-1.642
126 15 15.67-0.672
127 18 16.79 1.209
128 15 16.04-1.044
129 18 17.69 0.3065
130 20 16.79 3.209
131 19 16.65 2.354
132 14 17.64-3.642
133 16 15 1.004
134 15 16.1-1.096
135 17 16.84 0.1572
136 18 16.72 1.28
137 20 14.65 5.354
138 17 17.39-0.3925
139 18 16.29 1.707
140 15 15.79-0.7949
141 16 16.54-0.5417
142 11 16.29-5.293
143 15 16.34-1.345
144 18 15.12 2.878
145 17 16.1 0.9041
146 16 15.55 0.454
147 12 16.24-4.241
148 19 16.04 2.956
149 18 17.34 0.6592
150 15 15.55-0.546
151 19 17.14 1.856
152 18 16.84 1.157
153 16 15.55 0.454
154 16 16.34-0.3448
155 16 15.92 0.07916
156 14 16.12-2.121







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.2346 0.4692 0.7654
9 0.2586 0.5171 0.7414
10 0.1692 0.3384 0.8308
11 0.1549 0.3098 0.8451
12 0.48 0.96 0.52
13 0.4307 0.8614 0.5693
14 0.3851 0.7702 0.6149
15 0.4293 0.8585 0.5707
16 0.3438 0.6876 0.6562
17 0.2644 0.5288 0.7356
18 0.2451 0.4902 0.7549
19 0.3545 0.709 0.6455
20 0.2845 0.569 0.7155
21 0.2592 0.5184 0.7408
22 0.2007 0.4015 0.7993
23 0.2359 0.4719 0.7641
24 0.184 0.368 0.816
25 0.1419 0.2837 0.8581
26 0.2862 0.5723 0.7138
27 0.2627 0.5253 0.7373
28 0.2535 0.507 0.7465
29 0.2842 0.5685 0.7158
30 0.959 0.08206 0.04103
31 0.9472 0.1057 0.05284
32 0.9326 0.1348 0.0674
33 0.9154 0.1691 0.08456
34 0.9011 0.1979 0.09894
35 0.8759 0.2481 0.1241
36 0.846 0.308 0.154
37 0.836 0.328 0.164
38 0.8055 0.3889 0.1945
39 0.8208 0.3583 0.1792
40 0.8334 0.3333 0.1666
41 0.9977 0.004565 0.002282
42 0.9981 0.00389 0.001945
43 0.9974 0.005148 0.002574
44 0.9967 0.00665 0.003325
45 0.9962 0.007554 0.003777
46 0.9949 0.01018 0.005089
47 0.9936 0.01287 0.006437
48 0.9942 0.01154 0.005771
49 0.993 0.01408 0.007038
50 0.9958 0.00842 0.00421
51 0.994 0.01194 0.00597
52 0.9954 0.009147 0.004573
53 0.9987 0.002554 0.001277
54 0.9982 0.003682 0.001841
55 0.9976 0.004702 0.002351
56 0.9968 0.00633 0.003165
57 0.9956 0.008886 0.004443
58 0.9938 0.01244 0.006222
59 0.9927 0.01459 0.007297
60 0.9922 0.01555 0.007774
61 0.9898 0.02036 0.01018
62 0.9896 0.02077 0.01038
63 0.995 0.01004 0.005021
64 0.9955 0.009011 0.004506
65 0.9971 0.005731 0.002866
66 0.9965 0.006913 0.003457
67 0.9961 0.007833 0.003917
68 0.998 0.004029 0.002015
69 0.9974 0.005284 0.002642
70 0.9964 0.007286 0.003643
71 0.9951 0.009761 0.004881
72 0.9957 0.008564 0.004282
73 0.9943 0.01148 0.00574
74 0.995 0.01004 0.005022
75 0.9931 0.01389 0.006943
76 0.9909 0.01818 0.009092
77 0.9942 0.01167 0.005833
78 0.9925 0.01505 0.007523
79 0.9905 0.01891 0.009457
80 0.9929 0.01421 0.007104
81 0.9915 0.01701 0.008505
82 0.9902 0.01967 0.009835
83 0.9885 0.02293 0.01146
84 0.9918 0.01633 0.008167
85 0.9924 0.01511 0.007553
86 0.9911 0.01773 0.008863
87 0.9888 0.02236 0.01118
88 0.9855 0.02907 0.01453
89 0.9824 0.03528 0.01764
90 0.9858 0.02837 0.01418
91 0.9809 0.03825 0.01913
92 0.9935 0.01303 0.006517
93 0.9922 0.01566 0.00783
94 0.9911 0.01772 0.008861
95 0.9932 0.01351 0.006756
96 0.9907 0.01857 0.009284
97 0.9883 0.02349 0.01174
98 0.984 0.032 0.016
99 0.9793 0.04137 0.02068
100 0.9763 0.04731 0.02366
101 0.9776 0.04478 0.02239
102 0.9717 0.05656 0.02828
103 0.9837 0.03266 0.01633
104 0.9789 0.04228 0.02114
105 0.9817 0.03661 0.01831
106 0.9775 0.04506 0.02253
107 0.9695 0.06091 0.03046
108 0.9593 0.08139 0.04069
109 0.9613 0.07747 0.03874
110 0.951 0.09796 0.04898
111 0.9471 0.1058 0.05289
112 0.9372 0.1255 0.06277
113 0.923 0.1541 0.07703
114 0.9357 0.1286 0.06428
