Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationFri, 02 Dec 2016 16:02:10 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/02/t1480691213cizbz7xvc74afnj.htm/, Retrieved Fri, 01 Nov 2024 03:40:36 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297580, Retrieved Fri, 01 Nov 2024 03:40:36 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact147
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [correlation matrix] [2016-12-02 15:02:10] [67fe698233d7575d27222b521501ef35] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	2	4	3	5	4	13
5	3	3	4	5	4	16
4	4	5	4	5	4	17
3	4	3	3	4	4	NA
4	4	5	4	5	4	NA
3	4	4	4	5	5	16
3	4	4	3	3	4	NA
3	4	5	4	4	4	NA
4	5	4	4	5	5	NA
4	5	5	4	5	5	17
4	4	2	4	5	4	17
4	4	5	3	5	4	15
4	4	4	3	4	5	16
3	3	5	4	4	5	14
4	4	5	4	2	5	16
3	4	5	4	4	5	17
3	4	5	4	4	5	NA
5	5	4	3	4	4	NA
4	4	4	4	5	4	NA
3	4	5	3	4	5	16
4	4	4	4	5	5	NA
4	4	5	4	4	5	16
4	4	5	4	4	4	NA
4	4	5	4	4	5	NA
3	4	4	4	4	4	NA
3	4	4	3	5	5	16
4	4	4	4	4	4	15
2	4	5	4	5	5	16
5	4	4	4	4	4	16
4	3	5	4	4	4	13
4	5	5	4	5	5	15
5	4	5	4	4	5	17
4	3	5	4	5	5	NA
2	3	5	4	5	4	13
4	5	2	4	4	4	17
3	4	5	4	4	4	NA
4	3	5	3	4	5	14
4	3	3	4	4	4	14
4	4	5	4	4	4	18
5	4	4	4	4	4	NA
4	5	5	4	5	5	17
3	3	4	4	4	4	13
5	5	5	3	5	5	16
5	4	5	3	4	4	15
4	4	4	3	4	5	15
4	4	4	4	4	4	NA
3	5	5	3	3	4	15
4	4	4	4	5	4	13
2	3	4	2	4	4	NA
4	5	5	4	4	4	17
5	5	2	4	5	4	NA
5	5	5	4	4	4	NA
4	3	5	4	5	5	11
4	3	4	3	4	5	14
4	4	5	4	4	4	13
3	4	4	3	3	4	NA
3	4	4	4	4	3	17
4	4	4	3	5	4	16
4	4	4	4	5	4	NA
5	5	3	4	5	5	17
2	4	4	4	5	5	16
4	4	4	4	5	5	16
3	4	4	4	2	4	16
4	4	5	4	5	5	15
4	2	4	4	4	4	12
4	4	4	3	5	3	17
4	4	4	3	5	4	14
5	4	5	3	3	5	14
3	4	4	3	5	5	16
3	4	4	3	4	5	NA
4	5	5	5	5	4	NA
4	4	3	4	4	4	NA
4	4	4	4	4	4	NA
4	4	4	5	5	4	NA
3	4	3	4	4	4	15
4	4	4	4	5	4	16
3	4	5	3	5	5	14
3	3	5	4	4	5	15
4	3	5	4	4	4	17
4	4	5	4	4	5	NA
3	3	3	4	4	4	10
4	4	4	4	5	4	NA
4	4	3	4	5	5	17
4	4	4	4	5	5	NA
5	4	4	4	4	4	20
5	4	3	5	4	5	17
4	4	5	4	5	5	18
3	4	5	4	4	5	NA
3	4	4	4	4	4	17
4	2	3	3	4	4	14
4	4	5	4	4	3	NA
4	4	5	4	4	5	17
4	4	4	4	5	4	NA
4	5	4	4	5	3	17
3	4	4	3	5	5	NA
4	4	5	4	4	5	16
5	4	3	4	4	5	18
5	4	5	5	4	5	18
4	5	4	4	5	5	16
3	4	5	4	4	5	NA
5	3	4	4	5	5	NA
4	4	5	4	4	5	15
5	4	4	4	4	5	13
3	4	4	3	4	4	NA
5	4	4	5	5	5	NA
4	4	5	3	5	5	NA
4	4	3	3	4	3	NA
4	4	5	4	4	4	NA
4	4	5	4	4	4	16
3	4	5	4	5	3	NA
4	4	4	4	4	4	NA
4	4	4	3	4	5	NA
3	3	4	3	5	5	12
4	4	4	3	4	4	NA
3	4	5	4	4	4	16
4	4	5	4	3	4	16
5	4	5	1	5	5	NA
5	4	5	4	5	5	16
4	4	4	4	4	3	14
4	4	5	3	4	4	15
3	4	4	3	4	5	14
4	4	4	4	4	4	NA
4	4	4	4	5	4	15
4	5	3	4	4	4	NA
3	4	4	4	4	4	15
4	4	4	3	4	4	16
4	4	4	4	4	5	NA
3	4	3	3	4	4	NA
4	4	4	3	4	3	NA
3	2	4	2	4	4	11
4	4	4	3	5	4	NA
5	4	4	3	5	4	18
2	4	4	3	3	5	NA
