Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 02 Dec 2016 13:03:12 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/02/t1480680719nl44dfmjj18x32e.htm/, Retrieved Fri, 01 Nov 2024 03:48:24 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=297569, Retrieved Fri, 01 Nov 2024 03:48:24 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact155
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple Regressi...] [2016-12-02 12:03:12] [ca14e1566745fb922befb698831e7d61] [Current]
Feedback Forum

Post a new message
Dataseries X:
5	3	4	5	13
2	2	5	2	16
3	3	4	2	17
3	3	4	2	15
3	2	4	4	16
4	4	5	4	16
2	2	5	3	17
5	4	5	2	18
4	2	5	4	17
2	2	5	2	17
4	4	4	4	15
3	5	4	3	16
3	5	5	3	14
4	2	5	4	16
2	2	4	3	17
1	1	4	2	16
2	2	4	2	15
3	4	5	2	18
5	4	5	2	16
4	4	4	3	15
5	4	4	2	16
3	3	4	2	15
5	5	5	3	18
2	2	4	2	16
4	5	5	3	16
4	2	4	2	15
3	3	5	2	16
2	1	4	2	16
1	1	4	5	13
2	2	3	3	15
5	1	5	4	17
4	4	4	3	16
3	3	4	3	13
2	3	5	3	17
1	2	4	2	15
3	2	5	4	14
3	3	5	3	14
3	1	5	2	18
5	3	4	3	15
2	2	4	4	17
2	2	4	3	13
1	2	5	4	16
4	4	4	3	15
4	1	4	4	15
2	2	4	3	17
1	5	2	2	15
5	4	4	3	13
4	4	5	2	17
4	2	5	3	18
2	2	5	3	17
2	2	4	2	11
3	2	4	3	14
2	1	4	2	13
3	5	5	2	15
4	5	5	2	17
3	3	4	2	16
2	2	5	2	15
2	2	5	2	17
1	2	4	2	16
3	2	5	3	16
4	5	5	3	16
4	5	5	4	15
4	3	5	3	12
3	3	3	3	17
5	4	5	4	14
4	1	4	2	14
1	1	3	1	16
1	1	5	3	15
5	5	5	4	15
5	4	3	4	13
3	1	4	4	14
2	2	4	2	17
4	3	5	2	15
4	2	5	1	16
4	2	5	2	14
4	5	5	2	15
5	5	5	3	17
4	2	5	2	17
4	4	4	3	10
4	4	4	4	17
2	1	4	2	17
1	1	5	2	18
1	2	4	1	20
5	4	5	4	17
5	5	5	3	18
3	2	5	4	15
2	2	2	2	17
4	3	4	3	14
2	1	5	5	15
3	4	4	3	17
1	1	4	1	17
5	5	5	3	17
4	4	5	3	15
2	1	4	2	16
2	3	5	1	18
1	1	5	3	18
4	2	5	2	16
3	1	5	3	18
1	3	4	3	15
2	2	5	3	13
3	2	4	3	15
1	2	5	2	18
4	3	4	1	17
1	2	5	4	15
4	4	5	3	16
1	3	5	2	16
4	2	3	3	13
2	2	5	3	15
3	4	3	3	12
3	1	4	2	19
3	4	4	3	16
3	3	5	2	16
3	5	4	3	18
2	4	5	2	16
2	3	5	3	14
4	4	5	4	15
2	3	4	3	14
5	5	4	3	16
1	1	5	2	15
3	2	4	3	18
3	4	5	2	15
3	4	5	2	16
4	5	3	2	17
3	2	5	2	15
2	4	4	3	11
4	5	4	2	16
5	5	3	3	18
4	2	5	2	14
4	4	4	2	11
4	4	4	2	16
3	5	4	5	18
3	4	5	3	15
1	2	5	3	17
2	2	5	2	14
1	1	4	3	14
4	4	4	3	16
5	3	5	3	13
4	4	5	3	17
3	1	4	2	14
2	4	5	4	19
1	2	5	2	14
3	3	5	1	16
4	3	5	2	12
4	5	5	4	16
1	5	5	4	16
5	5	5	4	15
3	4	3	3	12
4	2	5	4	17
1	1	3	2	13
3	2	4	5	15
4	2	5	3	15
4	3	2	2	18
5	5	5	3	15
1	1	3	3	15
1	1	1	2	14
5	3	5	4	16
3	4	5	2	13
4	3	5	5	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297569&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297569&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297569&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVDCSUM[t] = + 14.502 -0.0706157EC1[t] + 0.0658894EC2[t] + 0.393554EC3[t] -0.239817EC4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDCSUM[t] =  +  14.502 -0.0706157EC1[t] +  0.0658894EC2[t] +  0.393554EC3[t] -0.239817EC4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297569&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDCSUM[t] =  +  14.502 -0.0706157EC1[t] +  0.0658894EC2[t] +  0.393554EC3[t] -0.239817EC4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297569&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297569&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDCSUM[t] = + 14.502 -0.0706157EC1[t] + 0.0658894EC2[t] + 0.393554EC3[t] -0.239817EC4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.5 0.9006+1.6100e+01 9.393e-35 4.697e-35
EC1-0.07062 0.1325-5.3280e-01 0.595 0.2975
EC2+0.06589 0.1243+5.3020e-01 0.5967 0.2984
EC3+0.3936 0.1863+2.1130e+00 0.03626 0.01813
EC4-0.2398 0.1573-1.5250e+00 0.1293 0.06467

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +14.5 &  0.9006 & +1.6100e+01 &  9.393e-35 &  4.697e-35 \tabularnewline
EC1 & -0.07062 &  0.1325 & -5.3280e-01 &  0.595 &  0.2975 \tabularnewline
EC2 & +0.06589 &  0.1243 & +5.3020e-01 &  0.5967 &  0.2984 \tabularnewline
EC3 & +0.3936 &  0.1863 & +2.1130e+00 &  0.03626 &  0.01813 \tabularnewline
EC4 & -0.2398 &  0.1573 & -1.5250e+00 &  0.1293 &  0.06467 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297569&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+14.5[/C][C] 0.9006[/C][C]+1.6100e+01[/C][C] 9.393e-35[/C][C] 4.697e-35[/C][/ROW]
[ROW][C]EC1[/C][C]-0.07062[/C][C] 0.1325[/C][C]-5.3280e-01[/C][C] 0.595[/C][C] 0.2975[/C][/ROW]
[ROW][C]EC2[/C][C]+0.06589[/C][C] 0.1243[/C][C]+5.3020e-01[/C][C] 0.5967[/C][C] 0.2984[/C][/ROW]
[ROW][C]EC3[/C][C]+0.3936[/C][C] 0.1863[/C][C]+2.1130e+00[/C][C] 0.03626[/C][C] 0.01813[/C][/ROW]
[ROW][C]EC4[/C][C]-0.2398[/C][C] 0.1573[/C][C]-1.5250e+00[/C][C] 0.1293[/C][C] 0.06467[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297569&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297569&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+14.5 0.9006+1.6100e+01 9.393e-35 4.697e-35
EC1-0.07062 0.1325-5.3280e-01 0.595 0.2975
EC2+0.06589 0.1243+5.3020e-01 0.5967 0.2984
EC3+0.3936 0.1863+2.1130e+00 0.03626 0.01813
EC4-0.2398 0.1573-1.5250e+00 0.1293 0.06467







Multiple Linear Regression - Regression Statistics
Multiple R 0.2048
R-squared 0.04194
Adjusted R-squared 0.01689
F-TEST (value) 1.674
F-TEST (DF numerator)4
F-TEST (DF denominator)153
p-value 0.1587
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.736
Sum Squared Residuals 461

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2048 \tabularnewline
R-squared &  0.04194 \tabularnewline
Adjusted R-squared &  0.01689 \tabularnewline
F-TEST (value) &  1.674 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 153 \tabularnewline
p-value &  0.1587 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.736 \tabularnewline
Sum Squared Residuals &  461 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297569&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2048[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.04194[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.01689[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.674[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]153[/C][/ROW]
[ROW][C]p-value[/C][C] 0.1587[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.736[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 461[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297569&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297569&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2048
R-squared 0.04194
Adjusted R-squared 0.01689
F-TEST (value) 1.674
F-TEST (DF numerator)4
F-TEST (DF denominator)153
p-value 0.1587
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.736
Sum Squared Residuals 461







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 14.72-1.722
2 16 15.98 0.01936
3 17 15.58 1.418
4 15 15.58-0.5824
5 16 15.04 0.9632
6 16 15.49 0.5084
7 17 15.74 1.259
8 18 15.9 2.099
9 17 15.36 1.64
10 17 15.98 1.019
11 15 15.1-0.098
12 16 15.47 0.5257
13 14 15.87-1.868
14 16 15.36 0.6402
15 17 15.35 1.653
16 16 15.59 0.4082
17 15 15.59-0.5871
18 18 16.04 1.958
19 16 15.9 0.09943
20 15 15.34-0.3378
21 16 15.51 0.493
22 15 15.58-0.5824
23 18 15.73 2.273
24 16 15.59 0.4129
25 16 15.8 0.2027
26 15 15.45-0.4459
27 16 15.98 0.02409
28 16 15.52 0.4788
29 13 14.87-1.872
