Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 24 Jan 2018 07:35:37 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2018/Jan/24/t1516775746zj3m6veb3ra2ufi.htm/, Retrieved Mon, 06 May 2024 03:31:42 +0200
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Mon, 06 May 2024 03:31:42 +0200
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
46.4 68.5
45.7 87.8
45.3 115.8
38.6 106.8
37.2 71.6
35 60.2
34 118.7
28.3 33.7
24.7 27.2
24.7 62
24.4 24.9
22.7 22.9
22.3 65.7
21.7 21.6
21.6 32.4
21.3 108.7
21.2 38.6
20.8 46.7
20.3 56.5
18.9 44.4
18.8 47.4
18.6 21.7
18 55.7
17.6 27.1
17 28.5
16.7 41.6
15.9 44.6
15.3 26.1
15 18.7
14.8 49.1




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center
R Engine error message
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time5 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
R Engine error message & 
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]5 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [ROW]R Engine error message[/C][C]
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center
R Engine error message
Error in vif.default(mylm) : model contains fewer than 2 terms
Calls: vif -> vif.default
Execution halted







Multiple Linear Regression - Estimated Regression Equation
HIV_Risk[t] = + 13.4324 + 0.215737Homicides[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
HIV_Risk[t] =  +  13.4324 +  0.215737Homicides[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]HIV_Risk[t] =  +  13.4324 +  0.215737Homicides[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
HIV_Risk[t] = + 13.4324 + 0.215737Homicides[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+13.43 2.751+4.8820e+00 3.83e-05 1.915e-05
Homicides+0.2157 0.04587+4.7030e+00 6.245e-05 3.123e-05

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +13.43 &  2.751 & +4.8820e+00 &  3.83e-05 &  1.915e-05 \tabularnewline
Homicides & +0.2157 &  0.04587 & +4.7030e+00 &  6.245e-05 &  3.123e-05 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+13.43[/C][C] 2.751[/C][C]+4.8820e+00[/C][C] 3.83e-05[/C][C] 1.915e-05[/C][/ROW]
[ROW][C]Homicides[/C][C]+0.2157[/C][C] 0.04587[/C][C]+4.7030e+00[/C][C] 6.245e-05[/C][C] 3.123e-05[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+13.43 2.751+4.8820e+00 3.83e-05 1.915e-05
Homicides+0.2157 0.04587+4.7030e+00 6.245e-05 3.123e-05







Multiple Linear Regression - Regression Statistics
Multiple R 0.6643
R-squared 0.4413
Adjusted R-squared 0.4214
F-TEST (value) 22.12
F-TEST (DF numerator)1
F-TEST (DF denominator)28
p-value 6.245e-05
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 7.285
Sum Squared Residuals 1486

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.6643 \tabularnewline
R-squared &  0.4413 \tabularnewline
Adjusted R-squared &  0.4214 \tabularnewline
F-TEST (value) &  22.12 \tabularnewline
F-TEST (DF numerator) & 1 \tabularnewline
F-TEST (DF denominator) & 28 \tabularnewline
p-value &  6.245e-05 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  7.285 \tabularnewline
Sum Squared Residuals &  1486 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.6643[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.4413[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.4214[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 22.12[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]1[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]28[/C][/ROW]
[ROW][C]p-value[/C][C] 6.245e-05[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 7.285[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 1486[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.6643
R-squared 0.4413
Adjusted R-squared 0.4214
F-TEST (value) 22.12
F-TEST (DF numerator)1
F-TEST (DF denominator)28
p-value 6.245e-05
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 7.285
Sum Squared Residuals 1486







Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute

\begin{tabular}{lllllllll}
\hline
Menu of Residual Diagnostics \tabularnewline
Description & Link \tabularnewline
Histogram & Compute \tabularnewline
Central Tendency & Compute \tabularnewline
QQ Plot & Compute \tabularnewline
Kernel Density Plot & Compute \tabularnewline
Skewness/Kurtosis Test & Compute \tabularnewline
Skewness-Kurtosis Plot & Compute \tabularnewline
Harrell-Davis Plot & Compute \tabularnewline
Bootstrap Plot -- Central Tendency & Compute \tabularnewline
Blocked Bootstrap Plot -- Central Tendency & Compute \tabularnewline
(Partial) Autocorrelation Plot & Compute \tabularnewline
Spectral Analysis & Compute \tabularnewline
Tukey lambda PPCC Plot & Compute \tabularnewline
Box-Cox Normality Plot & Compute \tabularnewline
Summary Statistics & Compute \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Menu of Residual Diagnostics[/C][/ROW]
[ROW][C]Description[/C][C]Link[/C][/ROW]
[ROW][C]Histogram[/C][C]Compute[/C][/ROW]
[ROW][C]Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]QQ Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Kernel Density Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness/Kurtosis Test[/C][C]Compute[/C][/ROW]
[ROW][C]Skewness-Kurtosis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Harrell-Davis Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C]Blocked Bootstrap Plot -- Central Tendency[/C][C]Compute[/C][/ROW]
[ROW][C](Partial) Autocorrelation Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Spectral Analysis[/C][C]Compute[/C][/ROW]
[ROW][C]Tukey lambda PPCC Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Box-Cox Normality Plot[/C][C]Compute[/C][/ROW]
[ROW][C]Summary Statistics[/C][C]Compute[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Menu of Residual Diagnostics
DescriptionLink
HistogramCompute
Central TendencyCompute
QQ PlotCompute
Kernel Density PlotCompute
Skewness/Kurtosis TestCompute
Skewness-Kurtosis PlotCompute
Harrell-Davis PlotCompute
Bootstrap Plot -- Central TendencyCompute
Blocked Bootstrap Plot -- Central TendencyCompute
(Partial) Autocorrelation PlotCompute
Spectral AnalysisCompute
Tukey lambda PPCC PlotCompute
Box-Cox Normality PlotCompute
Summary StatisticsCompute







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 46.4 28.21 18.19
2 45.7 32.37 13.33
3 45.3 38.41 6.885
4 38.6 36.47 2.127
5 37.2 28.88 8.321
6 35 26.42 8.58
7 34 39.04-5.04
8 28.3 20.7 7.597
9 24.7 19.3 5.4
10 24.7 26.81-2.108
11 24.4 18.8 5.596
12 22.7 18.37 4.327
13 22.3 27.61-5.306
14 21.7 18.09 3.608
15 21.6 20.42 1.178
16 21.3 36.88-15.58
17 21.2 21.76-0.5598
18 20.8 23.51-2.707
19 20.3 25.62-5.322
20 18.9 23.01-4.111
21 18.8 23.66-4.858
22 18.6 18.11 0.4861
23 18 25.45-7.449
24 17.6 19.28-1.679
25 17 19.58-2.581
26 16.7 22.41-5.707
27 15.9 23.05-7.154
28 15.3 19.06-3.763
29 15 17.47-2.467
30 14.8 24.03-9.225

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  46.4 &  28.21 &  18.19 \tabularnewline
2 &  45.7 &  32.37 &  13.33 \tabularnewline
3 &  45.3 &  38.41 &  6.885 \tabularnewline
4 &  38.6 &  36.47 &  2.127 \tabularnewline
5 &  37.2 &  28.88 &  8.321 \tabularnewline
6 &  35 &  26.42 &  8.58 \tabularnewline
7 &  34 &  39.04 & -5.04 \tabularnewline
8 &  28.3 &  20.7 &  7.597 \tabularnewline
9 &  24.7 &  19.3 &  5.4 \tabularnewline
10 &  24.7 &  26.81 & -2.108 \tabularnewline
11 &  24.4 &  18.8 &  5.596 \tabularnewline
12 &  22.7 &  18.37 &  4.327 \tabularnewline
13 &  22.3 &  27.61 & -5.306 \tabularnewline
14 &  21.7 &  18.09 &  3.608 \tabularnewline
15 &  21.6 &  20.42 &  1.178 \tabularnewline
16 &  21.3 &  36.88 & -15.58 \tabularnewline
17 &  21.2 &  21.76 & -0.5598 \tabularnewline
18 &  20.8 &  23.51 & -2.707 \tabularnewline
19 &  20.3 &  25.62 & -5.322 \tabularnewline
20 &  18.9 &  23.01 & -4.111 \tabularnewline
21 &  18.8 &  23.66 & -4.858 \tabularnewline
22 &  18.6 &  18.11 &  0.4861 \tabularnewline
23 &  18 &  25.45 & -7.449 \tabularnewline
24 &  17.6 &  19.28 & -1.679 \tabularnewline
25 &  17 &  19.58 & -2.581 \tabularnewline
26 &  16.7 &  22.41 & -5.707 \tabularnewline
27 &  15.9 &  23.05 & -7.154 \tabularnewline
28 &  15.3 &  19.06 & -3.763 \tabularnewline
29 &  15 &  17.47 & -2.467 \tabularnewline
30 &  14.8 &  24.03 & -9.225 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=5

