Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 11 Feb 2019 15:31:54 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2019/Feb/11/t1549895661sysrxptal56au3g.htm/, Retrieved Sat, 18 May 2024 09:09:20 +0200
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Sat, 18 May 2024 09:09:20 +0200
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKIARA
Estimated Impact0
Dataseries X:
1.9743	1.3915	2.0709	1.3473
1.2130	2.0328	2.3538	1.3473
1.2130	1.3915	2.0709	1.3473
1.9743	2.6741	2.3538	2.1677
1.9743	2.0328	2.0709	2.1677
2.7356	1.3915	1.5051	2.1677
2.7356	2.0328	2.0709	2.1677
1.2130	2.0328	1.7880	1.3473
2.7356	2.6741	2.0709	2.9880
2.7356	2.6741	1.7880	2.9880
1.9743	2.0328	2.0709	2.1677
2.7356	2.6741	2.0709	2.1677
1.2130	1.3915	1.7880	1.3473
2.7356	2.6741	2.3538	2.1677
1.9743	2.0328	2.0709	2.1677
2.7356	2.0328	1.7880	2.1677
1.2130	1.3915	2.0709	1.3473
1.2130	2.0328	1.7880	1.3473
1.9743	2.0328	1.7880	2.1677
1.2130	1.3915	1.7880	1.3473
1.9743	2.6741	2.0709	2.9880
1.2130	1.3915	2.3538	1.3473
1.9743	2.0328	2.0709	2.1677
2.7356	2.0328	1.7880	2.1677
1.2130	1.3915	2.0709	2.1677
1.2130	2.0328	1.7880	1.3473
1.9743	2.0328	2.0709	2.9880
2.7356	2.0328	2.3538	2.1677
2.2838	2.6741	2.0709	2.9880
1.2130	1.3915	1.7880	1.3473
1.9743	2.6741	1.7880	2.1677
1.2130	2.0328	1.7880	1.3473
1.9743	2.6741	2.0709	2.1677
2.7356	2.0328	2.0709	2.1677
1.9743	2.0328	1.7880	1.3473
2.7356	2.6741	2.0709	2.9880
1.9743	2.0328	1.7880	1.3473
1.9743	2.0328	2.3538	2.1677
1.9743	2.0328	2.0709	2.1677
2.7356	2.6741	2.0709	1.3473
1.9743	2.0328	2.3538	2.1677
1.9743	2.6741	2.0709	2.1677
1.2130	1.3915	1.7880	1.3473
1.9743	1.3915	1.7880	2.1677
2.7356	2.0328	1.7880	2.9880
1.9743	1.3915	2.3538	1.3473
1.9743	2.0328	1.7880	2.1677
2.7356	2.0328	2.0709	2.1677
1.9743	2.0328	2.0709	2.9880
2.7356	1.3915	2.3538	2.1677




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
food[t] = + 0.20911 + 0.256047School[t] + 0.0952255leisure[t] + 0.505502home[t] + 0.00283252t + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
food[t] =  +  0.20911 +  0.256047School[t] +  0.0952255leisure[t] +  0.505502home[t] +  0.00283252t  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]food[t] =  +  0.20911 +  0.256047School[t] +  0.0952255leisure[t] +  0.505502home[t] +  0.00283252t  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
food[t] = + 0.20911 + 0.256047School[t] + 0.0952255leisure[t] + 0.505502home[t] + 0.00283252t + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+0.2091 0.6564+3.1860e-01 0.7515 0.3758
School+0.256 0.1707+1.5000e+00 0.1407 0.07034
leisure+0.09523 0.307+3.1020e-01 0.7578 0.3789
home+0.5055 0.1385+3.6490e+00 0.0006815 0.0003408
t+0.002832 0.004563+6.2070e-01 0.5379 0.2689