30 15 14.95 0.04629
31 17 15.22 1.777
32 16 15.34 0.6622
33 13 15.34-2.343
34 17 15.81 1.193
35 15 15.66-0.6577
36 14 15.43-1.43
37 14 15.74-1.736
38 18 15.84 2.156
39 15 15.2-0.2013
40 17 15.11 1.893
41 13 15.35-2.347
42 16 15.57 0.4284
43 15 15.34-0.3378
44 15 14.9 0.09967
45 17 15.35 1.653
46 15 15.07-0.06826
47 13 15.27-2.267
48 17 15.97 1.029
49 18 15.6 2.4
50 17 15.74 1.259
51 11 15.59-4.587
52 14 15.28-1.277
53 13 15.52-2.521
54 15 16.11-1.108
55 17 16.04 0.9629
56 16 15.58 0.4176
57 15 15.98-0.9806
58 17 15.98 1.019
59 16 15.66 0.3423
60 16 15.67 0.3298
61 16 15.8 0.2027
62 15 15.56-0.5574
63 12 15.67-3.665
64 17 14.95 2.051
65 14 15.42-1.421
66 14 15.38-1.38
67 16 15.44 0.5619
68 15 15.75-0.7455
69 15 15.49-0.4868
70 13 14.63-1.634
71 14 14.97-0.9709
72 17 15.59 1.413
73 15 15.91-0.9053
74 16 16.08-0.07922
75 14 15.84-1.839
76 15 16.04-1.037
77 17 15.73 1.273
78 17 15.84 1.161
79 10 15.34-5.338
80 17 15.1 1.902
81 17 15.52 1.479
82 18 15.99 2.015
83 20 15.9 4.102
84 17 15.42 1.579
85 18 15.73 2.273
86 15 15.43-0.4304
87 17 14.8 2.2
88 14 15.27-1.272
89 15 15.2-0.1953
90 17 15.41 1.592
91 17 15.83 1.168
92 17 15.73 1.273
93 15 15.73-0.7314
94 16 15.52 0.4788
95 18 16.29 1.714
96 18 15.75 2.254
97 16 15.84 0.1606
98 18 15.6 2.396
99 15 15.48-0.4838
100 13 15.74-2.741
101 15 15.28-0.2767
102 18 16.05 1.949
103 17 15.75 1.248
104 15 15.57-0.5716
105 16 15.73 0.2686
106 16 16.12-0.1171
107 13 14.81-1.812
108 15 15.74-0.7408
109 12 15.01-3.015
110 19 15.45 3.549
111 16 15.41 0.5916
112 16 15.98 0.02409
113 18 15.47 2.526
114 16 16.11-0.1124
115 14 15.81-1.807
116 15 15.49-0.4916
117 14 15.41-1.413
118 16 15.33 0.6669
119 15 15.99-0.9854
120 18 15.28 2.723
121 15 16.04-1.042
122 16 16.04-0.0418
123 17 15.25 1.75
124 15 15.91-0.91
125 11 15.48-4.479
126 16 15.64 0.3565
127 18 14.94 3.06
128 14 15.84-1.839
129 11 15.58-4.578
130 16 15.58 0.4224
131 18 14.99 3.005
132 15 15.8-0.802
133 17 15.81 1.189
134 14 15.98-1.981
135 14 15.35-1.352
136 16 15.34 0.6622
137 13 15.59-2.595
138 17 15.73 1.269
139 14 15.45-1.451
140 19 15.63 3.367
141 14 16.05-2.051
142 16 16.22-0.2157
143 12 15.91-3.905
144 16 15.56 0.4426
145 16 15.77 0.2307
146 15 15.49-0.4868
147 12 15.01-3.015
148 17 15.36 1.64
149 13 15.2-2.198
150 15 14.8 0.203
151 15 15.6-0.5996
152 18 14.72 3.275
153 15 15.73-0.7266
154 15 14.96 0.04156
155 14 14.41-0.4111
156 16 15.36 0.645
157 13 16.04-3.042
158 16 15.19 0.8142

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  14.72 & -1.722 \tabularnewline
2 &  16 &  15.98 &  0.01936 \tabularnewline
3 &  17 &  15.58 &  1.418 \tabularnewline
4 &  15 &  15.58 & -0.5824 \tabularnewline
5 &  16 &  15.04 &  0.9632 \tabularnewline
6 &  16 &  15.49 &  0.5084 \tabularnewline
7 &  17 &  15.74 &  1.259 \tabularnewline
8 &  18 &  15.9 &  2.099 \tabularnewline
9 &  17 &  15.36 &  1.64 \tabularnewline
10 &  17 &  15.98 &  1.019 \tabularnewline
11 &  15 &  15.1 & -0.098 \tabularnewline
12 &  16 &  15.47 &  0.5257 \tabularnewline
13 &  14 &  15.87 & -1.868 \tabularnewline
14 &  16 &  15.36 &  0.6402 \tabularnewline
15 &  17 &  15.35 &  1.653 \tabularnewline
16 &  16 &  15.59 &  0.4082 \tabularnewline
17 &  15 &  15.59 & -0.5871 \tabularnewline
18 &  18 &  16.04 &  1.958 \tabularnewline
19 &  16 &  15.9 &  0.09943 \tabularnewline
20 &  15 &  15.34 & -0.3378 \tabularnewline
21 &  16 &  15.51 &  0.493 \tabularnewline
22 &  15 &  15.58 & -0.5824 \tabularnewline
23 &  18 &  15.73 &  2.273 \tabularnewline
24 &  16 &  15.59 &  0.4129 \tabularnewline
25 &  16 &  15.8 &  0.2027 \tabularnewline
26 &  15 &  15.45 & -0.4459 \tabularnewline
27 &  16 &  15.98 &  0.02409 \tabularnewline
28 &  16 &  15.52 &  0.4788 \tabularnewline
29 &  13 &  14.87 & -1.872 \tabularnewline
30 &  15 &  14.95 &  0.04629 \tabularnewline
31 &  17 &  15.22 &  1.777 \tabularnewline
32 &  16 &  15.34 &  0.6622 \tabularnewline
33 &  13 &  15.34 & -2.343 \tabularnewline
34 &  17 &  15.81 &  1.193 \tabularnewline
35 &  15 &  15.66 & -0.6577 \tabularnewline
36 &  14 &  15.43 & -1.43 \tabularnewline
37 &  14 &  15.74 & -1.736 \tabularnewline
38 &  18 &  15.84 &  2.156 \tabularnewline
39 &  15 &  15.2 & -0.2013 \tabularnewline
40 &  17 &  15.11 &  1.893 \tabularnewline
41 &  13 &  15.35 & -2.347 \tabularnewline
42 &  16 &  15.57 &  0.4284 \tabularnewline
43 &  15 &  15.34 & -0.3378 \tabularnewline
44 &  15 &  14.9 &  0.09967 \tabularnewline
45 &  17 &  15.35 &  1.653 \tabularnewline
46 &  15 &  15.07 & -0.06826 \tabularnewline
47 &  13 &  15.27 & -2.267 \tabularnewline
48 &  17 &  15.97 &  1.029 \tabularnewline
49 &  18 &  15.6 &  2.4 \tabularnewline
50 &  17 &  15.74 &  1.259 \tabularnewline
51 &  11 &  15.59 & -4.587 \tabularnewline
52 &  14 &  15.28 & -1.277 \tabularnewline
53 &  13 &  15.52 & -2.521 \tabularnewline
54 &  15 &  16.11 & -1.108 \tabularnewline
55 &  17 &  16.04 &  0.9629 \tabularnewline
56 &  16 &  15.58 &  0.4176 \tabularnewline
57 &  15 &  15.98 & -0.9806 \tabularnewline
58 &  17 &  15.98 &  1.019 \tabularnewline
59 &  16 &  15.66 &  0.3423 \tabularnewline
60 &  16 &  15.67 &  0.3298 \tabularnewline
61 &  16 &  15.8 &  0.2027 \tabularnewline
62 &  15 &  15.56 & -0.5574 \tabularnewline
63 &  12 &  15.67 & -3.665 \tabularnewline
64 &  17 &  14.95 &  2.051 \tabularnewline
65 &  14 &  15.42 & -1.421 \tabularnewline
66 &  14 &  15.38 & -1.38 \tabularnewline
67 &  16 &  15.44 &  0.5619 \tabularnewline
68 &  15 &  15.75 & -0.7455 \tabularnewline
69 &  15 &  15.49 & -0.4868 \tabularnewline
70 &  13 &  14.63 & -1.634 \tabularnewline
71 &  14 &  14.97 & -0.9709 \tabularnewline
72 &  17 &  15.59 &  1.413 \tabularnewline
73 &  15 &  15.91 & -0.9053 \tabularnewline
74 &  16 &  16.08 & -0.07922 \tabularnewline
75 &  14 &  15.84 & -1.839 \tabularnewline
76 &  15 &  16.04 & -1.037 \tabularnewline
77 &  17 &  15.73 &  1.273 \tabularnewline
78 &  17 &  15.84 &  1.161 \tabularnewline
79 &  10 &  15.34 & -5.338 \tabularnewline
80 &  17 &  15.1 &  1.902 \tabularnewline
81 &  17 &  15.52 &  1.479 \tabularnewline
82 &  18 &  15.99 &  2.015 \tabularnewline
83 &  20 &  15.9 &  4.102 \tabularnewline
84 &  17 &  15.42 &  1.579 \tabularnewline
85 &  18 &  15.73 &  2.273 \tabularnewline
86 &  15 &  15.43 & -0.4304 \tabularnewline
87 &  17 &  14.8 &  2.2 \tabularnewline
88 &  14 &  15.27 & -1.272 \tabularnewline
89 &  15 &  15.2 & -0.1953 \tabularnewline
90 &  17 &  15.41 &  1.592 \tabularnewline
91 &  17 &  15.83 &  1.168 \tabularnewline
92 &  17 &  15.73 &  1.273 \tabularnewline
93 &  15 &  15.73 & -0.7314 \tabularnewline
94 &  16 &  15.52 &  0.4788 \tabularnewline
95 &  18 &  16.29 &  1.714 \tabularnewline
96 &  18 &  15.75 &  2.254 \tabularnewline
97 &  16 &  15.84 &  0.1606 \tabularnewline
98 &  18 &  15.6 &  2.396 \tabularnewline
99 &  15 &  15.48 & -0.4838 \tabularnewline
100 &  13 &  15.74 & -2.741 \tabularnewline
101 &  15 &  15.28 & -0.2767 \tabularnewline
102 &  18 &  16.05 &  1.949 \tabularnewline
103 &  17 &  15.75 &  1.248 \tabularnewline
104 &  15 &  15.57 & -0.5716 \tabularnewline
105 &  16 &  15.73 &  0.2686 \tabularnewline