115 0.9174 0.1651 0.08255
116 0.8954 0.2092 0.1046
117 0.8683 0.2633 0.1317
118 0.8361 0.3277 0.1639
119 0.8206 0.3587 0.1794
120 0.7797 0.4405 0.2203
121 0.7539 0.4922 0.2461
122 0.7119 0.5761 0.2881
123 0.7626 0.4747 0.2374
124 0.7387 0.5227 0.2613
125 0.6976 0.6048 0.3024
126 0.6694 0.6613 0.3306
127 0.6663 0.6674 0.3337
128 0.628 0.7439 0.372
129 0.5697 0.8606 0.4303
130 0.6435 0.7131 0.3565
131 0.6222 0.7556 0.3778
132 0.632 0.736 0.368
133 0.5643 0.8715 0.4357
134 0.5304 0.9393 0.4696
135 0.4589 0.9179 0.5411
136 0.3971 0.7941 0.6029
137 0.712 0.5761 0.288
138 0.6488 0.7024 0.3512
139 0.6905 0.619 0.3095
140 0.6097 0.7805 0.3903
141 0.5549 0.8902 0.4451
142 0.8583 0.2834 0.1417
143 0.886 0.228 0.114
144 0.9917 0.01655 0.008274
145 0.985 0.03008 0.01504
146 0.9663 0.06732 0.03366
147 0.9753 0.04946 0.02473
148 0.9591 0.08187 0.04093

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.2346 &  0.4692 &  0.7654 \tabularnewline
9 &  0.2586 &  0.5171 &  0.7414 \tabularnewline
10 &  0.1692 &  0.3384 &  0.8308 \tabularnewline
11 &  0.1549 &  0.3098 &  0.8451 \tabularnewline
12 &  0.48 &  0.96 &  0.52 \tabularnewline
13 &  0.4307 &  0.8614 &  0.5693 \tabularnewline
14 &  0.3851 &  0.7702 &  0.6149 \tabularnewline
15 &  0.4293 &  0.8585 &  0.5707 \tabularnewline
16 &  0.3438 &  0.6876 &  0.6562 \tabularnewline
17 &  0.2644 &  0.5288 &  0.7356 \tabularnewline
18 &  0.2451 &  0.4902 &  0.7549 \tabularnewline
19 &  0.3545 &  0.709 &  0.6455 \tabularnewline
20 &  0.2845 &  0.569 &  0.7155 \tabularnewline
21 &  0.2592 &  0.5184 &  0.7408 \tabularnewline
22 &  0.2007 &  0.4015 &  0.7993 \tabularnewline
23 &  0.2359 &  0.4719 &  0.7641 \tabularnewline
24 &  0.184 &  0.368 &  0.816 \tabularnewline
25 &  0.1419 &  0.2837 &  0.8581 \tabularnewline
26 &  0.2862 &  0.5723 &  0.7138 \tabularnewline
27 &  0.2627 &  0.5253 &  0.7373 \tabularnewline
28 &  0.2535 &  0.507 &  0.7465 \tabularnewline
29 &  0.2842 &  0.5685 &  0.7158 \tabularnewline
30 &  0.959 &  0.08206 &  0.04103 \tabularnewline
31 &  0.9472 &  0.1057 &  0.05284 \tabularnewline
32 &  0.9326 &  0.1348 &  0.0674 \tabularnewline
33 &  0.9154 &  0.1691 &  0.08456 \tabularnewline
34 &  0.9011 &  0.1979 &  0.09894 \tabularnewline
35 &  0.8759 &  0.2481 &  0.1241 \tabularnewline
36 &  0.846 &  0.308 &  0.154 \tabularnewline
37 &  0.836 &  0.328 &  0.164 \tabularnewline
38 &  0.8055 &  0.3889 &  0.1945 \tabularnewline
39 &  0.8208 &  0.3583 &  0.1792 \tabularnewline
40 &  0.8334 &  0.3333 &  0.1666 \tabularnewline
41 &  0.9977 &  0.004565 &  0.002282 \tabularnewline
42 &  0.9981 &  0.00389 &  0.001945 \tabularnewline
43 &  0.9974 &  0.005148 &  0.002574 \tabularnewline
44 &  0.9967 &  0.00665 &  0.003325 \tabularnewline
45 &  0.9962 &  0.007554 &  0.003777 \tabularnewline
46 &  0.9949 &  0.01018 &  0.005089 \tabularnewline
47 &  0.9936 &  0.01287 &  0.006437 \tabularnewline
48 &  0.9942 &  0.01154 &  0.005771 \tabularnewline
49 &  0.993 &  0.01408 &  0.007038 \tabularnewline
50 &  0.9958 &  0.00842 &  0.00421 \tabularnewline
51 &  0.994 &  0.01194 &  0.00597 \tabularnewline
52 &  0.9954 &  0.009147 &  0.004573 \tabularnewline
53 &  0.9987 &  0.002554 &  0.001277 \tabularnewline
54 &  0.9982 &  0.003682 &  0.001841 \tabularnewline
55 &  0.9976 &  0.004702 &  0.002351 \tabularnewline
56 &  0.9968 &  0.00633 &  0.003165 \tabularnewline
57 &  0.9956 &  0.008886 &  0.004443 \tabularnewline
58 &  0.9938 &  0.01244 &  0.006222 \tabularnewline