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +0.2091 &  0.6564 & +3.1860e-01 &  0.7515 &  0.3758 \tabularnewline
School & +0.256 &  0.1707 & +1.5000e+00 &  0.1407 &  0.07034 \tabularnewline
leisure & +0.09523 &  0.307 & +3.1020e-01 &  0.7578 &  0.3789 \tabularnewline
home & +0.5055 &  0.1385 & +3.6490e+00 &  0.0006815 &  0.0003408 \tabularnewline
t & +0.002832 &  0.004563 & +6.2070e-01 &  0.5379 &  0.2689 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+0.2091[/C][C] 0.6564[/C][C]+3.1860e-01[/C][C] 0.7515[/C][C] 0.3758[/C][/ROW]
[ROW][C]School[/C][C]+0.256[/C][C] 0.1707[/C][C]+1.5000e+00[/C][C] 0.1407[/C][C] 0.07034[/C][/ROW]
[ROW][C]leisure[/C][C]+0.09523[/C][C] 0.307[/C][C]+3.1020e-01[/C][C] 0.7578[/C][C] 0.3789[/C][/ROW]
[ROW][C]home[/C][C]+0.5055[/C][C] 0.1385[/C][C]+3.6490e+00[/C][C] 0.0006815[/C][C] 0.0003408[/C][/ROW]
[ROW][C]t[/C][C]+0.002832[/C][C] 0.004563[/C][C]+6.2070e-01[/C][C] 0.5379[/C][C] 0.2689[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+0.2091 0.6564+3.1860e-01 0.7515 0.3758
School+0.256 0.1707+1.5000e+00 0.1407 0.07034
leisure+0.09523 0.307+3.1020e-01 0.7578 0.3789
home+0.5055 0.1385+3.6490e+00 0.0006815 0.0003408
t+0.002832 0.004563+6.2070e-01 0.5379 0.2689







Multiple Linear Regression - Regression Statistics
Multiple R 0.6459
R-squared 0.4172
Adjusted R-squared 0.3654
F-TEST (value) 8.053
F-TEST (DF numerator)4
F-TEST (DF denominator)45
p-value 5.509e-05
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.4589
Sum Squared Residuals 9.475

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.6459 \tabularnewline
R-squared &  0.4172 \tabularnewline
Adjusted R-squared &  0.3654 \tabularnewline
F-TEST (value) &  8.053 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 45 \tabularnewline
p-value &  5.509e-05 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  0.4589 \tabularnewline
Sum Squared Residuals &  9.475 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.6459[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.4172[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.3654[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 8.053[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]45[/C][/ROW]
[ROW][C]p-value[/C][C] 5.509e-05[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 0.4589[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 9.475[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.6459
R-squared 0.4172
Adjusted R-squared 0.3654
F-TEST (value) 8.053
F-TEST (DF numerator)4
F-TEST (DF denominator)45
p-value 5.509e-05
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.4589
Sum Squared Residuals 9.475







Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute

\begin{tabular}{lllllllll}
\hline
Menu of Residual Diagnostics \tabularnewline
Description & Link \tabularnewline
Histogram & Compute \tabularnewline
Central Tendency & Compute \tabularnewline
QQ Plot & Compute \tabularnewline
Kernel Density Plot & Compute \tabularnewline
Skewness/Kurtosis Test & Compute \tabularnewline
Skewness-Kurtosis Plot & Compute \tabularnewline
Harrell-Davis Plot & Compute \tabularnewline
Bootstrap Plot -- Central Tendency & Compute \tabularnewline
Blocked Bootstrap Plot -- Central Tendency & Compute \tabularnewline
(Partial) Autocorrelation Plot & Compute \tabularnewline
Spectral Analysis & Compute \tabularnewline
Tukey lambda PPCC Plot & Compute \tabularnewline
Box-Cox Normality Plot & Compute \tabularnewline
Summary Statistics & Compute \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Menu of Residual Diagnostics[/C][/ROW]
[ROW][C]Description[/C][C]Link[/C][/ROW]
[ROW][C]Histogram[/C][C]Compute[/C][/ROW]
[ROW][C]Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]QQ Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Kernel Density Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness/Kurtosis Test[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness-Kurtosis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Harrell-Davis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]Blocked Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C](Partial) Autocorrelation Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Spectral Analysis[/C][C]Compute[/C][/ROW]
[ROW][C]Tukey lambda PPCC Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Box-Cox Normality Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Summary Statistics[/C][C]Compute[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 1.974 1.446 0.5278
2 1.213 1.64-0.4275
3 1.213 1.452-0.2392
4 1.974 2.225-0.2508
5 1.974 2.037-0.06244
6 2.736 1.821 0.9141
7 2.736 2.042 0.6932
8 1.213 1.604-0.3906
9 2.736 2.627 0.1087
10 2.736 2.603 0.1328
11 1.974 2.054-0.07944
12 2.736 2.221 0.5148
13 1.213 1.454-0.2405
14 2.736 2.253 0.4822
15 1.974 2.065-0.09077
16 2.736 2.041 0.6946
17 1.213 1.492-0.2788
18 1.213 1.632-0.4189
19 1.974 2.049-0.07516
20 1.213 1.473-0.2604
21 1.974 2.661-0.6866
22 1.213 1.533-0.3199
23 1.974 2.088-0.1134
24 2.736 2.064 0.672
25 1.213 1.929-0.7162
26 1.213 1.655-0.4416
27 1.974 2.514-0.5394
28 2.736 2.129 0.6068
29 2.284 2.684-0.3998
30 1.213 1.502-0.2887
31 1.974 2.248-0.2734
32 1.213 1.672-0.4586
33 1.974 2.28-0.306
34 2.736 2.119 0.6167
35 1.974 1.68 0.2942
36 2.736 2.703 0.03218
37 1.974 1.686 0.2886
38 1.974 2.157-0.1829
39 1.974 2.133-0.1587
40 2.736 1.885 0.8502
41 1.974 2.166-0.1914
42 1.974 2.306-0.3314
43 1.213 1.539-0.3255
44 1.974 1.956 0.01823
45 2.736 2.538 0.1978
46 1.974 1.601 0.3734
47 1.974 2.129-0.1545
48 2.736 2.159 0.5771
49 1.974 2.576-0.6017
50 2.736 2.027 0.7087