3	3	4	4	4	4	11
4	4	4	3	4	4	NA
5	5	4	4	5	4	18
4	5	5	4	4	4	15
5	5	5	5	5	4	19
4	5	5	4	5	5	17
4	4	4	3	4	5	NA
3	4	5	4	5	4	14
4	4	5	4	4	4	NA
4	4	2	4	4	4	13
4	4	3	4	5	5	17
4	4	4	4	5	5	14
5	4	5	3	5	4	19
4	3	5	4	4	4	14
4	4	5	4	4	4	NA
3	3	2	3	4	4	NA
4	5	5	4	4	3	16
4	4	4	3	4	4	16
4	4	4	4	4	5	15
3	4	5	3	5	5	12
4	4	5	4	4	5	NA
5	4	5	4	5	4	17
4	4	5	4	3	4	NA
2	3	5	4	4	4	NA
4	4	4	4	4	5	18
4	3	4	3	5	5	15
4	4	4	4	4	3	18
4	5	5	5	4	4	15
5	4	3	4	4	4	NA
5	4	4	3	4	4	NA
3	3	1	4	5	5	NA
4	4	4	4	4	5	16
4	4	4	4	5	4	NA
2	3	4	5	5	4	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297580&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297580&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297580&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Correlations for all pairs of data series (method=kendall)
SK1SK2SK3SK4SK5SK6TVDC
SK110.2370.0020.0840.0350.0050.306
SK20.23710.1550.1610.1240.0390.426
SK30.0020.15510.021-0.0540.1380.012
SK40.0840.1610.0211-0.054-0.0520.233
SK50.0350.124-0.054-0.05410.1360.111
SK60.0050.0390.138-0.0520.13610.016
TVDC0.3060.4260.0120.2330.1110.0161

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=kendall) \tabularnewline
  & SK1 & SK2 & SK3 & SK4 & SK5 & SK6 & TVDC \tabularnewline
SK1 & 1 & 0.237 & 0.002 & 0.084 & 0.035 & 0.005 & 0.306 \tabularnewline
SK2 & 0.237 & 1 & 0.155 & 0.161 & 0.124 & 0.039 & 0.426 \tabularnewline
SK3 & 0.002 & 0.155 & 1 & 0.021 & -0.054 & 0.138 & 0.012 \tabularnewline
SK4 & 0.084 & 0.161 & 0.021 & 1 & -0.054 & -0.052 & 0.233 \tabularnewline
SK5 & 0.035 & 0.124 & -0.054 & -0.054 & 1 & 0.136 & 0.111 \tabularnewline
SK6 & 0.005 & 0.039 & 0.138 & -0.052 & 0.136 & 1 & 0.016 \tabularnewline
TVDC & 0.306 & 0.426 & 0.012 & 0.233 & 0.111 & 0.016 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297580&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=kendall)[/C][/ROW]
[ROW][C] [/C][C]SK1[/C][C]SK2[/C][C]SK3[/C][C]SK4[/C][C]SK5[/C][C]SK6[/C][C]TVDC[/C][/ROW]
[ROW][C]SK1[/C][C]1[/C][C]0.237[/C][C]0.002[/C][C]0.084[/C][C]0.035[/C][C]0.005[/C][C]0.306[/C][/ROW]
[ROW][C]SK2[/C][C]0.237[/C][C]1[/C][C]0.155[/C][C]0.161[/C][C]0.124[/C][C]0.039[/C][C]0.426[/C][/ROW]
[ROW][C]SK3[/C][C]0.002[/C][C]0.155[/C][C]1[/C][C]0.021[/C][C]-0.054[/C][C]0.138[/C][C]0.012[/C][/ROW]
[ROW][C]SK4[/C][C]0.084[/C][C]0.161[/C][C]0.021[/C][C]1[/C][C]-0.054[/C][C]-0.052[/C][C]0.233[/C][/ROW]
[ROW][C]SK5[/C][C]0.035[/C][C]0.124[/C][C]-0.054[/C][C]-0.054[/C][C]1[/C][C]0.136[/C][C]0.111[/C][/ROW]
[ROW][C]SK6[/C][C]0.005[/C][C]0.039[/C][C]0.138[/C][C]-0.052[/C][C]0.136[/C][C]1[/C][C]0.016[/C][/ROW]