59 &  0.9927 &  0.01459 &  0.007297 \tabularnewline
60 &  0.9922 &  0.01555 &  0.007774 \tabularnewline
61 &  0.9898 &  0.02036 &  0.01018 \tabularnewline
62 &  0.9896 &  0.02077 &  0.01038 \tabularnewline
63 &  0.995 &  0.01004 &  0.005021 \tabularnewline
64 &  0.9955 &  0.009011 &  0.004506 \tabularnewline
65 &  0.9971 &  0.005731 &  0.002866 \tabularnewline
66 &  0.9965 &  0.006913 &  0.003457 \tabularnewline
67 &  0.9961 &  0.007833 &  0.003917 \tabularnewline
68 &  0.998 &  0.004029 &  0.002015 \tabularnewline
69 &  0.9974 &  0.005284 &  0.002642 \tabularnewline
70 &  0.9964 &  0.007286 &  0.003643 \tabularnewline
71 &  0.9951 &  0.009761 &  0.004881 \tabularnewline
72 &  0.9957 &  0.008564 &  0.004282 \tabularnewline
73 &  0.9943 &  0.01148 &  0.00574 \tabularnewline
74 &  0.995 &  0.01004 &  0.005022 \tabularnewline
75 &  0.9931 &  0.01389 &  0.006943 \tabularnewline
76 &  0.9909 &  0.01818 &  0.009092 \tabularnewline
77 &  0.9942 &  0.01167 &  0.005833 \tabularnewline
78 &  0.9925 &  0.01505 &  0.007523 \tabularnewline
79 &  0.9905 &  0.01891 &  0.009457 \tabularnewline
80 &  0.9929 &  0.01421 &  0.007104 \tabularnewline
81 &  0.9915 &  0.01701 &  0.008505 \tabularnewline
82 &  0.9902 &  0.01967 &  0.009835 \tabularnewline
83 &  0.9885 &  0.02293 &  0.01146 \tabularnewline
84 &  0.9918 &  0.01633 &  0.008167 \tabularnewline
85 &  0.9924 &  0.01511 &  0.007553 \tabularnewline
86 &  0.9911 &  0.01773 &  0.008863 \tabularnewline
87 &  0.9888 &  0.02236 &  0.01118 \tabularnewline
88 &  0.9855 &  0.02907 &  0.01453 \tabularnewline
89 &  0.9824 &  0.03528 &  0.01764 \tabularnewline
90 &  0.9858 &  0.02837 &  0.01418 \tabularnewline
91 &  0.9809 &  0.03825 &  0.01913 \tabularnewline
92 &  0.9935 &  0.01303 &  0.006517 \tabularnewline
93 &  0.9922 &  0.01566 &  0.00783 \tabularnewline
94 &  0.9911 &  0.01772 &  0.008861 \tabularnewline
95 &  0.9932 &  0.01351 &  0.006756 \tabularnewline
96 &  0.9907 &  0.01857 &  0.009284 \tabularnewline
97 &  0.9883 &  0.02349 &  0.01174 \tabularnewline
98 &  0.984 &  0.032 &  0.016 \tabularnewline
99 &  0.9793 &  0.04137 &  0.02068 \tabularnewline
100 &  0.9763 &  0.04731 &  0.02366 \tabularnewline
101 &  0.9776 &  0.04478 &  0.02239 \tabularnewline
102 &  0.9717 &  0.05656 &  0.02828 \tabularnewline
103 &  0.9837 &  0.03266 &  0.01633 \tabularnewline
104 &  0.9789 &  0.04228 &  0.02114 \tabularnewline
105 &  0.9817 &  0.03661 &  0.01831 \tabularnewline
106 &  0.9775 &  0.04506 &  0.02253 \tabularnewline
107 &  0.9695 &  0.06091 &  0.03046 \tabularnewline
108 &  0.9593 &  0.08139 &  0.04069 \tabularnewline
109 &  0.9613 &  0.07747 &  0.03874 \tabularnewline
110 &  0.951 &  0.09796 &  0.04898 \tabularnewline
111 &  0.9471 &  0.1058 &  0.05289 \tabularnewline
112 &  0.9372 &  0.1255 &  0.06277 \tabularnewline
113 &  0.923 &  0.1541 &  0.07703 \tabularnewline
114 &  0.9357 &  0.1286 &  0.06428 \tabularnewline
115 &  0.9174 &  0.1651 &  0.08255 \tabularnewline
116 &  0.8954 &  0.2092 &  0.1046 \tabularnewline
117 &  0.8683 &  0.2633 &  0.1317 \tabularnewline
118 &  0.8361 &  0.3277 &  0.1639 \tabularnewline
119 &  0.8206 &  0.3587 &  0.1794 \tabularnewline
120 &  0.7797 &  0.4405 &  0.2203 \tabularnewline
121 &  0.7539 &  0.4922 &  0.2461 \tabularnewline
122 &  0.7119 &  0.5761 &  0.2881 \tabularnewline
123 &  0.7626 &  0.4747 &  0.2374 \tabularnewline
124 &  0.7387 &  0.5227 &  0.2613 \tabularnewline
125 &  0.6976 &  0.6048 &  0.3024 \tabularnewline