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  1.974 &  1.446 &  0.5278 \tabularnewline
2 &  1.213 &  1.64 & -0.4275 \tabularnewline
3 &  1.213 &  1.452 & -0.2392 \tabularnewline
4 &  1.974 &  2.225 & -0.2508 \tabularnewline
5 &  1.974 &  2.037 & -0.06244 \tabularnewline
6 &  2.736 &  1.821 &  0.9141 \tabularnewline
7 &  2.736 &  2.042 &  0.6932 \tabularnewline
8 &  1.213 &  1.604 & -0.3906 \tabularnewline
9 &  2.736 &  2.627 &  0.1087 \tabularnewline
10 &  2.736 &  2.603 &  0.1328 \tabularnewline
11 &  1.974 &  2.054 & -0.07944 \tabularnewline
12 &  2.736 &  2.221 &  0.5148 \tabularnewline
13 &  1.213 &  1.454 & -0.2405 \tabularnewline
14 &  2.736 &  2.253 &  0.4822 \tabularnewline
15 &  1.974 &  2.065 & -0.09077 \tabularnewline
16 &  2.736 &  2.041 &  0.6946 \tabularnewline
17 &  1.213 &  1.492 & -0.2788 \tabularnewline
18 &  1.213 &  1.632 & -0.4189 \tabularnewline
19 &  1.974 &  2.049 & -0.07516 \tabularnewline
20 &  1.213 &  1.473 & -0.2604 \tabularnewline
21 &  1.974 &  2.661 & -0.6866 \tabularnewline
22 &  1.213 &  1.533 & -0.3199 \tabularnewline
23 &  1.974 &  2.088 & -0.1134 \tabularnewline
24 &  2.736 &  2.064 &  0.672 \tabularnewline
25 &  1.213 &  1.929 & -0.7162 \tabularnewline
26 &  1.213 &  1.655 & -0.4416 \tabularnewline
27 &  1.974 &  2.514 & -0.5394 \tabularnewline
28 &  2.736 &  2.129 &  0.6068 \tabularnewline
29 &  2.284 &  2.684 & -0.3998 \tabularnewline
30 &  1.213 &  1.502 & -0.2887 \tabularnewline
31 &  1.974 &  2.248 & -0.2734 \tabularnewline
32 &  1.213 &  1.672 & -0.4586 \tabularnewline
33 &  1.974 &  2.28 & -0.306 \tabularnewline
34 &  2.736 &  2.119 &  0.6167 \tabularnewline
35 &  1.974 &  1.68 &  0.2942 \tabularnewline
36 &  2.736 &  2.703 &  0.03218 \tabularnewline
37 &  1.974 &  1.686 &  0.2886 \tabularnewline
38 &  1.974 &  2.157 & -0.1829 \tabularnewline
39 &  1.974 &  2.133 & -0.1587 \tabularnewline
40 &  2.736 &  1.885 &  0.8502 \tabularnewline
41 &  1.974 &  2.166 & -0.1914 \tabularnewline
42 &  1.974 &  2.306 & -0.3314 \tabularnewline
43 &  1.213 &  1.539 & -0.3255 \tabularnewline
44 &  1.974 &  1.956 &  0.01823 \tabularnewline
45 &  2.736 &  2.538 &  0.1978 \tabularnewline
46 &  1.974 &  1.601 &  0.3734 \tabularnewline
47 &  1.974 &  2.129 & -0.1545 \tabularnewline
48 &  2.736 &  2.159 &  0.5771 \tabularnewline
49 &  1.974 &  2.576 & -0.6017 \tabularnewline
50 &  2.736 &  2.027 &  0.7087 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=5