106 &  16 &  16.12 & -0.1171 \tabularnewline
107 &  13 &  14.81 & -1.812 \tabularnewline
108 &  15 &  15.74 & -0.7408 \tabularnewline
109 &  12 &  15.01 & -3.015 \tabularnewline
110 &  19 &  15.45 &  3.549 \tabularnewline
111 &  16 &  15.41 &  0.5916 \tabularnewline
112 &  16 &  15.98 &  0.02409 \tabularnewline
113 &  18 &  15.47 &  2.526 \tabularnewline
114 &  16 &  16.11 & -0.1124 \tabularnewline
115 &  14 &  15.81 & -1.807 \tabularnewline
116 &  15 &  15.49 & -0.4916 \tabularnewline
117 &  14 &  15.41 & -1.413 \tabularnewline
118 &  16 &  15.33 &  0.6669 \tabularnewline
119 &  15 &  15.99 & -0.9854 \tabularnewline
120 &  18 &  15.28 &  2.723 \tabularnewline
121 &  15 &  16.04 & -1.042 \tabularnewline
122 &  16 &  16.04 & -0.0418 \tabularnewline
123 &  17 &  15.25 &  1.75 \tabularnewline
124 &  15 &  15.91 & -0.91 \tabularnewline
125 &  11 &  15.48 & -4.479 \tabularnewline
126 &  16 &  15.64 &  0.3565 \tabularnewline
127 &  18 &  14.94 &  3.06 \tabularnewline
128 &  14 &  15.84 & -1.839 \tabularnewline
129 &  11 &  15.58 & -4.578 \tabularnewline
130 &  16 &  15.58 &  0.4224 \tabularnewline
131 &  18 &  14.99 &  3.005 \tabularnewline
132 &  15 &  15.8 & -0.802 \tabularnewline
133 &  17 &  15.81 &  1.189 \tabularnewline
134 &  14 &  15.98 & -1.981 \tabularnewline
135 &  14 &  15.35 & -1.352 \tabularnewline
136 &  16 &  15.34 &  0.6622 \tabularnewline
137 &  13 &  15.59 & -2.595 \tabularnewline
138 &  17 &  15.73 &  1.269 \tabularnewline
139 &  14 &  15.45 & -1.451 \tabularnewline
140 &  19 &  15.63 &  3.367 \tabularnewline
141 &  14 &  16.05 & -2.051 \tabularnewline
142 &  16 &  16.22 & -0.2157 \tabularnewline
143 &  12 &  15.91 & -3.905 \tabularnewline
144 &  16 &  15.56 &  0.4426 \tabularnewline
145 &  16 &  15.77 &  0.2307 \tabularnewline
146 &  15 &  15.49 & -0.4868 \tabularnewline
147 &  12 &  15.01 & -3.015 \tabularnewline
148 &  17 &  15.36 &  1.64 \tabularnewline
149 &  13 &  15.2 & -2.198 \tabularnewline
150 &  15 &  14.8 &  0.203 \tabularnewline
151 &  15 &  15.6 & -0.5996 \tabularnewline
152 &  18 &  14.72 &  3.275 \tabularnewline
153 &  15 &  15.73 & -0.7266 \tabularnewline
154 &  15 &  14.96 &  0.04156 \tabularnewline
155 &  14 &  14.41 & -0.4111 \tabularnewline
156 &  16 &  15.36 &  0.645 \tabularnewline
157 &  13 &  16.04 & -3.042 \tabularnewline
158 &  16 &  15.19 &  0.8142 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297569&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 14.72[/C][C]-1.722[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 15.98[/C][C] 0.01936[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 15.58[/C][C] 1.418[/C][/ROW]
[ROW][C]4[/C][C] 15[/C][C] 15.58[/C][C]-0.5824[/C][/ROW]
[ROW][C]5[/C][C] 16[/C][C] 15.04[/C][C] 0.9632[/C][/ROW]
[ROW][C]6[/C][C] 16[/C][C] 15.49[/C][C] 0.5084[/C][/ROW]
[ROW][C]7[/C][C] 17[/C][C] 15.74[/C][C] 1.259[/C][/ROW]
[ROW][C]8[/C][C] 18[/C][C] 15.9[/C][C] 2.099[/C][/ROW]
[ROW][C]9[/C][C] 17[/C][C] 15.36[/C][C] 1.64[/C][/ROW]
[ROW][C]10[/C][C] 17[/C][C] 15.98[/C][C] 1.019[/C][/ROW]
[ROW][C]11[/C][C] 15[/C][C] 15.1[/C][C]-0.098[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 15.47[/C][C] 0.5257[/C][/ROW]
[ROW][C]13[/C][C] 14[/C][C] 15.87[/C][C]-1.868[/C][/ROW]
[ROW][C]14[/C][C] 16[/C][C] 15.36[/C][C] 0.6402[/C][/ROW]
[ROW][C]15[/C][C] 17[/C][C] 15.35[/C][C] 1.653[/C][/ROW]
[ROW][C]16[/C][C] 16[/C][C] 15.59[/C][C] 0.4082[/C][/ROW]
[ROW][C]17[/C][C] 15[/C][C] 15.59[/C][C]-0.5871[/C][/ROW]
[ROW][C]18[/C][C] 18[/C][C] 16.04[/C][C] 1.958[/C][/ROW]
[ROW][C]19[/C][C] 16[/C][C] 15.9[/C][C] 0.09943[/C][/ROW]
[ROW][C]20[/C][C] 15[/C][C] 15.34[/C][C]-0.3378[/C][/ROW]
[ROW][C]21[/C][C] 16[/C][C] 15.51[/C][C] 0.493[/C][/ROW]
[ROW][C]22[/C][C] 15[/C][C] 15.58[/C][C]-0.5824[/C][/ROW]
[ROW][C]23[/C][C] 18[/C][C] 15.73[/C][C] 2.273[/C][/ROW]
[ROW][C]24[/C][C] 16[/C][C] 15.59[/C][C] 0.4129[/C][/ROW]
[ROW][C]25[/C][C] 16[/C][C] 15.8[/C][C] 0.2027[/C][/ROW]
[ROW][C]26[/C][C] 15[/C][C] 15.45[/C][C]-0.4459[/C][/ROW]
[ROW][C]27[/C][C] 16[/C][C] 15.98[/C][C] 0.02409[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 15.52[/C][C] 0.4788[/C][/ROW]
[ROW][C]29[/C][C] 13[/C][C] 14.87[/C][C]-1.872[/C][/ROW]
[ROW][C]30[/C][C] 15[/C][C] 14.95[/C][C] 0.04629[/C][/ROW]
[ROW][C]31[/C][C] 17[/C][C] 15.22[/C][C] 1.777[/C][/ROW]
[ROW][C]32[/C][C] 16[/C][C] 15.34[/C][C] 0.6622[/C][/ROW]
[ROW][C]33[/C][C] 13[/C][C] 15.34[/C][C]-2.343[/C][/ROW]
[ROW][C]34[/C][C] 17[/C][C] 15.81[/C][C] 1.193[/C][/ROW]
[ROW][C]35[/C][C] 15[/C][C] 15.66[/C][C]-0.6577[/C][/ROW]
[ROW][C]36[/C][C] 14[/C][C] 15.43[/C][C]-1.43[/C][/ROW]
[ROW][C]37[/C][C] 14[/C][C] 15.74[/C][C]-1.736[/C][/ROW]
[ROW][C]38[/C][C] 18[/C][C] 15.84[/C][C] 2.156[/C][/ROW]
[ROW][C]39[/C][C] 15[/C][C] 15.2[/C][C]-0.2013[/C][/ROW]
[ROW][C]40[/C][C] 17[/C][C] 15.11[/C][C] 1.893[/C][/ROW]
[ROW][C]41[/C][C] 13[/C][C] 15.35[/C][C]-2.347[/C][/ROW]
[ROW][C]42[/C][C] 16[/C][C] 15.57[/C][C] 0.4284[/C][/ROW]
[ROW][C]43[/C][C] 15[/C][C] 15.34[/C][C]-0.3378[/C][/ROW]
[ROW][C]44[/C][C] 15[/C][C] 14.9[/C][C] 0.09967[/C][/ROW]
[ROW][C]45[/C][C] 17[/C][C] 15.35[/C][C] 1.653[/C][/ROW]
[ROW][C]46[/C][C] 15[/C][C] 15.07[/C][C]-0.06826[/C][/ROW]
[ROW][C]47[/C][C] 13[/C][C] 15.27[/C][C]-2.267[/C][/ROW]
[ROW][C]48[/C][C] 17[/C][C] 15.97[/C][C] 1.029[/C][/ROW]
[ROW][C]49[/C][C] 18[/C][C] 15.6[/C][C] 2.4[/C][/ROW]
[ROW][C]50[/C][C] 17[/C][C] 15.74[/C][C] 1.259[/C][/ROW]
[ROW][C]51[/C][C] 11[/C][C] 15.59[/C][C]-4.587[/C][/ROW]
[ROW][C]52[/C][C] 14[/C][C] 15.28[/C][C]-1.277[/C][/ROW]
[ROW][C]53[/C][C] 13[/C][C] 15.52[/C][C]-2.521[/C][/ROW]
[ROW][C]54[/C][C] 15[/C][C] 16.11[/C][C]-1.108[/C][/ROW]
[ROW][C]55[/C][C] 17[/C][C] 16.04[/C][C] 0.9629[/C][/ROW]
[ROW][C]56[/C][C] 16[/C][C] 15.58[/C][C] 0.4176[/C][/ROW]
[ROW][C]57[/C][C] 15[/C][C] 15.98[/C][C]-0.9806[/C][/ROW]
[ROW][C]58[/C][C] 17[/C][C] 15.98[/C][C] 1.019[/C][/ROW]
[ROW][C]59[/C][C] 16[/C][C] 15.66[/C][C] 0.3423[/C][/ROW]
[ROW][C]60[/C][C] 16[/C][C] 15.67[/C][C] 0.3298[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 15.8[/C][C] 0.2027[/C][/ROW]
[ROW][C]62[/C][C] 15[/C][C] 15.56[/C][C]-0.5574[/C][/ROW]
[ROW][C]63[/C][C] 12[/C][C] 15.67[/C][C]-3.665[/C][/ROW]
[ROW][C]64[/C][C] 17[/C][C] 14.95[/C][C] 2.051[/C][/ROW]
[ROW][C]65[/C][C] 14[/C][C] 15.42[/C][C]-1.421[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 15.38[/C][C]-1.38[/C][/ROW]
[ROW][C]67[/C][C] 16[/C][C] 15.44[/C][C] 0.5619[/C][/ROW]
[ROW][C]68[/C][C] 15[/C][C] 15.75[/C][C]-0.7455[/C][/ROW]
[ROW][C]69[/C][C] 15[/C][C] 15.49[/C][C]-0.4868[/C][/ROW]
[ROW][C]70[/C][C] 13[/C][C] 14.63[/C][C]-1.634[/C][/ROW]
[ROW][C]71[/C][C] 14[/C][C] 14.97[/C][C]-0.9709[/C][/ROW]
[ROW][C]72[/C][C] 17[/C][C] 15.59[/C][C] 1.413[/C][/ROW]
[ROW][C]73[/C][C] 15[/C][C] 15.91[/C][C]-0.9053[/C][/ROW]
[ROW][C]74[/C][C] 16[/C][C] 16.08[/C][C]-0.07922[/C][/ROW]
[ROW][C]75[/C][C] 14[/C][C] 15.84[/C][C]-1.839[/C][/ROW]
[ROW][C]76[/C][C] 15[/C][C] 16.04[/C][C]-1.037[/C][/ROW]
[ROW][C]77[/C][C] 17[/C][C] 15.73[/C][C] 1.273[/C][/ROW]
[ROW][C]78[/C][C] 17[/C][C] 15.84[/C][C] 1.161[/C][/ROW]