126 &  0.6694 &  0.6613 &  0.3306 \tabularnewline
127 &  0.6663 &  0.6674 &  0.3337 \tabularnewline
128 &  0.628 &  0.7439 &  0.372 \tabularnewline
129 &  0.5697 &  0.8606 &  0.4303 \tabularnewline
130 &  0.6435 &  0.7131 &  0.3565 \tabularnewline
131 &  0.6222 &  0.7556 &  0.3778 \tabularnewline
132 &  0.632 &  0.736 &  0.368 \tabularnewline
133 &  0.5643 &  0.8715 &  0.4357 \tabularnewline
134 &  0.5304 &  0.9393 &  0.4696 \tabularnewline
135 &  0.4589 &  0.9179 &  0.5411 \tabularnewline
136 &  0.3971 &  0.7941 &  0.6029 \tabularnewline
137 &  0.712 &  0.5761 &  0.288 \tabularnewline
138 &  0.6488 &  0.7024 &  0.3512 \tabularnewline
139 &  0.6905 &  0.619 &  0.3095 \tabularnewline
140 &  0.6097 &  0.7805 &  0.3903 \tabularnewline
141 &  0.5549 &  0.8902 &  0.4451 \tabularnewline
142 &  0.8583 &  0.2834 &  0.1417 \tabularnewline
143 &  0.886 &  0.228 &  0.114 \tabularnewline
144 &  0.9917 &  0.01655 &  0.008274 \tabularnewline
145 &  0.985 &  0.03008 &  0.01504 \tabularnewline
146 &  0.9663 &  0.06732 &  0.03366 \tabularnewline
147 &  0.9753 &  0.04946 &  0.02473 \tabularnewline
148 &  0.9591 &  0.08187 &  0.04093 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297586&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.2346[/C][C] 0.4692[/C][C] 0.7654[/C][/ROW]
[ROW][C]9[/C][C] 0.2586[/C][C] 0.5171[/C][C] 0.7414[/C][/ROW]
[ROW][C]10[/C][C] 0.1692[/C][C] 0.3384[/C][C] 0.8308[/C][/ROW]
[ROW][C]11[/C][C] 0.1549[/C][C] 0.3098[/C][C] 0.8451[/C][/ROW]
[ROW][C]12[/C][C] 0.48[/C][C] 0.96[/C][C] 0.52[/C][/ROW]
[ROW][C]13[/C][C] 0.4307[/C][C] 0.8614[/C][C] 0.5693[/C][/ROW]
[ROW][C]14[/C][C] 0.3851[/C][C] 0.7702[/C][C] 0.6149[/C][/ROW]
[ROW][C]15[/C][C] 0.4293[/C][C] 0.8585[/C][C] 0.5707[/C][/ROW]
[ROW][C]16[/C][C] 0.3438[/C][C] 0.6876[/C][C] 0.6562[/C][/ROW]
[ROW][C]17[/C][C] 0.2644[/C][C] 0.5288[/C][C] 0.7356[/C][/ROW]
[ROW][C]18[/C][C] 0.2451[/C][C] 0.4902[/C][C] 0.7549[/C][/ROW]
[ROW][C]19[/C][C] 0.3545[/C][C] 0.709[/C][C] 0.6455[/C][/ROW]
[ROW][C]20[/C][C] 0.2845[/C][C] 0.569[/C][C] 0.7155[/C][/ROW]
[ROW][C]21[/C][C] 0.2592[/C][C] 0.5184[/C][C] 0.7408[/C][/ROW]
[ROW][C]22[/C][C] 0.2007[/C][C] 0.4015[/C][C] 0.7993[/C][/ROW]
[ROW][C]23[/C][C] 0.2359[/C][C] 0.4719[/C][C] 0.7641[/C][/ROW]
[ROW][C]24[/C][C] 0.184[/C][C] 0.368[/C][C] 0.816[/C][/ROW]
[ROW][C]25[/C][C] 0.1419[/C][C] 0.2837[/C][C] 0.8581[/C][/ROW]
[ROW][C]26[/C][C] 0.2862[/C][C] 0.5723[/C][C] 0.7138[/C][/ROW]
[ROW][C]27[/C][C] 0.2627[/C][C] 0.5253[/C][C] 0.7373[/C][/ROW]
[ROW][C]28[/C][C] 0.2535[/C][C] 0.507[/C][C] 0.7465[/C][/ROW]
[ROW][C]29[/C][C] 0.2842[/C][C] 0.5685[/C][C] 0.7158[/C][/ROW]
[ROW][C]30[/C][C] 0.959[/C][C] 0.08206[/C][C] 0.04103[/C][/ROW]
[ROW][C]31[/C][C] 0.9472[/C][C] 0.1057[/C][C] 0.05284[/C][/ROW]
[ROW][C]32[/C][C] 0.9326[/C][C] 0.1348[/C][C] 0.0674[/C][/ROW]
[ROW][C]33[/C][C] 0.9154[/C][C] 0.1691[/C][C] 0.08456[/C][/ROW]
[ROW][C]34[/C][C] 0.9011[/C][C] 0.1979[/C][C] 0.09894[/C][/ROW]
[ROW][C]35[/C][C] 0.8759[/C][C] 0.2481[/C][C] 0.1241[/C][/ROW]
[ROW][C]36[/C][C] 0.846[/C][C] 0.308[/C][C] 0.154[/C][/ROW]
[ROW][C]37[/C][C] 0.836[/C][C] 0.328[/C][C] 0.164[/C][/ROW]
[ROW][C]38[/C][C] 0.8055[/C][C] 0.3889[/C][C] 0.1945[/C][/ROW]
[ROW][C]39[/C][C] 0.8208[/C][C] 0.3583[/C][C] 0.1792[/C][/ROW]
[ROW][C]40[/C][C] 0.8334[/C][C] 0.3333[/C][C] 0.1666[/C][/ROW]
[ROW][C]41[/C][C] 0.9977[/C][C] 0.004565[/C][C] 0.002282[/C][/ROW]
[ROW][C]42[/C][C] 0.9981[/C][C] 0.00389[/C][C] 0.001945[/C][/ROW]