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 1.974[/C][C] 1.446[/C][C] 0.5278[/C][/ROW]
[ROW][C]2[/C][C] 1.213[/C][C] 1.64[/C][C]-0.4275[/C][/ROW]
[ROW][C]3[/C][C] 1.213[/C][C] 1.452[/C][C]-0.2392[/C][/ROW]
[ROW][C]4[/C][C] 1.974[/C][C] 2.225[/C][C]-0.2508[/C][/ROW]
[ROW][C]5[/C][C] 1.974[/C][C] 2.037[/C][C]-0.06244[/C][/ROW]
[ROW][C]6[/C][C] 2.736[/C][C] 1.821[/C][C] 0.9141[/C][/ROW]
[ROW][C]7[/C][C] 2.736[/C][C] 2.042[/C][C] 0.6932[/C][/ROW]
[ROW][C]8[/C][C] 1.213[/C][C] 1.604[/C][C]-0.3906[/C][/ROW]
[ROW][C]9[/C][C] 2.736[/C][C] 2.627[/C][C] 0.1087[/C][/ROW]
[ROW][C]10[/C][C] 2.736[/C][C] 2.603[/C][C] 0.1328[/C][/ROW]
[ROW][C]11[/C][C] 1.974[/C][C] 2.054[/C][C]-0.07944[/C][/ROW]
[ROW][C]12[/C][C] 2.736[/C][C] 2.221[/C][C] 0.5148[/C][/ROW]
[ROW][C]13[/C][C] 1.213[/C][C] 1.454[/C][C]-0.2405[/C][/ROW]
[ROW][C]14[/C][C] 2.736[/C][C] 2.253[/C][C] 0.4822[/C][/ROW]
[ROW][C]15[/C][C] 1.974[/C][C] 2.065[/C][C]-0.09077[/C][/ROW]
[ROW][C]16[/C][C] 2.736[/C][C] 2.041[/C][C] 0.6946[/C][/ROW]
[ROW][C]17[/C][C] 1.213[/C][C] 1.492[/C][C]-0.2788[/C][/ROW]
[ROW][C]18[/C][C] 1.213[/C][C] 1.632[/C][C]-0.4189[/C][/ROW]
[ROW][C]19[/C][C] 1.974[/C][C] 2.049[/C][C]-0.07516[/C][/ROW]
[ROW][C]20[/C][C] 1.213[/C][C] 1.473[/C][C]-0.2604[/C][/ROW]
[ROW][C]21[/C][C] 1.974[/C][C] 2.661[/C][C]-0.6866[/C][/ROW]
[ROW][C]22[/C][C] 1.213[/C][C] 1.533[/C][C]-0.3199[/C][/ROW]
[ROW][C]23[/C][C] 1.974[/C][C] 2.088[/C][C]-0.1134[/C][/ROW]
[ROW][C]24[/C][C] 2.736[/C][C] 2.064[/C][C] 0.672[/C][/ROW]
[ROW][C]25[/C][C] 1.213[/C][C] 1.929[/C][C]-0.7162[/C][/ROW]
[ROW][C]26[/C][C] 1.213[/C][C] 1.655[/C][C]-0.4416[/C][/ROW]
[ROW][C]27[/C][C] 1.974[/C][C] 2.514[/C][C]-0.5394[/C][/ROW]
[ROW][C]28[/C][C] 2.736[/C][C] 2.129[/C][C] 0.6068[/C][/ROW]
[ROW][C]29[/C][C] 2.284[/C][C] 2.684[/C][C]-0.3998[/C][/ROW]
[ROW][C]30[/C][C] 1.213[/C][C] 1.502[/C][C]-0.2887[/C][/ROW]
[ROW][C]31[/C][C] 1.974[/C][C] 2.248[/C][C]-0.2734[/C][/ROW]
[ROW][C]32[/C][C] 1.213[/C][C] 1.672[/C][C]-0.4586[/C][/ROW]
[ROW][C]33[/C][C] 1.974[/C][C] 2.28[/C][C]-0.306[/C][/ROW]
[ROW][C]34[/C][C] 2.736[/C][C] 2.119[/C][C] 0.6167[/C][/ROW]
[ROW][C]35[/C][C] 1.974[/C][C] 1.68[/C][C] 0.2942[/C][/ROW]
[ROW][C]36[/C][C] 2.736[/C][C] 2.703[/C][C] 0.03218[/C][/ROW]
[ROW][C]37[/C][C] 1.974[/C][C] 1.686[/C][C] 0.2886[/C][/ROW]
[ROW][C]38[/C][C] 1.974[/C][C] 2.157[/C][C]-0.1829[/C][/ROW]
[ROW][C]39[/C][C] 1.974[/C][C] 2.133[/C][C]-0.1587[/C][/ROW]
[ROW][C]40[/C][C] 2.736[/C][C] 1.885[/C][C] 0.8502[/C][/ROW]
[ROW][C]41[/C][C] 1.974[/C][C] 2.166[/C][C]-0.1914[/C][/ROW]
[ROW][C]42[/C][C] 1.974[/C][C] 2.306[/C][C]-0.3314[/C][/ROW]
[ROW][C]43[/C][C] 1.213[/C][C] 1.539[/C][C]-0.3255[/C][/ROW]
[ROW][C]44[/C][C] 1.974[/C][C] 1.956[/C][C] 0.01823[/C][/ROW]
[ROW][C]45[/C][C] 2.736[/C][C] 2.538[/C][C] 0.1978[/C][/ROW]
[ROW][C]46[/C][C] 1.974[/C][C] 1.601[/C][C] 0.3734[/C][/ROW]
[ROW][C]47[/C][C] 1.974[/C][C] 2.129[/C][C]-0.1545[/C][/ROW]
[ROW][C]48[/C][C] 2.736[/C][C] 2.159[/C][C] 0.5771[/C][/ROW]
[ROW][C]49[/C][C] 1.974[/C][C] 2.576[/C][C]-0.6017[/C][/ROW]
[ROW][C]50[/C][C] 2.736[/C][C] 2.027[/C][C] 0.7087[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 1.974 1.446 0.5278
2 1.213 1.64-0.4275
3 1.213 1.452-0.2392
4 1.974 2.225-0.2508
5 1.974 2.037-0.06244
6 2.736 1.821 0.9141
7 2.736 2.042 0.6932
8 1.213 1.604-0.3906
9 2.736 2.627 0.1087
10 2.736 2.603 0.1328
11 1.974 2.054-0.07944
12 2.736 2.221 0.5148
13 1.213 1.454-0.2405
14 2.736 2.253 0.4822
15 1.974 2.065-0.09077
16 2.736 2.041 0.6946
17 1.213 1.492-0.2788
18 1.213 1.632-0.4189
19 1.974 2.049-0.07516
20 1.213 1.473-0.2604
21 1.974 2.661-0.6866
22 1.213 1.533-0.3199
23 1.974 2.088-0.1134
24 2.736 2.064 0.672
25 1.213 1.929-0.7162
26 1.213 1.655-0.4416
27 1.974 2.514-0.5394
28 2.736 2.129 0.6068
29 2.284 2.684-0.3998
30 1.213 1.502-0.2887
31 1.974 2.248-0.2734
32 1.213 1.672-0.4586
33 1.974 2.28-0.306
34 2.736 2.119 0.6167
35 1.974 1.68 0.2942
36 2.736 2.703 0.03218
37 1.974 1.686 0.2886
38 1.974 2.157-0.1829
39 1.974 2.133-0.1587
40 2.736 1.885 0.8502
41 1.974 2.166-0.1914
42 1.974 2.306-0.3314
43 1.213 1.539-0.3255
44 1.974 1.956 0.01823
45 2.736 2.538 0.1978
46 1.974 1.601 0.3734
47 1.974 2.129-0.1545
48 2.736 2.159 0.5771
49 1.974 2.576-0.6017
50 2.736 2.027 0.7087