[ROW][C]TVDC[/C][C]0.306[/C][C]0.426[/C][C]0.012[/C][C]0.233[/C][C]0.111[/C][C]0.016[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297580&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297580&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=kendall)
SK1SK2SK3SK4SK5SK6TVDC
SK110.2370.0020.0840.0350.0050.306
SK20.23710.1550.1610.1240.0390.426
SK30.0020.15510.021-0.0540.1380.012
SK40.0840.1610.0211-0.054-0.0520.233
SK50.0350.124-0.054-0.05410.1360.111
SK60.0050.0390.138-0.0520.13610.016
TVDC0.3060.4260.0120.2330.1110.0161







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
SK1;SK20.2490.26540.2367
p-value(0.0112)(0.0067)(0.0078)
SK1;SK3-0.03630.00170.0022
p-value(0.7157)(0.9865)(0.9805)
SK1;SK40.07240.08910.084
p-value(0.4673)(0.3707)(0.358)
SK1;SK50.01390.03670.0347
p-value(0.8888)(0.7125)(0.7047)
SK1;SK60.00390.00520.0049
p-value(0.969)(0.9584)(0.9572)
SK1;TVDC0.36370.36410.3061
p-value(2e-04)(2e-04)(2e-04)
SK2;SK30.14370.16890.1549
p-value(0.1475)(0.0881)(0.0853)
SK2;SK40.23250.1720.1608
p-value(0.0181)(0.0824)(0.0805)
SK2;SK50.09440.13410.1242
p-value(0.3429)(0.1768)(0.1781)
SK2;SK60.03760.04070.0395
p-value(0.7059)(0.6831)(0.6679)
SK2;TVDC0.54280.5020.4261
p-value(0)(0)(0)
SK3;SK4-0.01820.02190.0205
p-value(0.8549)(0.8266)(0.8241)
SK3;SK5-0.0629-0.0588-0.0542
p-value(0.5282)(0.5555)(0.5579)
SK3;SK60.14240.14880.1376
p-value(0.1514)(0.1337)(0.1361)
SK3;TVDC0.0360.01380.0116
p-value(0.7184)(0.8902)(0.8886)
SK4;SK5-0.0387-0.0569-0.0544
p-value(0.6978)(0.5682)(0.5657)
SK4;SK6-0.0433-0.0552-0.0523
p-value(0.664)(0.5796)(0.5795)
SK4;TVDC0.26290.26850.2332
p-value(0.0073)(0.0061)(0.006)
SK5;SK60.10920.14330.1365
p-value(0.2721)(0.1487)(0.1492)
SK5;TVDC0.08510.13320.1112
p-value(0.3926)(0.1797)(0.1912)
SK6;TVDC-0.00440.0160.0164
p-value(0.9648)(0.8726)(0.8472)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
SK1;SK2 & 0.249 & 0.2654 & 0.2367 \tabularnewline
p-value & (0.0112) & (0.0067) & (0.0078) \tabularnewline
SK1;SK3 & -0.0363 & 0.0017 & 0.0022 \tabularnewline
p-value & (0.7157) & (0.9865) & (0.9805) \tabularnewline
SK1;SK4 & 0.0724 & 0.0891 & 0.084 \tabularnewline
p-value & (0.4673) & (0.3707) & (0.358) \tabularnewline
SK1;SK5 & 0.0139 & 0.0367 & 0.0347 \tabularnewline
p-value & (0.8888) & (0.7125) & (0.7047) \tabularnewline
SK1;SK6 & 0.0039 & 0.0052 & 0.0049 \tabularnewline
p-value & (0.969) & (0.9584) & (0.9572) \tabularnewline
SK1;TVDC & 0.3637 & 0.3641 & 0.3061 \tabularnewline
p-value & (2e-04) & (2e-04) & (2e-04) \tabularnewline
SK2;SK3 & 0.1437 & 0.1689 & 0.1549 \tabularnewline