[ROW][C]43[/C][C] 0.9974[/C][C] 0.005148[/C][C] 0.002574[/C][/ROW]
[ROW][C]44[/C][C] 0.9967[/C][C] 0.00665[/C][C] 0.003325[/C][/ROW]
[ROW][C]45[/C][C] 0.9962[/C][C] 0.007554[/C][C] 0.003777[/C][/ROW]
[ROW][C]46[/C][C] 0.9949[/C][C] 0.01018[/C][C] 0.005089[/C][/ROW]
[ROW][C]47[/C][C] 0.9936[/C][C] 0.01287[/C][C] 0.006437[/C][/ROW]
[ROW][C]48[/C][C] 0.9942[/C][C] 0.01154[/C][C] 0.005771[/C][/ROW]
[ROW][C]49[/C][C] 0.993[/C][C] 0.01408[/C][C] 0.007038[/C][/ROW]
[ROW][C]50[/C][C] 0.9958[/C][C] 0.00842[/C][C] 0.00421[/C][/ROW]
[ROW][C]51[/C][C] 0.994[/C][C] 0.01194[/C][C] 0.00597[/C][/ROW]
[ROW][C]52[/C][C] 0.9954[/C][C] 0.009147[/C][C] 0.004573[/C][/ROW]
[ROW][C]53[/C][C] 0.9987[/C][C] 0.002554[/C][C] 0.001277[/C][/ROW]
[ROW][C]54[/C][C] 0.9982[/C][C] 0.003682[/C][C] 0.001841[/C][/ROW]
[ROW][C]55[/C][C] 0.9976[/C][C] 0.004702[/C][C] 0.002351[/C][/ROW]
[ROW][C]56[/C][C] 0.9968[/C][C] 0.00633[/C][C] 0.003165[/C][/ROW]
[ROW][C]57[/C][C] 0.9956[/C][C] 0.008886[/C][C] 0.004443[/C][/ROW]
[ROW][C]58[/C][C] 0.9938[/C][C] 0.01244[/C][C] 0.006222[/C][/ROW]
[ROW][C]59[/C][C] 0.9927[/C][C] 0.01459[/C][C] 0.007297[/C][/ROW]
[ROW][C]60[/C][C] 0.9922[/C][C] 0.01555[/C][C] 0.007774[/C][/ROW]
[ROW][C]61[/C][C] 0.9898[/C][C] 0.02036[/C][C] 0.01018[/C][/ROW]
[ROW][C]62[/C][C] 0.9896[/C][C] 0.02077[/C][C] 0.01038[/C][/ROW]
[ROW][C]63[/C][C] 0.995[/C][C] 0.01004[/C][C] 0.005021[/C][/ROW]
[ROW][C]64[/C][C] 0.9955[/C][C] 0.009011[/C][C] 0.004506[/C][/ROW]
[ROW][C]65[/C][C] 0.9971[/C][C] 0.005731[/C][C] 0.002866[/C][/ROW]
[ROW][C]66[/C][C] 0.9965[/C][C] 0.006913[/C][C] 0.003457[/C][/ROW]
[ROW][C]67[/C][C] 0.9961[/C][C] 0.007833[/C][C] 0.003917[/C][/ROW]
[ROW][C]68[/C][C] 0.998[/C][C] 0.004029[/C][C] 0.002015[/C][/ROW]
[ROW][C]69[/C][C] 0.9974[/C][C] 0.005284[/C][C] 0.002642[/C][/ROW]
[ROW][C]70[/C][C] 0.9964[/C][C] 0.007286[/C][C] 0.003643[/C][/ROW]
[ROW][C]71[/C][C] 0.9951[/C][C] 0.009761[/C][C] 0.004881[/C][/ROW]
[ROW][C]72[/C][C] 0.9957[/C][C] 0.008564[/C][C] 0.004282[/C][/ROW]
[ROW][C]73[/C][C] 0.9943[/C][C] 0.01148[/C][C] 0.00574[/C][/ROW]
[ROW][C]74[/C][C] 0.995[/C][C] 0.01004[/C][C] 0.005022[/C][/ROW]
[ROW][C]75[/C][C] 0.9931[/C][C] 0.01389[/C][C] 0.006943[/C][/ROW]
[ROW][C]76[/C][C] 0.9909[/C][C] 0.01818[/C][C] 0.009092[/C][/ROW]
[ROW][C]77[/C][C] 0.9942[/C][C] 0.01167[/C][C] 0.005833[/C][/ROW]
[ROW][C]78[/C][C] 0.9925[/C][C] 0.01505[/C][C] 0.007523[/C][/ROW]
[ROW][C]79[/C][C] 0.9905[/C][C] 0.01891[/C][C] 0.009457[/C][/ROW]
[ROW][C]80[/C][C] 0.9929[/C][C] 0.01421[/C][C] 0.007104[/C][/ROW]
[ROW][C]81[/C][C] 0.9915[/C][C] 0.01701[/C][C] 0.008505[/C][/ROW]
[ROW][C]82[/C][C] 0.9902[/C][C] 0.01967[/C][C] 0.009835[/C][/ROW]
[ROW][C]83[/C][C] 0.9885[/C][C] 0.02293[/C][C] 0.01146[/C][/ROW]
[ROW][C]84[/C][C] 0.9918[/C][C] 0.01633[/C][C] 0.008167[/C][/ROW]
[ROW][C]85[/C][C] 0.9924[/C][C] 0.01511[/C][C] 0.007553[/C][/ROW]
[ROW][C]86[/C][C] 0.9911[/C][C] 0.01773[/C][C] 0.008863[/C][/ROW]
[ROW][C]87[/C][C] 0.9888[/C][C] 0.02236[/C][C] 0.01118[/C][/ROW]
[ROW][C]88[/C][C] 0.9855[/C][C] 0.02907[/C][C] 0.01453[/C][/ROW]
[ROW][C]89[/C][C] 0.9824[/C][C] 0.03528[/C][C] 0.01764[/C][/ROW]
[ROW][C]90[/C][C] 0.9858[/C][C] 0.02837[/C][C] 0.01418[/C][/ROW]
[ROW][C]91[/C][C] 0.9809[/C][C] 0.03825[/C][C] 0.01913[/C][/ROW]
[ROW][C]92[/C][C] 0.9935[/C][C] 0.01303[/C][C] 0.006517[/C][/ROW]
[ROW][C]93[/C][C] 0.9922[/C][C] 0.01566[/C][C] 0.00783[/C][/ROW]
[ROW][C]94[/C][C] 0.9911[/C][C] 0.01772[/C][C] 0.008861[/C][/ROW]