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.6136 0.7727 0.3864
9 0.4901 0.9802 0.5099
10 0.3608 0.7216 0.6392
11 0.2428 0.4856 0.7572
12 0.5252 0.9497 0.4748
13 0.4734 0.9469 0.5266
14 0.5495 0.901 0.4505
15 0.4917 0.9833 0.5083
16 0.6146 0.7708 0.3854
17 0.5524 0.8952 0.4476
18 0.4806 0.9611 0.5194
19 0.4248 0.8496 0.5752
20 0.3401 0.6802 0.6599
21 0.4629 0.9257 0.5371
22 0.3969 0.7938 0.6031
23 0.3135 0.627 0.6865
24 0.6046 0.7908 0.3954
25 0.6355 0.729 0.3645
26 0.5744 0.8511 0.4256
27 0.5271 0.9457 0.4729
28 0.7369 0.5263 0.2631
29 0.6674 0.6653 0.3326
30 0.5834 0.8333 0.4166
31 0.4911 0.9821 0.5089
32 0.4857 0.9714 0.5143
33 0.4403 0.8806 0.5597
34 0.5992 0.8016 0.4008
35 0.552 0.896 0.448
36 0.5134 0.9732 0.4866
37 0.4583 0.9167 0.5417
38 0.3454 0.6908 0.6546
39 0.2408 0.4816 0.7592
40 0.4601 0.9203 0.5399
41 0.3253 0.6505 0.6747
42 0.21 0.4199 0.79