p-value & (0.1475) & (0.0881) & (0.0853) \tabularnewline
SK2;SK4 & 0.2325 & 0.172 & 0.1608 \tabularnewline
p-value & (0.0181) & (0.0824) & (0.0805) \tabularnewline
SK2;SK5 & 0.0944 & 0.1341 & 0.1242 \tabularnewline
p-value & (0.3429) & (0.1768) & (0.1781) \tabularnewline
SK2;SK6 & 0.0376 & 0.0407 & 0.0395 \tabularnewline
p-value & (0.7059) & (0.6831) & (0.6679) \tabularnewline
SK2;TVDC & 0.5428 & 0.502 & 0.4261 \tabularnewline
p-value & (0) & (0) & (0) \tabularnewline
SK3;SK4 & -0.0182 & 0.0219 & 0.0205 \tabularnewline
p-value & (0.8549) & (0.8266) & (0.8241) \tabularnewline
SK3;SK5 & -0.0629 & -0.0588 & -0.0542 \tabularnewline
p-value & (0.5282) & (0.5555) & (0.5579) \tabularnewline
SK3;SK6 & 0.1424 & 0.1488 & 0.1376 \tabularnewline
p-value & (0.1514) & (0.1337) & (0.1361) \tabularnewline
SK3;TVDC & 0.036 & 0.0138 & 0.0116 \tabularnewline
p-value & (0.7184) & (0.8902) & (0.8886) \tabularnewline
SK4;SK5 & -0.0387 & -0.0569 & -0.0544 \tabularnewline
p-value & (0.6978) & (0.5682) & (0.5657) \tabularnewline
SK4;SK6 & -0.0433 & -0.0552 & -0.0523 \tabularnewline
p-value & (0.664) & (0.5796) & (0.5795) \tabularnewline
SK4;TVDC & 0.2629 & 0.2685 & 0.2332 \tabularnewline
p-value & (0.0073) & (0.0061) & (0.006) \tabularnewline
SK5;SK6 & 0.1092 & 0.1433 & 0.1365 \tabularnewline
p-value & (0.2721) & (0.1487) & (0.1492) \tabularnewline
SK5;TVDC & 0.0851 & 0.1332 & 0.1112 \tabularnewline
p-value & (0.3926) & (0.1797) & (0.1912) \tabularnewline
SK6;TVDC & -0.0044 & 0.016 & 0.0164 \tabularnewline
p-value & (0.9648) & (0.8726) & (0.8472) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297580&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]SK1;SK2[/C][C]0.249[/C][C]0.2654[/C][C]0.2367[/C][/ROW]
[ROW][C]p-value[/C][C](0.0112)[/C][C](0.0067)[/C][C](0.0078)[/C][/ROW]
[ROW][C]SK1;SK3[/C][C]-0.0363[/C][C]0.0017[/C][C]0.0022[/C][/ROW]
[ROW][C]p-value[/C][C](0.7157)[/C][C](0.9865)[/C][C](0.9805)[/C][/ROW]
[ROW][C]SK1;SK4[/C][C]0.0724[/C][C]0.0891[/C][C]0.084[/C][/ROW]
[ROW][C]p-value[/C][C](0.4673)[/C][C](0.3707)[/C][C](0.358)[/C][/ROW]
[ROW][C]SK1;SK5[/C][C]0.0139[/C][C]0.0367[/C][C]0.0347[/C][/ROW]
[ROW][C]p-value[/C][C](0.8888)[/C][C](0.7125)[/C][C](0.7047)[/C][/ROW]
[ROW][C]SK1;SK6[/C][C]0.0039[/C][C]0.0052[/C][C]0.0049[/C][/ROW]
[ROW][C]p-value[/C][C](0.969)[/C][C](0.9584)[/C][C](0.9572)[/C][/ROW]
[ROW][C]SK1;TVDC[/C][C]0.3637[/C][C]0.3641[/C][C]0.3061[/C][/ROW]
[ROW][C]p-value[/C][C](2e-04)[/C][C](2e-04)[/C][C](2e-04)[/C][/ROW]
[ROW][C]SK2;SK3[/C][C]0.1437[/C][C]0.1689[/C][C]0.1549[/C][/ROW]