[ROW][C]79[/C][C] 10[/C][C] 15.34[/C][C]-5.338[/C][/ROW]
[ROW][C]80[/C][C] 17[/C][C] 15.1[/C][C] 1.902[/C][/ROW]
[ROW][C]81[/C][C] 17[/C][C] 15.52[/C][C] 1.479[/C][/ROW]
[ROW][C]82[/C][C] 18[/C][C] 15.99[/C][C] 2.015[/C][/ROW]
[ROW][C]83[/C][C] 20[/C][C] 15.9[/C][C] 4.102[/C][/ROW]
[ROW][C]84[/C][C] 17[/C][C] 15.42[/C][C] 1.579[/C][/ROW]
[ROW][C]85[/C][C] 18[/C][C] 15.73[/C][C] 2.273[/C][/ROW]
[ROW][C]86[/C][C] 15[/C][C] 15.43[/C][C]-0.4304[/C][/ROW]
[ROW][C]87[/C][C] 17[/C][C] 14.8[/C][C] 2.2[/C][/ROW]
[ROW][C]88[/C][C] 14[/C][C] 15.27[/C][C]-1.272[/C][/ROW]
[ROW][C]89[/C][C] 15[/C][C] 15.2[/C][C]-0.1953[/C][/ROW]
[ROW][C]90[/C][C] 17[/C][C] 15.41[/C][C] 1.592[/C][/ROW]
[ROW][C]91[/C][C] 17[/C][C] 15.83[/C][C] 1.168[/C][/ROW]
[ROW][C]92[/C][C] 17[/C][C] 15.73[/C][C] 1.273[/C][/ROW]
[ROW][C]93[/C][C] 15[/C][C] 15.73[/C][C]-0.7314[/C][/ROW]
[ROW][C]94[/C][C] 16[/C][C] 15.52[/C][C] 0.4788[/C][/ROW]
[ROW][C]95[/C][C] 18[/C][C] 16.29[/C][C] 1.714[/C][/ROW]
[ROW][C]96[/C][C] 18[/C][C] 15.75[/C][C] 2.254[/C][/ROW]
[ROW][C]97[/C][C] 16[/C][C] 15.84[/C][C] 0.1606[/C][/ROW]
[ROW][C]98[/C][C] 18[/C][C] 15.6[/C][C] 2.396[/C][/ROW]
[ROW][C]99[/C][C] 15[/C][C] 15.48[/C][C]-0.4838[/C][/ROW]
[ROW][C]100[/C][C] 13[/C][C] 15.74[/C][C]-2.741[/C][/ROW]
[ROW][C]101[/C][C] 15[/C][C] 15.28[/C][C]-0.2767[/C][/ROW]
[ROW][C]102[/C][C] 18[/C][C] 16.05[/C][C] 1.949[/C][/ROW]
[ROW][C]103[/C][C] 17[/C][C] 15.75[/C][C] 1.248[/C][/ROW]
[ROW][C]104[/C][C] 15[/C][C] 15.57[/C][C]-0.5716[/C][/ROW]
[ROW][C]105[/C][C] 16[/C][C] 15.73[/C][C] 0.2686[/C][/ROW]
[ROW][C]106[/C][C] 16[/C][C] 16.12[/C][C]-0.1171[/C][/ROW]
[ROW][C]107[/C][C] 13[/C][C] 14.81[/C][C]-1.812[/C][/ROW]
[ROW][C]108[/C][C] 15[/C][C] 15.74[/C][C]-0.7408[/C][/ROW]
[ROW][C]109[/C][C] 12[/C][C] 15.01[/C][C]-3.015[/C][/ROW]
[ROW][C]110[/C][C] 19[/C][C] 15.45[/C][C] 3.549[/C][/ROW]
[ROW][C]111[/C][C] 16[/C][C] 15.41[/C][C] 0.5916[/C][/ROW]
[ROW][C]112[/C][C] 16[/C][C] 15.98[/C][C] 0.02409[/C][/ROW]
[ROW][C]113[/C][C] 18[/C][C] 15.47[/C][C] 2.526[/C][/ROW]
[ROW][C]114[/C][C] 16[/C][C] 16.11[/C][C]-0.1124[/C][/ROW]
[ROW][C]115[/C][C] 14[/C][C] 15.81[/C][C]-1.807[/C][/ROW]
[ROW][C]116[/C][C] 15[/C][C] 15.49[/C][C]-0.4916[/C][/ROW]
[ROW][C]117[/C][C] 14[/C][C] 15.41[/C][C]-1.413[/C][/ROW]
[ROW][C]118[/C][C] 16[/C][C] 15.33[/C][C] 0.6669[/C][/ROW]
[ROW][C]119[/C][C] 15[/C][C] 15.99[/C][C]-0.9854[/C][/ROW]
[ROW][C]120[/C][C] 18[/C][C] 15.28[/C][C] 2.723[/C][/ROW]
[ROW][C]121[/C][C] 15[/C][C] 16.04[/C][C]-1.042[/C][/ROW]
[ROW][C]122[/C][C] 16[/C][C] 16.04[/C][C]-0.0418[/C][/ROW]
[ROW][C]123[/C][C] 17[/C][C] 15.25[/C][C] 1.75[/C][/ROW]
[ROW][C]124[/C][C] 15[/C][C] 15.91[/C][C]-0.91[/C][/ROW]
[ROW][C]125[/C][C] 11[/C][C] 15.48[/C][C]-4.479[/C][/ROW]
[ROW][C]126[/C][C] 16[/C][C] 15.64[/C][C] 0.3565[/C][/ROW]
[ROW][C]127[/C][C] 18[/C][C] 14.94[/C][C] 3.06[/C][/ROW]
[ROW][C]128[/C][C] 14[/C][C] 15.84[/C][C]-1.839[/C][/ROW]
[ROW][C]129[/C][C] 11[/C][C] 15.58[/C][C]-4.578[/C][/ROW]
[ROW][C]130[/C][C] 16[/C][C] 15.58[/C][C] 0.4224[/C][/ROW]
[ROW][C]131[/C][C] 18[/C][C] 14.99[/C][C] 3.005[/C][/ROW]
[ROW][C]132[/C][C] 15[/C][C] 15.8[/C][C]-0.802[/C][/ROW]
[ROW][C]133[/C][C] 17[/C][C] 15.81[/C][C] 1.189[/C][/ROW]
[ROW][C]134[/C][C] 14[/C][C] 15.98[/C][C]-1.981[/C][/ROW]
[ROW][C]135[/C][C] 14[/C][C] 15.35[/C][C]-1.352[/C][/ROW]
[ROW][C]136[/C][C] 16[/C][C] 15.34[/C][C] 0.6622[/C][/ROW]
[ROW][C]137[/C][C] 13[/C][C] 15.59[/C][C]-2.595[/C][/ROW]
[ROW][C]138[/C][C] 17[/C][C] 15.73[/C][C] 1.269[/C][/ROW]
[ROW][C]139[/C][C] 14[/C][C] 15.45[/C][C]-1.451[/C][/ROW]
[ROW][C]140[/C][C] 19[/C][C] 15.63[/C][C] 3.367[/C][/ROW]
[ROW][C]141[/C][C] 14[/C][C] 16.05[/C][C]-2.051[/C][/ROW]
[ROW][C]142[/C][C] 16[/C][C] 16.22[/C][C]-0.2157[/C][/ROW]
[ROW][C]143[/C][C] 12[/C][C] 15.91[/C][C]-3.905[/C][/ROW]
[ROW][C]144[/C][C] 16[/C][C] 15.56[/C][C] 0.4426[/C][/ROW]
[ROW][C]145[/C][C] 16[/C][C] 15.77[/C][C] 0.2307[/C][/ROW]
[ROW][C]146[/C][C] 15[/C][C] 15.49[/C][C]-0.4868[/C][/ROW]
[ROW][C]147[/C][C] 12[/C][C] 15.01[/C][C]-3.015[/C][/ROW]
[ROW][C]148[/C][C] 17[/C][C] 15.36[/C][C] 1.64[/C][/ROW]
[ROW][C]149[/C][C] 13[/C][C] 15.2[/C][C]-2.198[/C][/ROW]
[ROW][C]150[/C][C] 15[/C][C] 14.8[/C][C] 0.203[/C][/ROW]
[ROW][C]151[/C][C] 15[/C][C] 15.6[/C][C]-0.5996[/C][/ROW]
[ROW][C]152[/C][C] 18[/C][C] 14.72[/C][C] 3.275[/C][/ROW]
[ROW][C]153[/C][C] 15[/C][C] 15.73[/C][C]-0.7266[/C][/ROW]
[ROW][C]154[/C][C] 15[/C][C] 14.96[/C][C] 0.04156[/C][/ROW]
[ROW][C]155[/C][C] 14[/C][C] 14.41[/C][C]-0.4111[/C][/ROW]
[ROW][C]156[/C][C] 16[/C][C] 15.36[/C][C] 0.645[/C][/ROW]
[ROW][C]157[/C][C] 13[/C][C] 16.04[/C][C]-3.042[/C][/ROW]
[ROW][C]158[/C][C] 16[/C][C] 15.19[/C][C] 0.8142[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297569&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297569&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 14.72-1.722
2 16 15.98 0.01936
3 17 15.58 1.418
4 15 15.58-0.5824
5 16 15.04 0.9632
6 16 15.49 0.5084
7 17 15.74 1.259
8 18 15.9 2.099
9 17 15.36 1.64
10 17 15.98 1.019
11 15 15.1-0.098
12 16 15.47 0.5257
13 14 15.87-1.868
14 16 15.36 0.6402
15 17 15.35 1.653
16 16 15.59 0.4082
17 15 15.59-0.5871
18 18 16.04 1.958
19 16 15.9 0.09943
20 15 15.34-0.3378
21 16 15.51 0.493
22 15 15.58-0.5824
23 18 15.73 2.273
24 16 15.59 0.4129
25 16 15.8 0.2027
26 15 15.45-0.4459
27 16 15.98 0.02409
28 16 15.52 0.4788
29 13 14.87-1.872
30 15 14.95 0.04629
31 17 15.22 1.777
32 16 15.34 0.6622
33 13 15.34-2.343
34 17 15.81 1.193
35 15 15.66-0.6577
36 14 15.43-1.43
37 14 15.74-1.736
38 18 15.84 2.156
39 15 15.2-0.2013
40 17 15.11 1.893
41 13 15.35-2.347
42 16 15.57 0.4284
43 15 15.34-0.3378
44 15 14.9 0.09967
45 17 15.35 1.653
46 15 15.07-0.06826
47 13 15.27-2.267
48 17 15.97 1.029
49 18 15.6 2.4
50 17 15.74 1.259
51 11 15.59-4.587
52 14 15.28-1.277
53 13 15.52-2.521
54 15 16.11-1.108
55 17 16.04 0.9629
56 16 15.58 0.4176
57 15 15.98-0.9806
58 17 15.98 1.019
59 16 15.66 0.3423
60 16 15.67 0.3298
61 16 15.8 0.2027
62 15 15.56-0.5574
63 12 15.67-3.665
64 17 14.95 2.051
65 14 15.42-1.421
66 14 15.38-1.38
67 16 15.44 0.5619
68 15 15.75-0.7455
69 15 15.49-0.4868
70 13 14.63-1.634
71 14 14.97-0.9709
72 17 15.59 1.413
73 15 15.91-0.9053
74 16 16.08-0.07922
75 14 15.84-1.839
76 15 16.04-1.037
77 17 15.73 1.273
78 17 15.84 1.161
79 10 15.34-5.338
80 17 15.1 1.902
81 17 15.52 1.479
82 18 15.99 2.015
83 20 15.9 4.102
84 17 15.42 1.579
85 18 15.73 2.273
86 15 15.43-0.4304
87 17 14.8 2.2
88 14 15.27-1.272
89 15 15.2-0.1953
90 17 15.41 1.592
91 17 15.83 1.168
92 17 15.73 1.273
93 15 15.73-0.7314
94 16 15.52 0.4788
95 18 16.29 1.714
96 18 15.75 2.254
97 16 15.84 0.1606
98 18 15.6 2.396
99 15 15.48-0.4838
100 13 15.74-2.741
101 15 15.28-0.2767
102 18 16.05 1.949
103 17 15.75 1.248
104 15 15.57-0.5716
105 16 15.73 0.2686
106 16 16.12-0.1171
107 13 14.81-1.812
108 15 15.74-0.7408
109 12 15.01-3.015
110 19 15.45 3.549
111 16 15.41 0.5916
112 16 15.98 0.02409
113 18 15.47 2.526
114 16 16.11-0.1124
115 14 15.81-1.807
116 15 15.49-0.4916
117 14 15.41-1.413
118 16 15.33 0.6669
119 15 15.99-0.9854
120 18 15.28 2.723
121 15 16.04-1.042