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.6136 &  0.7727 &  0.3864 \tabularnewline
9 &  0.4901 &  0.9802 &  0.5099 \tabularnewline
10 &  0.3608 &  0.7216 &  0.6392 \tabularnewline
11 &  0.2428 &  0.4856 &  0.7572 \tabularnewline
12 &  0.5252 &  0.9497 &  0.4748 \tabularnewline
13 &  0.4734 &  0.9469 &  0.5266 \tabularnewline
14 &  0.5495 &  0.901 &  0.4505 \tabularnewline
15 &  0.4917 &  0.9833 &  0.5083 \tabularnewline
16 &  0.6146 &  0.7708 &  0.3854 \tabularnewline
17 &  0.5524 &  0.8952 &  0.4476 \tabularnewline
18 &  0.4806 &  0.9611 &  0.5194 \tabularnewline
19 &  0.4248 &  0.8496 &  0.5752 \tabularnewline
20 &  0.3401 &  0.6802 &  0.6599 \tabularnewline
21 &  0.4629 &  0.9257 &  0.5371 \tabularnewline
22 &  0.3969 &  0.7938 &  0.6031 \tabularnewline
23 &  0.3135 &  0.627 &  0.6865 \tabularnewline
24 &  0.6046 &  0.7908 &  0.3954 \tabularnewline
25 &  0.6355 &  0.729 &  0.3645 \tabularnewline
26 &  0.5744 &  0.8511 &  0.4256 \tabularnewline
27 &  0.5271 &  0.9457 &  0.4729 \tabularnewline
28 &  0.7369 &  0.5263 &  0.2631 \tabularnewline
29 &  0.6674 &  0.6653 &  0.3326 \tabularnewline
30 &  0.5834 &  0.8333 &  0.4166 \tabularnewline
31 &  0.4911 &  0.9821 &  0.5089 \tabularnewline
32 &  0.4857 &  0.9714 &  0.5143 \tabularnewline
33 &  0.4403 &  0.8806 &  0.5597 \tabularnewline
34 &  0.5992 &  0.8016 &  0.4008 \tabularnewline
35 &  0.552 &  0.896 &  0.448 \tabularnewline
36 &  0.5134 &  0.9732 &  0.4866 \tabularnewline
37 &  0.4583 &  0.9167 &  0.5417 \tabularnewline
38 &  0.3454 &  0.6908 &  0.6546 \tabularnewline
39 &  0.2408 &  0.4816 &  0.7592 \tabularnewline
40 &  0.4601 &  0.9203 &  0.5399 \tabularnewline
41 &  0.3253 &  0.6505 &  0.6747 \tabularnewline
42 &  0.21 &  0.4199 &  0.79 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=6