[ROW][C]p-value[/C][C](0.1475)[/C][C](0.0881)[/C][C](0.0853)[/C][/ROW]
[ROW][C]SK2;SK4[/C][C]0.2325[/C][C]0.172[/C][C]0.1608[/C][/ROW]
[ROW][C]p-value[/C][C](0.0181)[/C][C](0.0824)[/C][C](0.0805)[/C][/ROW]
[ROW][C]SK2;SK5[/C][C]0.0944[/C][C]0.1341[/C][C]0.1242[/C][/ROW]
[ROW][C]p-value[/C][C](0.3429)[/C][C](0.1768)[/C][C](0.1781)[/C][/ROW]
[ROW][C]SK2;SK6[/C][C]0.0376[/C][C]0.0407[/C][C]0.0395[/C][/ROW]
[ROW][C]p-value[/C][C](0.7059)[/C][C](0.6831)[/C][C](0.6679)[/C][/ROW]
[ROW][C]SK2;TVDC[/C][C]0.5428[/C][C]0.502[/C][C]0.4261[/C][/ROW]
[ROW][C]p-value[/C][C](0)[/C][C](0)[/C][C](0)[/C][/ROW]
[ROW][C]SK3;SK4[/C][C]-0.0182[/C][C]0.0219[/C][C]0.0205[/C][/ROW]
[ROW][C]p-value[/C][C](0.8549)[/C][C](0.8266)[/C][C](0.8241)[/C][/ROW]
[ROW][C]SK3;SK5[/C][C]-0.0629[/C][C]-0.0588[/C][C]-0.0542[/C][/ROW]
[ROW][C]p-value[/C][C](0.5282)[/C][C](0.5555)[/C][C](0.5579)[/C][/ROW]
[ROW][C]SK3;SK6[/C][C]0.1424[/C][C]0.1488[/C][C]0.1376[/C][/ROW]
[ROW][C]p-value[/C][C](0.1514)[/C][C](0.1337)[/C][C](0.1361)[/C][/ROW]
[ROW][C]SK3;TVDC[/C][C]0.036[/C][C]0.0138[/C][C]0.0116[/C][/ROW]
[ROW][C]p-value[/C][C](0.7184)[/C][C](0.8902)[/C][C](0.8886)[/C][/ROW]
[ROW][C]SK4;SK5[/C][C]-0.0387[/C][C]-0.0569[/C][C]-0.0544[/C][/ROW]
[ROW][C]p-value[/C][C](0.6978)[/C][C](0.5682)[/C][C](0.5657)[/C][/ROW]
[ROW][C]SK4;SK6[/C][C]-0.0433[/C][C]-0.0552[/C][C]-0.0523[/C][/ROW]
[ROW][C]p-value[/C][C](0.664)[/C][C](0.5796)[/C][C](0.5795)[/C][/ROW]
[ROW][C]SK4;TVDC[/C][C]0.2629[/C][C]0.2685[/C][C]0.2332[/C][/ROW]
[ROW][C]p-value[/C][C](0.0073)[/C][C](0.0061)[/C][C](0.006)[/C][/ROW]
[ROW][C]SK5;SK6[/C][C]0.1092[/C][C]0.1433[/C][C]0.1365[/C][/ROW]
[ROW][C]p-value[/C][C](0.2721)[/C][C](0.1487)[/C][C](0.1492)[/C][/ROW]
[ROW][C]SK5;TVDC[/C][C]0.0851[/C][C]0.1332[/C][C]0.1112[/C][/ROW]
[ROW][C]p-value[/C][C](0.3926)[/C][C](0.1797)[/C][C](0.1912)[/C][/ROW]
[ROW][C]SK6;TVDC[/C][C]-0.0044[/C][C]0.016[/C][C]0.0164[/C][/ROW]
[ROW][C]p-value[/C][C](0.9648)[/C][C](0.8726)[/C][C](0.8472)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297580&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297580&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
SK1;SK20.2490.26540.2367
p-value(0.0112)(0.0067)(0.0078)
SK1;SK3-0.03630.00170.0022
p-value(0.7157)(0.9865)(0.9805)
SK1;SK40.07240.08910.084
p-value(0.4673)(0.3707)(0.358)
SK1;SK50.01390.03670.0347
p-value(0.8888)(0.7125)(0.7047)
SK1;SK60.00390.00520.0049
p-value(0.969)(0.9584)(0.9572)
SK1;TVDC0.36370.36410.3061
p-value(2e-04)(2e-04)(2e-04)
SK2;SK30.14370.16890.1549
p-value(0.1475)(0.0881)(0.0853)
SK2;SK40.23250.1720.1608