122 16 16.04-0.0418
123 17 15.25 1.75
124 15 15.91-0.91
125 11 15.48-4.479
126 16 15.64 0.3565
127 18 14.94 3.06
128 14 15.84-1.839
129 11 15.58-4.578
130 16 15.58 0.4224
131 18 14.99 3.005
132 15 15.8-0.802
133 17 15.81 1.189
134 14 15.98-1.981
135 14 15.35-1.352
136 16 15.34 0.6622
137 13 15.59-2.595
138 17 15.73 1.269
139 14 15.45-1.451
140 19 15.63 3.367
141 14 16.05-2.051
142 16 16.22-0.2157
143 12 15.91-3.905
144 16 15.56 0.4426
145 16 15.77 0.2307
146 15 15.49-0.4868
147 12 15.01-3.015
148 17 15.36 1.64
149 13 15.2-2.198
150 15 14.8 0.203
151 15 15.6-0.5996
152 18 14.72 3.275
153 15 15.73-0.7266
154 15 14.96 0.04156
155 14 14.41-0.4111
156 16 15.36 0.645
157 13 16.04-3.042
158 16 15.19 0.8142







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.4789 0.9579 0.5211
9 0.3503 0.7006 0.6497
10 0.2244 0.4487 0.7756
11 0.1357 0.2714 0.8643
12 0.08354 0.1671 0.9165
13 0.1445 0.289 0.8555
14 0.09012 0.1802 0.9099
15 0.07636 0.1527 0.9236
16 0.0525 0.105 0.9475
17 0.04822 0.09643 0.9518
18 0.04445 0.08891 0.9555
19 0.03489 0.06978 0.9651
20 0.02138 0.04275 0.9786
21 0.01246 0.02492 0.9875
22 0.009178 0.01836 0.9908
23 0.01276 0.02552 0.9872
24 0.007485 0.01497 0.9925
25 0.00438 0.008759 0.9956
26 0.003334 0.006669 0.9967
27 0.002372 0.004744 0.9976
28 0.001313 0.002627 0.9987
29 0.001347 0.002695 0.9987
30 0.0008947 0.001789 0.9991
31 0.0006036 0.001207 0.9994
32 0.0003701 0.0007403 0.9996
33 0.00107 0.002141 0.9989
34 0.0007458 0.001492 0.9993
35 0.0004632 0.0009264 0.9995
36 0.0007015 0.001403 0.9993
37 0.001351 0.002702 0.9986
38 0.001127 0.002254 0.9989
39 0.0007333 0.001467 0.9993
40 0.00163 0.003259 0.9984
41 0.002888 0.005776 0.9971
42 0.001929 0.003858 0.9981
43 0.001215 0.002429 0.9988
44 0.0007467 0.001493 0.9993
45 0.0009129 0.001826 0.9991
46 0.0007895 0.001579 0.9992
47 0.001483 0.002966 0.9985
48 0.0009992 0.001998 0.999
49 0.001256 0.002512 0.9987
50 0.0009119 0.001824 0.9991
51 0.02101 0.04201 0.979
52 0.01838 0.03676 0.9816
53 0.02806 0.05612 0.9719
54 0.02664 0.05328 0.9734
55 0.02068 0.04136 0.9793
56 0.01554 0.03109 0.9845
57 0.01393 0.02786 0.9861
58 0.01079 0.02159 0.9892
59 0.008013 0.01603 0.992
60 0.005716 0.01143 0.9943
61 0.004011 0.008023 0.996
62 0.002982 0.005964 0.997
63 0.01547 0.03094 0.9845
64 0.02171 0.04342 0.9783
65 0.02057 0.04114 0.9794
66 0.01913 0.03825 0.9809
67 0.01495 0.0299 0.985
68 0.01185 0.0237 0.9881
69 0.008844 0.01769 0.9912
70 0.007892 0.01578 0.9921
71 0.006185 0.01237 0.9938
72 0.005579 0.01116 0.9944
73 0.004614 0.009228 0.9954
74 0.003346 0.006692 0.9967
75 0.003803 0.007607 0.9962
76 0.003097 0.006194 0.9969
77 0.002646 0.005292 0.9974
78 0.002131 0.004261 0.9979
79 0.03026 0.06052 0.9697
80 0.03384 0.06767 0.9662
81 0.03158 0.06315 0.9684
82 0.03352 0.06703 0.9665
83 0.0986 0.1972 0.9014
84 0.09516 0.1903 0.9048
85 0.1095 0.2189 0.8905
86 0.09064 0.1813 0.9094
87 0.1071 0.2143 0.8929
88 0.09717 0.1943 0.9028
89 0.0793 0.1586 0.9207
90 0.07645 0.1529 0.9236
91 0.07097 0.1419 0.929
92 0.06342 0.1268 0.9366
93 0.05236 0.1047 0.9476
94 0.04238 0.08476 0.9576
95 0.04759 0.09519 0.9524
96 0.05842 0.1168 0.9416
97 0.04706 0.09412 0.9529
98 0.06257 0.1251 0.9374
99 0.05011 0.1002 0.9499
100 0.06836 0.1367 0.9316
101 0.05404 0.1081 0.946
102 0.06938 0.1388 0.9306
103 0.07107 0.1421 0.9289
104 0.05736 0.1147 0.9426
105 0.04518 0.09036 0.9548
106 0.03795 0.07589 0.9621
107 0.04064 0.08127 0.9594
108 0.03225 0.0645 0.9678
109 0.06123 0.1225 0.9388
110 0.1736 0.3472 0.8264
111 0.1463 0.2925 0.8537
112 0.131 0.262 0.869
113 0.161 0.3221 0.839
114 0.1445 0.2891 0.8555
115 0.1352 0.2705 0.8648
116 0.1141 0.2282 0.8859
117 0.1025 0.205 0.8975
118 0.08249 0.165 0.9175
119 0.07261 0.1452 0.9274
120 0.1153 0.2306 0.8847
121 0.09541 0.1908 0.9046
122 0.08319 0.1664 0.9168
123 0.08606 0.1721 0.9139
124 0.07312 0.1462 0.9269
125 0.252 0.5041 0.748
126 0.2182 0.4364 0.7818
127 0.2875 0.5751 0.7125
128 0.2557 0.5115 0.7443
129 0.483 0.966 0.517
130 0.4507 0.9014 0.5493
131 0.4521 0.9042 0.5479
132 0.3911 0.7823 0.6089
133 0.4084 0.8168 0.5916
134 0.3578 0.7155 0.6422
135 0.3068 0.6136 0.6932
136 0.2576 0.5151 0.7424
137 0.2827 0.5655 0.7173
138 0.2771 0.5541 0.7229
139 0.2224 0.4448 0.7776
140 0.4608 0.9217 0.5392
141 0.3907 0.7814 0.6093
142 0.5053 0.9895 0.4947
143 0.5653 0.8694 0.4347
144 0.4823 0.9645 0.5177
145 0.8953 0.2093 0.1047
146 0.8314 0.3373 0.1686
147 0.9119 0.1763 0.08814
148 0.9091 0.1818 0.09088
149 0.8321 0.3359 0.1679
150 0.729 0.542 0.271

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.4789 &  0.9579 &  0.5211 \tabularnewline
9 &  0.3503 &  0.7006 &  0.6497 \tabularnewline
10 &  0.2244 &  0.4487 &  0.7756 \tabularnewline
11 &  0.1357 &  0.2714 &  0.8643 \tabularnewline
12 &  0.08354 &  0.1671 &  0.9165 \tabularnewline
13 &  0.1445 &  0.289 &  0.8555 \tabularnewline
14 &  0.09012 &  0.1802 &  0.9099 \tabularnewline
15 &  0.07636 &  0.1527 &  0.9236 \tabularnewline
16 &  0.0525 &  0.105 &  0.9475 \tabularnewline
17 &  0.04822 &  0.09643 &  0.9518 \tabularnewline
18 &  0.04445 &  0.08891 &  0.9555 \tabularnewline
19 &  0.03489 &  0.06978 &  0.9651 \tabularnewline
20 &  0.02138 &  0.04275 &  0.9786 \tabularnewline
21 &  0.01246 &  0.02492 &  0.9875 \tabularnewline
22 &  0.009178 &  0.01836 &  0.9908 \tabularnewline
23 &  0.01276 &  0.02552 &  0.9872 \tabularnewline
24 &  0.007485 &  0.01497 &  0.9925 \tabularnewline
25 &  0.00438 &  0.008759 &  0.9956 \tabularnewline
26 &  0.003334 &  0.006669 &  0.9967 \tabularnewline
27 &  0.002372 &  0.004744 &  0.9976 \tabularnewline
28 &  0.001313 &  0.002627 &  0.9987 \tabularnewline
29 &  0.001347 &  0.002695 &  0.9987 \tabularnewline
30 &  0.0008947 &  0.001789 &  0.9991 \tabularnewline
31 &  0.0006036 &  0.001207 &  0.9994 \tabularnewline
32 &  0.0003701 &  0.0007403 &  0.9996 \tabularnewline
33 &  0.00107 &  0.002141 &  0.9989 \tabularnewline
34 &  0.0007458 &  0.001492 &  0.9993 \tabularnewline
35 &  0.0004632 &  0.0009264 &  0.9995 \tabularnewline
36 &  0.0007015 &  0.001403 &  0.9993 \tabularnewline
37 &  0.001351 &  0.002702 &  0.9986 \tabularnewline
38 &  0.001127 &  0.002254 &  0.9989 \tabularnewline
39 &  0.0007333 &  0.001467 &  0.9993 \tabularnewline
40 &  0.00163 &  0.003259 &  0.9984 \tabularnewline
41 &  0.002888 &  0.005776 &  0.9971 \tabularnewline
42 &  0.001929 &  0.003858 &  0.9981 \tabularnewline
43 &  0.001215 &  0.002429 &  0.9988 \tabularnewline
44 &  0.0007467 &  0.001493 &  0.9993 \tabularnewline
45 &  0.0009129 &  0.001826 &  0.9991 \tabularnewline
46 &  0.0007895 &  0.001579 &  0.9992 \tabularnewline
47 &  0.001483 &  0.002966 &  0.9985 \tabularnewline
48 &  0.0009992 &  0.001998 &  0.999 \tabularnewline
49 &  0.001256 &  0.002512 &  0.9987 \tabularnewline
50 &  0.0009119 &  0.001824 &  0.9991 \tabularnewline
51 &  0.02101 &  0.04201 &  0.979 \tabularnewline
52 &  0.01838 &  0.03676 &  0.9816 \tabularnewline
53 &  0.02806 &  0.05612 &  0.9719 \tabularnewline
54 &  0.02664 &  0.05328 &  0.9734 \tabularnewline
55 &  0.02068 &  0.04136 &  0.9793 \tabularnewline