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.6136[/C][C] 0.7727[/C][C] 0.3864[/C][/ROW]
[ROW][C]9[/C][C] 0.4901[/C][C] 0.9802[/C][C] 0.5099[/C][/ROW]
[ROW][C]10[/C][C] 0.3608[/C][C] 0.7216[/C][C] 0.6392[/C][/ROW]
[ROW][C]11[/C][C] 0.2428[/C][C] 0.4856[/C][C] 0.7572[/C][/ROW]
[ROW][C]12[/C][C] 0.5252[/C][C] 0.9497[/C][C] 0.4748[/C][/ROW]
[ROW][C]13[/C][C] 0.4734[/C][C] 0.9469[/C][C] 0.5266[/C][/ROW]
[ROW][C]14[/C][C] 0.5495[/C][C] 0.901[/C][C] 0.4505[/C][/ROW]
[ROW][C]15[/C][C] 0.4917[/C][C] 0.9833[/C][C] 0.5083[/C][/ROW]
[ROW][C]16[/C][C] 0.6146[/C][C] 0.7708[/C][C] 0.3854[/C][/ROW]
[ROW][C]17[/C][C] 0.5524[/C][C] 0.8952[/C][C] 0.4476[/C][/ROW]
[ROW][C]18[/C][C] 0.4806[/C][C] 0.9611[/C][C] 0.5194[/C][/ROW]
[ROW][C]19[/C][C] 0.4248[/C][C] 0.8496[/C][C] 0.5752[/C][/ROW]
[ROW][C]20[/C][C] 0.3401[/C][C] 0.6802[/C][C] 0.6599[/C][/ROW]
[ROW][C]21[/C][C] 0.4629[/C][C] 0.9257[/C][C] 0.5371[/C][/ROW]
[ROW][C]22[/C][C] 0.3969[/C][C] 0.7938[/C][C] 0.6031[/C][/ROW]
[ROW][C]23[/C][C] 0.3135[/C][C] 0.627[/C][C] 0.6865[/C][/ROW]
[ROW][C]24[/C][C] 0.6046[/C][C] 0.7908[/C][C] 0.3954[/C][/ROW]
[ROW][C]25[/C][C] 0.6355[/C][C] 0.729[/C][C] 0.3645[/C][/ROW]
[ROW][C]26[/C][C] 0.5744[/C][C] 0.8511[/C][C] 0.4256[/C][/ROW]
[ROW][C]27[/C][C] 0.5271[/C][C] 0.9457[/C][C] 0.4729[/C][/ROW]
[ROW][C]28[/C][C] 0.7369[/C][C] 0.5263[/C][C] 0.2631[/C][/ROW]
[ROW][C]29[/C][C] 0.6674[/C][C] 0.6653[/C][C] 0.3326[/C][/ROW]
[ROW][C]30[/C][C] 0.5834[/C][C] 0.8333[/C][C] 0.4166[/C][/ROW]
[ROW][C]31[/C][C] 0.4911[/C][C] 0.9821[/C][C] 0.5089[/C][/ROW]
[ROW][C]32[/C][C] 0.4857[/C][C] 0.9714[/C][C] 0.5143[/C][/ROW]
[ROW][C]33[/C][C] 0.4403[/C][C] 0.8806[/C][C] 0.5597[/C][/ROW]
[ROW][C]34[/C][C] 0.5992[/C][C] 0.8016[/C][C] 0.4008[/C][/ROW]
[ROW][C]35[/C][C] 0.552[/C][C] 0.896[/C][C] 0.448[/C][/ROW]
[ROW][C]36[/C][C] 0.5134[/C][C] 0.9732[/C][C] 0.4866[/C][/ROW]
[ROW][C]37[/C][C] 0.4583[/C][C] 0.9167[/C][C] 0.5417[/C][/ROW]
[ROW][C]38[/C][C] 0.3454[/C][C] 0.6908[/C][C] 0.6546[/C][/ROW]
[ROW][C]39[/C][C] 0.2408[/C][C] 0.4816[/C][C] 0.7592[/C][/ROW]
[ROW][C]40[/C][C] 0.4601[/C][C] 0.9203[/C][C] 0.5399[/C][/ROW]
[ROW][C]41[/C][C] 0.3253[/C][C] 0.6505[/C][C] 0.6747[/C][/ROW]
[ROW][C]42[/C][C] 0.21[/C][C] 0.4199[/C][C] 0.79[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.6136 0.7727 0.3864
9 0.4901 0.9802 0.5099
10 0.3608 0.7216 0.6392
11 0.2428 0.4856 0.7572
12 0.5252 0.9497 0.4748
13 0.4734 0.9469 0.5266
14 0.5495 0.901 0.4505
15 0.4917 0.9833 0.5083
16 0.6146 0.7708 0.3854
17 0.5524 0.8952 0.4476
18 0.4806 0.9611 0.5194
19 0.4248 0.8496 0.5752
20 0.3401 0.6802 0.6599
21 0.4629 0.9257 0.5371
22 0.3969 0.7938 0.6031
23 0.3135 0.627 0.6865
24 0.6046 0.7908 0.3954
25 0.6355 0.729 0.3645
26 0.5744 0.8511 0.4256
27 0.5271 0.9457 0.4729
28 0.7369 0.5263 0.2631
29 0.6674 0.6653 0.3326
30 0.5834 0.8333 0.4166
31 0.4911 0.9821 0.5089
32 0.4857 0.9714 0.5143
33 0.4403 0.8806 0.5597
34 0.5992 0.8016 0.4008
35 0.552 0.896 0.448
36 0.5134 0.9732 0.4866
37 0.4583 0.9167 0.5417
38 0.3454 0.6908 0.6546
39 0.2408 0.4816 0.7592
40 0.4601 0.9203 0.5399
41 0.3253 0.6505 0.6747
42 0.21 0.4199 0.79