[ROW][C]95[/C][C] 0.9932[/C][C] 0.01351[/C][C] 0.006756[/C][/ROW]
[ROW][C]96[/C][C] 0.9907[/C][C] 0.01857[/C][C] 0.009284[/C][/ROW]
[ROW][C]97[/C][C] 0.9883[/C][C] 0.02349[/C][C] 0.01174[/C][/ROW]
[ROW][C]98[/C][C] 0.984[/C][C] 0.032[/C][C] 0.016[/C][/ROW]
[ROW][C]99[/C][C] 0.9793[/C][C] 0.04137[/C][C] 0.02068[/C][/ROW]
[ROW][C]100[/C][C] 0.9763[/C][C] 0.04731[/C][C] 0.02366[/C][/ROW]
[ROW][C]101[/C][C] 0.9776[/C][C] 0.04478[/C][C] 0.02239[/C][/ROW]
[ROW][C]102[/C][C] 0.9717[/C][C] 0.05656[/C][C] 0.02828[/C][/ROW]
[ROW][C]103[/C][C] 0.9837[/C][C] 0.03266[/C][C] 0.01633[/C][/ROW]
[ROW][C]104[/C][C] 0.9789[/C][C] 0.04228[/C][C] 0.02114[/C][/ROW]
[ROW][C]105[/C][C] 0.9817[/C][C] 0.03661[/C][C] 0.01831[/C][/ROW]
[ROW][C]106[/C][C] 0.9775[/C][C] 0.04506[/C][C] 0.02253[/C][/ROW]
[ROW][C]107[/C][C] 0.9695[/C][C] 0.06091[/C][C] 0.03046[/C][/ROW]
[ROW][C]108[/C][C] 0.9593[/C][C] 0.08139[/C][C] 0.04069[/C][/ROW]
[ROW][C]109[/C][C] 0.9613[/C][C] 0.07747[/C][C] 0.03874[/C][/ROW]
[ROW][C]110[/C][C] 0.951[/C][C] 0.09796[/C][C] 0.04898[/C][/ROW]
[ROW][C]111[/C][C] 0.9471[/C][C] 0.1058[/C][C] 0.05289[/C][/ROW]
[ROW][C]112[/C][C] 0.9372[/C][C] 0.1255[/C][C] 0.06277[/C][/ROW]
[ROW][C]113[/C][C] 0.923[/C][C] 0.1541[/C][C] 0.07703[/C][/ROW]
[ROW][C]114[/C][C] 0.9357[/C][C] 0.1286[/C][C] 0.06428[/C][/ROW]
[ROW][C]115[/C][C] 0.9174[/C][C] 0.1651[/C][C] 0.08255[/C][/ROW]
[ROW][C]116[/C][C] 0.8954[/C][C] 0.2092[/C][C] 0.1046[/C][/ROW]
[ROW][C]117[/C][C] 0.8683[/C][C] 0.2633[/C][C] 0.1317[/C][/ROW]
[ROW][C]118[/C][C] 0.8361[/C][C] 0.3277[/C][C] 0.1639[/C][/ROW]
[ROW][C]119[/C][C] 0.8206[/C][C] 0.3587[/C][C] 0.1794[/C][/ROW]
[ROW][C]120[/C][C] 0.7797[/C][C] 0.4405[/C][C] 0.2203[/C][/ROW]
[ROW][C]121[/C][C] 0.7539[/C][C] 0.4922[/C][C] 0.2461[/C][/ROW]
[ROW][C]122[/C][C] 0.7119[/C][C] 0.5761[/C][C] 0.2881[/C][/ROW]
[ROW][C]123[/C][C] 0.7626[/C][C] 0.4747[/C][C] 0.2374[/C][/ROW]
[ROW][C]124[/C][C] 0.7387[/C][C] 0.5227[/C][C] 0.2613[/C][/ROW]
[ROW][C]125[/C][C] 0.6976[/C][C] 0.6048[/C][C] 0.3024[/C][/ROW]
[ROW][C]126[/C][C] 0.6694[/C][C] 0.6613[/C][C] 0.3306[/C][/ROW]
[ROW][C]127[/C][C] 0.6663[/C][C] 0.6674[/C][C] 0.3337[/C][/ROW]
[ROW][C]128[/C][C] 0.628[/C][C] 0.7439[/C][C] 0.372[/C][/ROW]
[ROW][C]129[/C][C] 0.5697[/C][C] 0.8606[/C][C] 0.4303[/C][/ROW]
[ROW][C]130[/C][C] 0.6435[/C][C] 0.7131[/C][C] 0.3565[/C][/ROW]
[ROW][C]131[/C][C] 0.6222[/C][C] 0.7556[/C][C] 0.3778[/C][/ROW]
[ROW][C]132[/C][C] 0.632[/C][C] 0.736[/C][C] 0.368[/C][/ROW]
[ROW][C]133[/C][C] 0.5643[/C][C] 0.8715[/C][C] 0.4357[/C][/ROW]
[ROW][C]134[/C][C] 0.5304[/C][C] 0.9393[/C][C] 0.4696[/C][/ROW]
[ROW][C]135[/C][C] 0.4589[/C][C] 0.9179[/C][C] 0.5411[/C][/ROW]
[ROW][C]136[/C][C] 0.3971[/C][C] 0.7941[/C][C] 0.6029[/C][/ROW]
[ROW][C]137[/C][C] 0.712[/C][C] 0.5761[/C][C] 0.288[/C][/ROW]
[ROW][C]138[/C][C] 0.6488[/C][C] 0.7024[/C][C] 0.3512[/C][/ROW]
[ROW][C]139[/C][C] 0.6905[/C][C] 0.619[/C][C] 0.3095[/C][/ROW]
[ROW][C]140[/C][C] 0.6097[/C][C] 0.7805[/C][C] 0.3903[/C][/ROW]
[ROW][C]141[/C][C] 0.5549[/C][C] 0.8902[/C][C] 0.4451[/C][/ROW]
[ROW][C]142[/C][C] 0.8583[/C][C] 0.2834[/C][C] 0.1417[/C][/ROW]
[ROW][C]143[/C][C] 0.886[/C][C] 0.228[/C][C] 0.114[/C][/ROW]
[ROW][C]144[/C][C] 0.9917[/C][C] 0.01655[/C][C] 0.008274[/C][/ROW]
[ROW][C]145[/C][C] 0.985[/C][C] 0.03008[/C][C] 0.01504[/C][/ROW]
[ROW][C]146[/C][C] 0.9663[/C][C] 0.06732[/C][C] 0.03366[/C][/ROW]
[ROW][C]147[/C][C] 0.9753[/C][C] 0.04946[/C][C] 0.02473[/C][/ROW]