56 &  0.01554 &  0.03109 &  0.9845 \tabularnewline
57 &  0.01393 &  0.02786 &  0.9861 \tabularnewline
58 &  0.01079 &  0.02159 &  0.9892 \tabularnewline
59 &  0.008013 &  0.01603 &  0.992 \tabularnewline
60 &  0.005716 &  0.01143 &  0.9943 \tabularnewline
61 &  0.004011 &  0.008023 &  0.996 \tabularnewline
62 &  0.002982 &  0.005964 &  0.997 \tabularnewline
63 &  0.01547 &  0.03094 &  0.9845 \tabularnewline
64 &  0.02171 &  0.04342 &  0.9783 \tabularnewline
65 &  0.02057 &  0.04114 &  0.9794 \tabularnewline
66 &  0.01913 &  0.03825 &  0.9809 \tabularnewline
67 &  0.01495 &  0.0299 &  0.985 \tabularnewline
68 &  0.01185 &  0.0237 &  0.9881 \tabularnewline
69 &  0.008844 &  0.01769 &  0.9912 \tabularnewline
70 &  0.007892 &  0.01578 &  0.9921 \tabularnewline
71 &  0.006185 &  0.01237 &  0.9938 \tabularnewline
72 &  0.005579 &  0.01116 &  0.9944 \tabularnewline
73 &  0.004614 &  0.009228 &  0.9954 \tabularnewline
74 &  0.003346 &  0.006692 &  0.9967 \tabularnewline
75 &  0.003803 &  0.007607 &  0.9962 \tabularnewline
76 &  0.003097 &  0.006194 &  0.9969 \tabularnewline
77 &  0.002646 &  0.005292 &  0.9974 \tabularnewline
78 &  0.002131 &  0.004261 &  0.9979 \tabularnewline
79 &  0.03026 &  0.06052 &  0.9697 \tabularnewline
80 &  0.03384 &  0.06767 &  0.9662 \tabularnewline
81 &  0.03158 &  0.06315 &  0.9684 \tabularnewline
82 &  0.03352 &  0.06703 &  0.9665 \tabularnewline
83 &  0.0986 &  0.1972 &  0.9014 \tabularnewline
84 &  0.09516 &  0.1903 &  0.9048 \tabularnewline
85 &  0.1095 &  0.2189 &  0.8905 \tabularnewline
86 &  0.09064 &  0.1813 &  0.9094 \tabularnewline
87 &  0.1071 &  0.2143 &  0.8929 \tabularnewline
88 &  0.09717 &  0.1943 &  0.9028 \tabularnewline
89 &  0.0793 &  0.1586 &  0.9207 \tabularnewline
90 &  0.07645 &  0.1529 &  0.9236 \tabularnewline
91 &  0.07097 &  0.1419 &  0.929 \tabularnewline
92 &  0.06342 &  0.1268 &  0.9366 \tabularnewline
93 &  0.05236 &  0.1047 &  0.9476 \tabularnewline
94 &  0.04238 &  0.08476 &  0.9576 \tabularnewline
95 &  0.04759 &  0.09519 &  0.9524 \tabularnewline
96 &  0.05842 &  0.1168 &  0.9416 \tabularnewline
97 &  0.04706 &  0.09412 &  0.9529 \tabularnewline
98 &  0.06257 &  0.1251 &  0.9374 \tabularnewline
99 &  0.05011 &  0.1002 &  0.9499 \tabularnewline
100 &  0.06836 &  0.1367 &  0.9316 \tabularnewline
101 &  0.05404 &  0.1081 &  0.946 \tabularnewline
102 &  0.06938 &  0.1388 &  0.9306 \tabularnewline
103 &  0.07107 &  0.1421 &  0.9289 \tabularnewline
104 &  0.05736 &  0.1147 &  0.9426 \tabularnewline
105 &  0.04518 &  0.09036 &  0.9548 \tabularnewline
106 &  0.03795 &  0.07589 &  0.9621 \tabularnewline
107 &  0.04064 &  0.08127 &  0.9594 \tabularnewline
108 &  0.03225 &  0.0645 &  0.9678 \tabularnewline
109 &  0.06123 &  0.1225 &  0.9388 \tabularnewline
110 &  0.1736 &  0.3472 &  0.8264 \tabularnewline
111 &  0.1463 &  0.2925 &  0.8537 \tabularnewline
112 &  0.131 &  0.262 &  0.869 \tabularnewline
113 &  0.161 &  0.3221 &  0.839 \tabularnewline
114 &  0.1445 &  0.2891 &  0.8555 \tabularnewline
115 &  0.1352 &  0.2705 &  0.8648 \tabularnewline
116 &  0.1141 &  0.2282 &  0.8859 \tabularnewline
117 &  0.1025 &  0.205 &  0.8975 \tabularnewline
118 &  0.08249 &  0.165 &  0.9175 \tabularnewline
119 &  0.07261 &  0.1452 &  0.9274 \tabularnewline
120 &  0.1153 &  0.2306 &  0.8847 \tabularnewline
121 &  0.09541 &  0.1908 &  0.9046 \tabularnewline
122 &  0.08319 &  0.1664 &  0.9168 \tabularnewline
123 &  0.08606 &  0.1721 &  0.9139 \tabularnewline
124 &  0.07312 &  0.1462 &  0.9269 \tabularnewline
125 &  0.252 &  0.5041 &  0.748 \tabularnewline
126 &  0.2182 &  0.4364 &  0.7818 \tabularnewline
127 &  0.2875 &  0.5751 &  0.7125 \tabularnewline
128 &  0.2557 &  0.5115 &  0.7443 \tabularnewline
129 &  0.483 &  0.966 &  0.517 \tabularnewline
130 &  0.4507 &  0.9014 &  0.5493 \tabularnewline
131 &  0.4521 &  0.9042 &  0.5479 \tabularnewline
132 &  0.3911 &  0.7823 &  0.6089 \tabularnewline
133 &  0.4084 &  0.8168 &  0.5916 \tabularnewline
134 &  0.3578 &  0.7155 &  0.6422 \tabularnewline
135 &  0.3068 &  0.6136 &  0.6932 \tabularnewline
136 &  0.2576 &  0.5151 &  0.7424 \tabularnewline
137 &  0.2827 &  0.5655 &  0.7173 \tabularnewline
138 &  0.2771 &  0.5541 &  0.7229 \tabularnewline
139 &  0.2224 &  0.4448 &  0.7776 \tabularnewline
140 &  0.4608 &  0.9217 &  0.5392 \tabularnewline
141 &  0.3907 &  0.7814 &  0.6093 \tabularnewline
142 &  0.5053 &  0.9895 &  0.4947 \tabularnewline
143 &  0.5653 &  0.8694 &  0.4347 \tabularnewline
144 &  0.4823 &  0.9645 &  0.5177 \tabularnewline
145 &  0.8953 &  0.2093 &  0.1047 \tabularnewline
146 &  0.8314 &  0.3373 &  0.1686 \tabularnewline
147 &  0.9119 &  0.1763 &  0.08814 \tabularnewline
148 &  0.9091 &  0.1818 &  0.09088 \tabularnewline
149 &  0.8321 &  0.3359 &  0.1679 \tabularnewline
150 &  0.729 &  0.542 &  0.271 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297569&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.4789[/C][C] 0.9579[/C][C] 0.5211[/C][/ROW]
[ROW][C]9[/C][C] 0.3503[/C][C] 0.7006[/C][C] 0.6497[/C][/ROW]
[ROW][C]10[/C][C] 0.2244[/C][C] 0.4487[/C][C] 0.7756[/C][/ROW]
[ROW][C]11[/C][C] 0.1357[/C][C] 0.2714[/C][C] 0.8643[/C][/ROW]
[ROW][C]12[/C][C] 0.08354[/C][C] 0.1671[/C][C] 0.9165[/C][/ROW]
[ROW][C]13[/C][C] 0.1445[/C][C] 0.289[/C][C] 0.8555[/C][/ROW]
[ROW][C]14[/C][C] 0.09012[/C][C] 0.1802[/C][C] 0.9099[/C][/ROW]
[ROW][C]15[/C][C] 0.07636[/C][C] 0.1527[/C][C] 0.9236[/C][/ROW]
[ROW][C]16[/C][C] 0.0525[/C][C] 0.105[/C][C] 0.9475[/C][/ROW]
[ROW][C]17[/C][C] 0.04822[/C][C] 0.09643[/C][C] 0.9518[/C][/ROW]
[ROW][C]18[/C][C] 0.04445[/C][C] 0.08891[/C][C] 0.9555[/C][/ROW]
[ROW][C]19[/C][C] 0.03489[/C][C] 0.06978[/C][C] 0.9651[/C][/ROW]
[ROW][C]20[/C][C] 0.02138[/C][C] 0.04275[/C][C] 0.9786[/C][/ROW]
[ROW][C]21[/C][C] 0.01246[/C][C] 0.02492[/C][C] 0.9875[/C][/ROW]
[ROW][C]22[/C][C] 0.009178[/C][C] 0.01836[/C][C] 0.9908[/C][/ROW]
[ROW][C]23[/C][C] 0.01276[/C][C] 0.02552[/C][C] 0.9872[/C][/ROW]
[ROW][C]24[/C][C] 0.007485[/C][C] 0.01497[/C][C] 0.9925[/C][/ROW]
[ROW][C]25[/C][C] 0.00438[/C][C] 0.008759[/C][C] 0.9956[/C][/ROW]
[ROW][C]26[/C][C] 0.003334[/C][C] 0.006669[/C][C] 0.9967[/C][/ROW]
[ROW][C]27[/C][C] 0.002372[/C][C] 0.004744[/C][C] 0.9976[/C][/ROW]
[ROW][C]28[/C][C] 0.001313[/C][C] 0.002627[/C][C] 0.9987[/C][/ROW]
[ROW][C]29[/C][C] 0.001347[/C][C] 0.002695[/C][C] 0.9987[/C][/ROW]
[ROW][C]30[/C][C] 0.0008947[/C][C] 0.001789[/C][C] 0.9991[/C][/ROW]
[ROW][C]31[/C][C] 0.0006036[/C][C] 0.001207[/C][C] 0.9994[/C][/ROW]
[ROW][C]32[/C][C] 0.0003701[/C][C] 0.0007403[/C][C] 0.9996[/C][/ROW]
[ROW][C]33[/C][C] 0.00107[/C][C] 0.002141[/C][C] 0.9989[/C][/ROW]
[ROW][C]34[/C][C] 0.0007458[/C][C] 0.001492[/C][C] 0.9993[/C][/ROW]
[ROW][C]35[/C][C] 0.0004632[/C][C] 0.0009264[/C][C] 0.9995[/C][/ROW]
[ROW][C]36[/C][C] 0.0007015[/C][C] 0.001403[/C][C] 0.9993[/C][/ROW]
[ROW][C]37[/C][C] 0.001351[/C][C] 0.002702[/C][C] 0.9986[/C][/ROW]
[ROW][C]38[/C][C] 0.001127[/C][C] 0.002254[/C][C] 0.9989[/C][/ROW]
[ROW][C]39[/C][C] 0.0007333[/C][C] 0.001467[/C][C] 0.9993[/C][/ROW]