p-value(0.0181)(0.0824)(0.0805)
SK2;SK50.09440.13410.1242
p-value(0.3429)(0.1768)(0.1781)
SK2;SK60.03760.04070.0395
p-value(0.7059)(0.6831)(0.6679)
SK2;TVDC0.54280.5020.4261
p-value(0)(0)(0)
SK3;SK4-0.01820.02190.0205
p-value(0.8549)(0.8266)(0.8241)
SK3;SK5-0.0629-0.0588-0.0542
p-value(0.5282)(0.5555)(0.5579)
SK3;SK60.14240.14880.1376
p-value(0.1514)(0.1337)(0.1361)
SK3;TVDC0.0360.01380.0116
p-value(0.7184)(0.8902)(0.8886)
SK4;SK5-0.0387-0.0569-0.0544
p-value(0.6978)(0.5682)(0.5657)
SK4;SK6-0.0433-0.0552-0.0523
p-value(0.664)(0.5796)(0.5795)
SK4;TVDC0.26290.26850.2332
p-value(0.0073)(0.0061)(0.006)
SK5;SK60.10920.14330.1365
p-value(0.2721)(0.1487)(0.1492)
SK5;TVDC0.08510.13320.1112
p-value(0.3926)(0.1797)(0.1912)
SK6;TVDC-0.00440.0160.0164
p-value(0.9648)(0.8726)(0.8472)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.140.190.19
0.020.240.190.19
0.030.240.190.19
0.040.240.190.19
0.050.240.190.19
0.060.240.190.19
0.070.240.190.19
0.080.240.190.19
0.090.240.290.29
0.10.240.290.29

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.14 & 0.19 & 0.19 \tabularnewline
0.02 & 0.24 & 0.19 & 0.19 \tabularnewline
0.03 & 0.24 & 0.19 & 0.19 \tabularnewline
0.04 & 0.24 & 0.19 & 0.19 \tabularnewline
0.05 & 0.24 & 0.19 & 0.19 \tabularnewline
0.06 & 0.24 & 0.19 & 0.19 \tabularnewline
0.07 & 0.24 & 0.19 & 0.19 \tabularnewline
0.08 & 0.24 & 0.19 & 0.19 \tabularnewline
0.09 & 0.24 & 0.29 & 0.29 \tabularnewline
0.1 & 0.24 & 0.29 & 0.29 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297580&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.14[/C][C]0.19[/C][C]0.19[/C][/ROW]
[ROW][C]0.02[/C][C]0.24[/C][C]0.19[/C][C]0.19[/C][/ROW]
[ROW][C]0.03[/C][C]0.24[/C][C]0.19[/C][C]0.19[/C][/ROW]
[ROW][C]0.04[/C][C]0.24[/C][C]0.19[/C][C]0.19[/C][/ROW]
[ROW][C]0.05[/C][C]0.24[/C][C]0.19[/C][C]0.19[/C][/ROW]
[ROW][C]0.06[/C][C]0.24[/C][C]0.19[/C][C]0.19[/C][/ROW]
[ROW][C]0.07[/C][C]0.24[/C][C]0.19[/C][C]0.19[/C][/ROW]
[ROW][C]0.08[/C][C]0.24[/C][C]0.19[/C][C]0.19[/C][/ROW]
[ROW][C]0.09[/C][C]0.24[/C][C]0.29[/C][C]0.29[/C][/ROW]
[ROW][C]0.1[/C][C]0.24[/C][C]0.29[/C][C]0.29[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297580&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297580&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.140.190.19
0.020.240.190.19
0.030.240.190.19
0.040.240.190.19
0.050.240.190.19
0.060.240.190.19
0.070.240.190.19
0.080.240.190.19
0.090.240.290.29
0.10.240.290.29



Parameters (Session):
par1 = kendall ;
Parameters (R input):
par1 = kendall ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')