[ROW][C]148[/C][C] 0.9591[/C][C] 0.08187[/C][C] 0.04093[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297586&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297586&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.2346 0.4692 0.7654
9 0.2586 0.5171 0.7414
10 0.1692 0.3384 0.8308
11 0.1549 0.3098 0.8451
12 0.48 0.96 0.52
13 0.4307 0.8614 0.5693
14 0.3851 0.7702 0.6149
15 0.4293 0.8585 0.5707
16 0.3438 0.6876 0.6562
17 0.2644 0.5288 0.7356
18 0.2451 0.4902 0.7549
19 0.3545 0.709 0.6455
20 0.2845 0.569 0.7155
21 0.2592 0.5184 0.7408
22 0.2007 0.4015 0.7993
23 0.2359 0.4719 0.7641
24 0.184 0.368 0.816
25 0.1419 0.2837 0.8581
26 0.2862 0.5723 0.7138
27 0.2627 0.5253 0.7373
28 0.2535 0.507 0.7465
29 0.2842 0.5685 0.7158
30 0.959 0.08206 0.04103
31 0.9472 0.1057 0.05284
32 0.9326 0.1348 0.0674
33 0.9154 0.1691 0.08456
34 0.9011 0.1979 0.09894
35 0.8759 0.2481 0.1241
36 0.846 0.308 0.154
37 0.836 0.328 0.164
38 0.8055 0.3889 0.1945
39 0.8208 0.3583 0.1792
40 0.8334 0.3333 0.1666
41 0.9977 0.004565 0.002282
42 0.9981 0.00389 0.001945
43 0.9974 0.005148 0.002574
44 0.9967 0.00665 0.003325
45 0.9962 0.007554 0.003777
46 0.9949 0.01018 0.005089
47 0.9936 0.01287 0.006437
48 0.9942 0.01154 0.005771
49 0.993 0.01408 0.007038
50 0.9958 0.00842 0.00421
51 0.994 0.01194 0.00597
52 0.9954 0.009147 0.004573
53 0.9987 0.002554 0.001277
54 0.9982 0.003682 0.001841
55 0.9976 0.004702 0.002351
56 0.9968 0.00633 0.003165
57 0.9956 0.008886 0.004443
58 0.9938 0.01244 0.006222
59 0.9927 0.01459 0.007297
60 0.9922 0.01555 0.007774
61 0.9898 0.02036 0.01018
62 0.9896 0.02077 0.01038
63 0.995 0.01004 0.005021
64 0.9955 0.009011 0.004506
65 0.9971 0.005731 0.002866
66 0.9965 0.006913 0.003457
67 0.9961 0.007833 0.003917
68 0.998 0.004029 0.002015
69 0.9974 0.005284 0.002642
70 0.9964 0.007286 0.003643
71 0.9951 0.009761 0.004881
72 0.9957 0.008564 0.004282
73 0.9943 0.01148 0.00574
74 0.995 0.01004 0.005022
75 0.9931 0.01389 0.006943
76 0.9909 0.01818 0.009092
77 0.9942 0.01167 0.005833
78 0.9925 0.01505 0.007523
79 0.9905 0.01891 0.009457
80 0.9929 0.01421 0.007104
81 0.9915 0.01701 0.008505
82 0.9902 0.01967 0.009835
83 0.9885 0.02293 0.01146
84 0.9918 0.01633 0.008167
85 0.9924 0.01511 0.007553
86 0.9911 0.01773 0.008863
87 0.9888 0.02236 0.01118
88 0.9855 0.02907 0.01453
89 0.9824 0.03528 0.01764
90 0.9858 0.02837 0.01418
91 0.9809 0.03825 0.01913
92 0.9935 0.01303 0.006517
93 0.9922 0.01566 0.00783
94 0.9911 0.01772 0.008861
95 0.9932 0.01351 0.006756
96 0.9907 0.01857 0.009284
97 0.9883 0.02349 0.01174
98 0.984 0.032 0.016
99 0.9793 0.04137 0.02068
100 0.9763 0.04731 0.02366
101 0.9776 0.04478 0.02239
102 0.9717 0.05656 0.02828
103 0.9837 0.03266 0.01633
104 0.9789 0.04228 0.02114
105 0.9817 0.03661 0.01831
106 0.9775 0.04506 0.02253
107 0.9695 0.06091 0.03046
108 0.9593 0.08139 0.04069
109 0.9613 0.07747 0.03874
110 0.951 0.09796 0.04898
111 0.9471 0.1058 0.05289
112 0.9372 0.1255 0.06277
113 0.923 0.1541 0.07703
114 0.9357 0.1286 0.06428
115 0.9174 0.1651 0.08255
116 0.8954 0.2092 0.1046
117 0.8683 0.2633 0.1317
118 0.8361 0.3277 0.1639
119 0.8206 0.3587 0.1794
120 0.7797 0.4405 0.2203
121 0.7539 0.4922 0.2461
122 0.7119 0.5761 0.2881
123 0.7626 0.4747 0.2374
124 0.7387 0.5227 0.2613
125 0.6976 0.6048 0.3024
126 0.6694 0.6613 0.3306
127 0.6663 0.6674 0.3337
128 0.628 0.7439 0.372
129 0.5697 0.8606 0.4303
130 0.6435 0.7131 0.3565
131 0.6222 0.7556 0.3778