[ROW][C]40[/C][C] 0.00163[/C][C] 0.003259[/C][C] 0.9984[/C][/ROW]
[ROW][C]41[/C][C] 0.002888[/C][C] 0.005776[/C][C] 0.9971[/C][/ROW]
[ROW][C]42[/C][C] 0.001929[/C][C] 0.003858[/C][C] 0.9981[/C][/ROW]
[ROW][C]43[/C][C] 0.001215[/C][C] 0.002429[/C][C] 0.9988[/C][/ROW]
[ROW][C]44[/C][C] 0.0007467[/C][C] 0.001493[/C][C] 0.9993[/C][/ROW]
[ROW][C]45[/C][C] 0.0009129[/C][C] 0.001826[/C][C] 0.9991[/C][/ROW]
[ROW][C]46[/C][C] 0.0007895[/C][C] 0.001579[/C][C] 0.9992[/C][/ROW]
[ROW][C]47[/C][C] 0.001483[/C][C] 0.002966[/C][C] 0.9985[/C][/ROW]
[ROW][C]48[/C][C] 0.0009992[/C][C] 0.001998[/C][C] 0.999[/C][/ROW]
[ROW][C]49[/C][C] 0.001256[/C][C] 0.002512[/C][C] 0.9987[/C][/ROW]
[ROW][C]50[/C][C] 0.0009119[/C][C] 0.001824[/C][C] 0.9991[/C][/ROW]
[ROW][C]51[/C][C] 0.02101[/C][C] 0.04201[/C][C] 0.979[/C][/ROW]
[ROW][C]52[/C][C] 0.01838[/C][C] 0.03676[/C][C] 0.9816[/C][/ROW]
[ROW][C]53[/C][C] 0.02806[/C][C] 0.05612[/C][C] 0.9719[/C][/ROW]
[ROW][C]54[/C][C] 0.02664[/C][C] 0.05328[/C][C] 0.9734[/C][/ROW]
[ROW][C]55[/C][C] 0.02068[/C][C] 0.04136[/C][C] 0.9793[/C][/ROW]
[ROW][C]56[/C][C] 0.01554[/C][C] 0.03109[/C][C] 0.9845[/C][/ROW]
[ROW][C]57[/C][C] 0.01393[/C][C] 0.02786[/C][C] 0.9861[/C][/ROW]
[ROW][C]58[/C][C] 0.01079[/C][C] 0.02159[/C][C] 0.9892[/C][/ROW]
[ROW][C]59[/C][C] 0.008013[/C][C] 0.01603[/C][C] 0.992[/C][/ROW]
[ROW][C]60[/C][C] 0.005716[/C][C] 0.01143[/C][C] 0.9943[/C][/ROW]
[ROW][C]61[/C][C] 0.004011[/C][C] 0.008023[/C][C] 0.996[/C][/ROW]
[ROW][C]62[/C][C] 0.002982[/C][C] 0.005964[/C][C] 0.997[/C][/ROW]
[ROW][C]63[/C][C] 0.01547[/C][C] 0.03094[/C][C] 0.9845[/C][/ROW]
[ROW][C]64[/C][C] 0.02171[/C][C] 0.04342[/C][C] 0.9783[/C][/ROW]
[ROW][C]65[/C][C] 0.02057[/C][C] 0.04114[/C][C] 0.9794[/C][/ROW]
[ROW][C]66[/C][C] 0.01913[/C][C] 0.03825[/C][C] 0.9809[/C][/ROW]
[ROW][C]67[/C][C] 0.01495[/C][C] 0.0299[/C][C] 0.985[/C][/ROW]
[ROW][C]68[/C][C] 0.01185[/C][C] 0.0237[/C][C] 0.9881[/C][/ROW]
[ROW][C]69[/C][C] 0.008844[/C][C] 0.01769[/C][C] 0.9912[/C][/ROW]
[ROW][C]70[/C][C] 0.007892[/C][C] 0.01578[/C][C] 0.9921[/C][/ROW]
[ROW][C]71[/C][C] 0.006185[/C][C] 0.01237[/C][C] 0.9938[/C][/ROW]
[ROW][C]72[/C][C] 0.005579[/C][C] 0.01116[/C][C] 0.9944[/C][/ROW]
[ROW][C]73[/C][C] 0.004614[/C][C] 0.009228[/C][C] 0.9954[/C][/ROW]
[ROW][C]74[/C][C] 0.003346[/C][C] 0.006692[/C][C] 0.9967[/C][/ROW]
[ROW][C]75[/C][C] 0.003803[/C][C] 0.007607[/C][C] 0.9962[/C][/ROW]
[ROW][C]76[/C][C] 0.003097[/C][C] 0.006194[/C][C] 0.9969[/C][/ROW]
[ROW][C]77[/C][C] 0.002646[/C][C] 0.005292[/C][C] 0.9974[/C][/ROW]
[ROW][C]78[/C][C] 0.002131[/C][C] 0.004261[/C][C] 0.9979[/C][/ROW]
[ROW][C]79[/C][C] 0.03026[/C][C] 0.06052[/C][C] 0.9697[/C][/ROW]
[ROW][C]80[/C][C] 0.03384[/C][C] 0.06767[/C][C] 0.9662[/C][/ROW]
[ROW][C]81[/C][C] 0.03158[/C][C] 0.06315[/C][C] 0.9684[/C][/ROW]
[ROW][C]82[/C][C] 0.03352[/C][C] 0.06703[/C][C] 0.9665[/C][/ROW]
[ROW][C]83[/C][C] 0.0986[/C][C] 0.1972[/C][C] 0.9014[/C][/ROW]
[ROW][C]84[/C][C] 0.09516[/C][C] 0.1903[/C][C] 0.9048[/C][/ROW]
[ROW][C]85[/C][C] 0.1095[/C][C] 0.2189[/C][C] 0.8905[/C][/ROW]
[ROW][C]86[/C][C] 0.09064[/C][C] 0.1813[/C][C] 0.9094[/C][/ROW]
[ROW][C]87[/C][C] 0.1071[/C][C] 0.2143[/C][C] 0.8929[/C][/ROW]
[ROW][C]88[/C][C] 0.09717[/C][C] 0.1943[/C][C] 0.9028[/C][/ROW]
[ROW][C]89[/C][C] 0.0793[/C][C] 0.1586[/C][C] 0.9207[/C][/ROW]
[ROW][C]90[/C][C] 0.07645[/C][C] 0.1529[/C][C] 0.9236[/C][/ROW]
[ROW][C]91[/C][C] 0.07097[/C][C] 0.1419[/C][C] 0.929[/C][/ROW]
[ROW][C]92[/C][C] 0.06342[/C][C] 0.1268[/C][C] 0.9366[/C][/ROW]
[ROW][C]93[/C][C] 0.05236[/C][C] 0.1047[/C][C] 0.9476[/C][/ROW]
[ROW][C]94[/C][C] 0.04238[/C][C] 0.08476[/C][C] 0.9576[/C][/ROW]
[ROW][C]95[/C][C] 0.04759[/C][C] 0.09519[/C][C] 0.9524[/C][/ROW]
[ROW][C]96[/C][C] 0.05842[/C][C] 0.1168[/C][C] 0.9416[/C][/ROW]
[ROW][C]97[/C][C] 0.04706[/C][C] 0.09412[/C][C] 0.9529[/C][/ROW]
[ROW][C]98[/C][C] 0.06257[/C][C] 0.1251[/C][C] 0.9374[/C][/ROW]
[ROW][C]99[/C][C] 0.05011[/C][C] 0.1002[/C][C] 0.9499[/C][/ROW]
[ROW][C]100[/C][C] 0.06836[/C][C] 0.1367[/C][C] 0.9316[/C][/ROW]
[ROW][C]101[/C][C] 0.05404[/C][C] 0.1081[/C][C] 0.946[/C][/ROW]
[ROW][C]102[/C][C] 0.06938[/C][C] 0.1388[/C][C] 0.9306[/C][/ROW]
[ROW][C]103[/C][C] 0.07107[/C][C] 0.1421[/C][C] 0.9289[/C][/ROW]
[ROW][C]104[/C][C] 0.05736[/C][C] 0.1147[/C][C] 0.9426[/C][/ROW]
[ROW][C]105[/C][C] 0.04518[/C][C] 0.09036[/C][C] 0.9548[/C][/ROW]
[ROW][C]106[/C][C] 0.03795[/C][C] 0.07589[/C][C] 0.9621[/C][/ROW]
[ROW][C]107[/C][C] 0.04064[/C][C] 0.08127[/C][C] 0.9594[/C][/ROW]
[ROW][C]108[/C][C] 0.03225[/C][C] 0.0645[/C][C] 0.9678[/C][/ROW]
[ROW][C]109[/C][C] 0.06123[/C][C] 0.1225[/C][C] 0.9388[/C][/ROW]
[ROW][C]110[/C][C] 0.1736[/C][C] 0.3472[/C][C] 0.8264[/C][/ROW]
[ROW][C]111[/C][C] 0.1463[/C][C] 0.2925[/C][C] 0.8537[/C][/ROW]
[ROW][C]112[/C][C] 0.131[/C][C] 0.262[/C][C] 0.869[/C][/ROW]
[ROW][C]113[/C][C] 0.161[/C][C] 0.3221[/C][C] 0.839[/C][/ROW]
[ROW][C]114[/C][C] 0.1445[/C][C] 0.2891[/C][C] 0.8555[/C][/ROW]
[ROW][C]115[/C][C] 0.1352[/C][C] 0.2705[/C][C] 0.8648[/C][/ROW]
[ROW][C]116[/C][C] 0.1141[/C][C] 0.2282[/C][C] 0.8859[/C][/ROW]
[ROW][C]117[/C][C] 0.1025[/C][C] 0.205[/C][C] 0.8975[/C][/ROW]
[ROW][C]118[/C][C] 0.08249[/C][C] 0.165[/C][C] 0.9175[/C][/ROW]
[ROW][C]119[/C][C] 0.07261[/C][C] 0.1452[/C][C] 0.9274[/C][/ROW]
[ROW][C]120[/C][C] 0.1153[/C][C] 0.2306[/C][C] 0.8847[/C][/ROW]
[ROW][C]121[/C][C] 0.09541[/C][C] 0.1908[/C][C] 0.9046[/C][/ROW]
[ROW][C]122[/C][C] 0.08319[/C][C] 0.1664[/C][C] 0.9168[/C][/ROW]
[ROW][C]123[/C][C] 0.08606[/C][C] 0.1721[/C][C] 0.9139[/C][/ROW]
[ROW][C]124[/C][C] 0.07312[/C][C] 0.1462[/C][C] 0.9269[/C][/ROW]
[ROW][C]125[/C][C] 0.252[/C][C] 0.5041[/C][C] 0.748[/C][/ROW]
[ROW][C]126[/C][C] 0.2182[/C][C] 0.4364[/C][C] 0.7818[/C][/ROW]
[ROW][C]127[/C][C] 0.2875[/C][C] 0.5751[/C][C] 0.7125[/C][/ROW]
[ROW][C]128[/C][C] 0.2557[/C][C] 0.5115[/C][C] 0.7443[/C][/ROW]
[ROW][C]129[/C][C] 0.483[/C][C] 0.966[/C][C] 0.517[/C][/ROW]
[ROW][C]130[/C][C] 0.4507[/C][C] 0.9014[/C][C] 0.5493[/C][/ROW]
[ROW][C]131[/C][C] 0.4521[/C][C] 0.9042[/C][C] 0.5479[/C][/ROW]
[ROW][C]132[/C][C] 0.3911[/C][C] 0.7823[/C][C] 0.6089[/C][/ROW]
[ROW][C]133[/C][C] 0.4084[/C][C] 0.8168[/C][C] 0.5916[/C][/ROW]
[ROW][C]134[/C][C] 0.3578[/C][C] 0.7155[/C][C] 0.6422[/C][/ROW]
[ROW][C]135[/C][C] 0.3068[/C][C] 0.6136[/C][C] 0.6932[/C][/ROW]
[ROW][C]136[/C][C] 0.2576[/C][C] 0.5151[/C][C] 0.7424[/C][/ROW]
[ROW][C]137[/C][C] 0.2827[/C][C] 0.5655[/C][C] 0.7173[/C][/ROW]
[ROW][C]138[/C][C] 0.2771[/C][C] 0.5541[/C][C] 0.7229[/C][/ROW]
[ROW][C]139[/C][C] 0.2224[/C][C] 0.4448[/C][C] 0.7776[/C][/ROW]
[ROW][C]140[/C][C] 0.4608[/C][C] 0.9217[/C][C] 0.5392[/C][/ROW]
[ROW][C]141[/C][C] 0.3907[/C][C] 0.7814[/C][C] 0.6093[/C][/ROW]
[ROW][C]142[/C][C] 0.5053[/C][C] 0.9895[/C][C] 0.4947[/C][/ROW]
[ROW][C]143[/C][C] 0.5653[/C][C] 0.8694[/C][C] 0.4347[/C][/ROW]
[ROW][C]144[/C][C] 0.4823[/C][C] 0.9645[/C][C] 0.5177[/C][/ROW]
[ROW][C]145[/C][C] 0.8953[/C][C] 0.2093[/C][C] 0.1047[/C][/ROW]
[ROW][C]146[/C][C] 0.8314[/C][C] 0.3373[/C][C] 0.1686[/C][/ROW]
[ROW][C]147[/C][C] 0.9119[/C][C] 0.1763[/C][C] 0.08814[/C][/ROW]