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 0 & 0 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=7

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level00OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.6937, df1 = 2, df2 = 43, p-value = 0.03309
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4249, df1 = 8, df2 = 37, p-value = 0.2188
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.4641, df1 = 2, df2 = 43, p-value = 0.2426

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.6937, df1 = 2, df2 = 43, p-value = 0.03309
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4249, df1 = 8, df2 = 37, p-value = 0.2188
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.4641, df1 = 2, df2 = 43, p-value = 0.2426
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=8

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.6937, df1 = 2, df2 = 43, p-value = 0.03309
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4249, df1 = 8, df2 = 37, p-value = 0.2188
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.4641, df1 = 2, df2 = 43, p-value = 0.2426
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 3.6937, df1 = 2, df2 = 43, p-value = 0.03309
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.4249, df1 = 8, df2 = 37, p-value = 0.2188
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.4641, df1 = 2, df2 = 43, p-value = 0.2426







Variance Inflation Factors (Multicollinearity)
> vif
  School  leisure     home        t 
1.422363 1.023579 1.433985 1.029700 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
  School  leisure     home        t 
1.422363 1.023579 1.433985 1.029700 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=9

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
  School  leisure     home        t 
1.422363 1.023579 1.433985 1.029700 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=9

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=9

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
  School  leisure     home        t 
1.422363 1.023579 1.433985 1.029700 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = 1 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = 1 ;
R code (references can be found in the software module):
par6 <- '1'
par5 <- '0'
par4 <- '0'
par3 <- 'Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par6 <- as.numeric(par6)
if(is.na(par6)) {
par6 <- 12
mywarning = 'Warning: you did not specify the seasonality. The seasonal period was set to s = 12.'
}
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (!is.numeric(par4)) par4 <- 0
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
if (!is.numeric(par5)) par5 <- 0
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s)'){
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*par6,par5), dimnames=list(1:(n-par5*par6), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*par6)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*par6-j*par6,par1]
}
}
x <- cbind(x[(par5*par6+1):n,], x2)
n <- n - par5*par6
}
if (par2 == 'Include Seasonal Dummies'){
x2 <- array(0, dim=c(n,par6-1), dimnames=list(1:n, paste('M', seq(1:(par6-1)), sep ='')))
for (i in 1:(par6-1)){
x2[seq(i,n,par6),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
a <-table.start()
a <- table.row.start(a)
a <- table.element(a,'Menu of Residual Diagnostics',2,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Description',1,TRUE)
a <- table.element(a,'Link',1,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Histogram',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_histogram.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_centraltendency.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'QQ Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_fitdistrnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Kernel Density Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_density.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness/Kurtosis Test',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness-Kurtosis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis_plot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Harrell-Davis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_harrell_davis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Blocked Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'(Partial) Autocorrelation Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_autocorrelation.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Spectral Analysis',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_spectrum.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Tukey lambda PPCC Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_tukeylambda.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Box-Cox Normality Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_boxcoxnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Summary Statistics',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_summary1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable7.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')