132 0.632 0.736 0.368
133 0.5643 0.8715 0.4357
134 0.5304 0.9393 0.4696
135 0.4589 0.9179 0.5411
136 0.3971 0.7941 0.6029
137 0.712 0.5761 0.288
138 0.6488 0.7024 0.3512
139 0.6905 0.619 0.3095
140 0.6097 0.7805 0.3903
141 0.5549 0.8902 0.4451
142 0.8583 0.2834 0.1417
143 0.886 0.228 0.114
144 0.9917 0.01655 0.008274
145 0.985 0.03008 0.01504
146 0.9663 0.06732 0.03366
147 0.9753 0.04946 0.02473
148 0.9591 0.08187 0.04093







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level21 0.1489NOK
5% type I error level680.48227NOK
10% type I error level760.539007NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 21 &  0.1489 & NOK \tabularnewline
5% type I error level & 68 & 0.48227 & NOK \tabularnewline
10% type I error level & 76 & 0.539007 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297586&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]21[/C][C] 0.1489[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]68[/C][C]0.48227[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]76[/C][C]0.539007[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297586&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297586&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level21 0.1489NOK
5% type I error level680.48227NOK
10% type I error level760.539007NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.201, df1 = 2, df2 = 149, p-value = 0.3038
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3633, df1 = 8, df2 = 143, p-value = 0.2176
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.5065, df1 = 2, df2 = 149, p-value = 0.225

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.201, df1 = 2, df2 = 149, p-value = 0.3038
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3633, df1 = 8, df2 = 143, p-value = 0.2176
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.5065, df1 = 2, df2 = 149, p-value = 0.225
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297586&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.201, df1 = 2, df2 = 149, p-value = 0.3038
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3633, df1 = 8, df2 = 143, p-value = 0.2176
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.5065, df1 = 2, df2 = 149, p-value = 0.225
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297586&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297586&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.201, df1 = 2, df2 = 149, p-value = 0.3038
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3633, df1 = 8, df2 = 143, p-value = 0.2176
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.5065, df1 = 2, df2 = 149, p-value = 0.225







Variance Inflation Factors (Multicollinearity)
> vif
     EP1      EP2      EP3      EP4 
2.183272 2.063905 1.056313 1.131577 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     EP1      EP2      EP3      EP4 
2.183272 2.063905 1.056313 1.131577 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297586&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     EP1      EP2      EP3      EP4 
2.183272 2.063905 1.056313 1.131577 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297586&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297586&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     EP1      EP2      EP3      EP4 
2.183272 2.063905 1.056313 1.131577 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '5'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')