[ROW][C]148[/C][C] 0.9091[/C][C] 0.1818[/C][C] 0.09088[/C][/ROW]
[ROW][C]149[/C][C] 0.8321[/C][C] 0.3359[/C][C] 0.1679[/C][/ROW]
[ROW][C]150[/C][C] 0.729[/C][C] 0.542[/C][C] 0.271[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297569&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297569&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.4789 0.9579 0.5211
9 0.3503 0.7006 0.6497
10 0.2244 0.4487 0.7756
11 0.1357 0.2714 0.8643
12 0.08354 0.1671 0.9165
13 0.1445 0.289 0.8555
14 0.09012 0.1802 0.9099
15 0.07636 0.1527 0.9236
16 0.0525 0.105 0.9475
17 0.04822 0.09643 0.9518
18 0.04445 0.08891 0.9555
19 0.03489 0.06978 0.9651
20 0.02138 0.04275 0.9786
21 0.01246 0.02492 0.9875
22 0.009178 0.01836 0.9908
23 0.01276 0.02552 0.9872
24 0.007485 0.01497 0.9925
25 0.00438 0.008759 0.9956
26 0.003334 0.006669 0.9967
27 0.002372 0.004744 0.9976
28 0.001313 0.002627 0.9987
29 0.001347 0.002695 0.9987
30 0.0008947 0.001789 0.9991
31 0.0006036 0.001207 0.9994
32 0.0003701 0.0007403 0.9996
33 0.00107 0.002141 0.9989
34 0.0007458 0.001492 0.9993
35 0.0004632 0.0009264 0.9995
36 0.0007015 0.001403 0.9993
37 0.001351 0.002702 0.9986
38 0.001127 0.002254 0.9989
39 0.0007333 0.001467 0.9993
40 0.00163 0.003259 0.9984
41 0.002888 0.005776 0.9971
42 0.001929 0.003858 0.9981
43 0.001215 0.002429 0.9988
44 0.0007467 0.001493 0.9993
45 0.0009129 0.001826 0.9991
46 0.0007895 0.001579 0.9992
47 0.001483 0.002966 0.9985
48 0.0009992 0.001998 0.999
49 0.001256 0.002512 0.9987
50 0.0009119 0.001824 0.9991
51 0.02101 0.04201 0.979
52 0.01838 0.03676 0.9816
53 0.02806 0.05612 0.9719
54 0.02664 0.05328 0.9734
55 0.02068 0.04136 0.9793
56 0.01554 0.03109 0.9845
57 0.01393 0.02786 0.9861
58 0.01079 0.02159 0.9892
59 0.008013 0.01603 0.992
60 0.005716 0.01143 0.9943
61 0.004011 0.008023 0.996
62 0.002982 0.005964 0.997
63 0.01547 0.03094 0.9845
64 0.02171 0.04342 0.9783
65 0.02057 0.04114 0.9794
66 0.01913 0.03825 0.9809
67 0.01495 0.0299 0.985
68 0.01185 0.0237 0.9881
69 0.008844 0.01769 0.9912
70 0.007892 0.01578 0.9921
71 0.006185 0.01237 0.9938
72 0.005579 0.01116 0.9944
73 0.004614 0.009228 0.9954
74 0.003346 0.006692 0.9967
75 0.003803 0.007607 0.9962
76 0.003097 0.006194 0.9969
77 0.002646 0.005292 0.9974
78 0.002131 0.004261 0.9979
79 0.03026 0.06052 0.9697
80 0.03384 0.06767 0.9662
81 0.03158 0.06315 0.9684
82 0.03352 0.06703 0.9665
83 0.0986 0.1972 0.9014
84 0.09516 0.1903 0.9048
85 0.1095 0.2189 0.8905
86 0.09064 0.1813 0.9094
87 0.1071 0.2143 0.8929
88 0.09717 0.1943 0.9028
89 0.0793 0.1586 0.9207
90 0.07645 0.1529 0.9236
91 0.07097 0.1419 0.929
92 0.06342 0.1268 0.9366
93 0.05236 0.1047 0.9476
94 0.04238 0.08476 0.9576
95 0.04759 0.09519 0.9524
96 0.05842 0.1168 0.9416
97 0.04706 0.09412 0.9529
98 0.06257 0.1251 0.9374
99 0.05011 0.1002 0.9499
100 0.06836 0.1367 0.9316
101 0.05404 0.1081 0.946
102 0.06938 0.1388 0.9306
103 0.07107 0.1421 0.9289
104 0.05736 0.1147 0.9426
105 0.04518 0.09036 0.9548
106 0.03795 0.07589 0.9621
107 0.04064 0.08127 0.9594
108 0.03225 0.0645 0.9678
109 0.06123 0.1225 0.9388
110 0.1736 0.3472 0.8264
111 0.1463 0.2925 0.8537
112 0.131 0.262 0.869
113 0.161 0.3221 0.839
114 0.1445 0.2891 0.8555
115 0.1352 0.2705 0.8648
116 0.1141 0.2282 0.8859
117 0.1025 0.205 0.8975
118 0.08249 0.165 0.9175
119 0.07261 0.1452 0.9274
120 0.1153 0.2306 0.8847
121 0.09541 0.1908 0.9046
122 0.08319 0.1664 0.9168
123 0.08606 0.1721 0.9139
124 0.07312 0.1462 0.9269
125 0.252 0.5041 0.748
126 0.2182 0.4364 0.7818
127 0.2875 0.5751 0.7125
128 0.2557 0.5115 0.7443
129 0.483 0.966 0.517
130 0.4507 0.9014 0.5493
131 0.4521 0.9042 0.5479
132 0.3911 0.7823 0.6089
133 0.4084 0.8168 0.5916
134 0.3578 0.7155 0.6422
135 0.3068 0.6136 0.6932
136 0.2576 0.5151 0.7424
137 0.2827 0.5655 0.7173
138 0.2771 0.5541 0.7229
139 0.2224 0.4448 0.7776
140 0.4608 0.9217 0.5392
141 0.3907 0.7814 0.6093
142 0.5053 0.9895 0.4947
143 0.5653 0.8694 0.4347
144 0.4823 0.9645 0.5177
145 0.8953 0.2093 0.1047
146 0.8314 0.3373 0.1686
147 0.9119 0.1763 0.08814
148 0.9091 0.1818 0.09088
149 0.8321 0.3359 0.1679
150 0.729 0.542 0.271







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level34 0.2378NOK
5% type I error level570.398601NOK
10% type I error level730.51049NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 34 &  0.2378 & NOK \tabularnewline
5% type I error level & 57 & 0.398601 & NOK \tabularnewline
10% type I error level & 73 & 0.51049 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=297569&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]34[/C][C] 0.2378[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]57[/C][C]0.398601[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]73[/C][C]0.51049[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=297569&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297569&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level34 0.2378NOK
5% type I error level570.398601NOK
10% type I error level730.51049NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.087236, df1 = 2, df2 = 151, p-value = 0.9165
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8038, df1 = 8, df2 = 145, p-value = 0.0808
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.2875, df1 = 2, df2 = 151, p-value = 0.105

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.087236, df1 = 2, df2 = 151, p-value = 0.9165
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8038, df1 = 8, df2 = 145, p-value = 0.0808
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.2875, df1 = 2, df2 = 151, p-value = 0.105
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297569&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.087236, df1 = 2, df2 = 151, p-value = 0.9165
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8038, df1 = 8, df2 = 145, p-value = 0.0808
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.2875, df1 = 2, df2 = 151, p-value = 0.105
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297569&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297569&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.087236, df1 = 2, df2 = 151, p-value = 0.9165
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.8038, df1 = 8, df2 = 145, p-value = 0.0808
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.2875, df1 = 2, df2 = 151, p-value = 0.105







Variance Inflation Factors (Multicollinearity)
> vif
     EC1      EC2      EC3      EC4 
1.484959 1.416609 1.035162 1.065408 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     EC1      EC2      EC3      EC4 
1.484959 1.416609 1.035162 1.065408 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=297569&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     EC1      EC2      EC3      EC4 
1.484959 1.416609 1.035162 1.065408 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=297569&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=297569&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     EC1      EC2      EC3      EC4 
1.484959 1.416609 1.035162 1.065408 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')