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 46.4[/C][C] 28.21[/C][C] 18.19[/C][/ROW]
[ROW][C]2[/C][C] 45.7[/C][C] 32.37[/C][C] 13.33[/C][/ROW]
[ROW][C]3[/C][C] 45.3[/C][C] 38.41[/C][C] 6.885[/C][/ROW]
[ROW][C]4[/C][C] 38.6[/C][C] 36.47[/C][C] 2.127[/C][/ROW]
[ROW][C]5[/C][C] 37.2[/C][C] 28.88[/C][C] 8.321[/C][/ROW]
[ROW][C]6[/C][C] 35[/C][C] 26.42[/C][C] 8.58[/C][/ROW]
[ROW][C]7[/C][C] 34[/C][C] 39.04[/C][C]-5.04[/C][/ROW]
[ROW][C]8[/C][C] 28.3[/C][C] 20.7[/C][C] 7.597[/C][/ROW]
[ROW][C]9[/C][C] 24.7[/C][C] 19.3[/C][C] 5.4[/C][/ROW]
[ROW][C]10[/C][C] 24.7[/C][C] 26.81[/C][C]-2.108[/C][/ROW]
[ROW][C]11[/C][C] 24.4[/C][C] 18.8[/C][C] 5.596[/C][/ROW]
[ROW][C]12[/C][C] 22.7[/C][C] 18.37[/C][C] 4.327[/C][/ROW]
[ROW][C]13[/C][C] 22.3[/C][C] 27.61[/C][C]-5.306[/C][/ROW]
[ROW][C]14[/C][C] 21.7[/C][C] 18.09[/C][C] 3.608[/C][/ROW]
[ROW][C]15[/C][C] 21.6[/C][C] 20.42[/C][C] 1.178[/C][/ROW]
[ROW][C]16[/C][C] 21.3[/C][C] 36.88[/C][C]-15.58[/C][/ROW]
[ROW][C]17[/C][C] 21.2[/C][C] 21.76[/C][C]-0.5598[/C][/ROW]
[ROW][C]18[/C][C] 20.8[/C][C] 23.51[/C][C]-2.707[/C][/ROW]
[ROW][C]19[/C][C] 20.3[/C][C] 25.62[/C][C]-5.322[/C][/ROW]
[ROW][C]20[/C][C] 18.9[/C][C] 23.01[/C][C]-4.111[/C][/ROW]
[ROW][C]21[/C][C] 18.8[/C][C] 23.66[/C][C]-4.858[/C][/ROW]
[ROW][C]22[/C][C] 18.6[/C][C] 18.11[/C][C] 0.4861[/C][/ROW]
[ROW][C]23[/C][C] 18[/C][C] 25.45[/C][C]-7.449[/C][/ROW]
[ROW][C]24[/C][C] 17.6[/C][C] 19.28[/C][C]-1.679[/C][/ROW]
[ROW][C]25[/C][C] 17[/C][C] 19.58[/C][C]-2.581[/C][/ROW]
[ROW][C]26[/C][C] 16.7[/C][C] 22.41[/C][C]-5.707[/C][/ROW]
[ROW][C]27[/C][C] 15.9[/C][C] 23.05[/C][C]-7.154[/C][/ROW]
[ROW][C]28[/C][C] 15.3[/C][C] 19.06[/C][C]-3.763[/C][/ROW]
[ROW][C]29[/C][C] 15[/C][C] 17.47[/C][C]-2.467[/C][/ROW]
[ROW][C]30[/C][C] 14.8[/C][C] 24.03[/C][C]-9.225[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 46.4 28.21 18.19
2 45.7 32.37 13.33
3 45.3 38.41 6.885
4 38.6 36.47 2.127
5 37.2 28.88 8.321
6 35 26.42 8.58
7 34 39.04-5.04
8 28.3 20.7 7.597
9 24.7 19.3 5.4
10 24.7 26.81-2.108
11 24.4 18.8 5.596
12 22.7 18.37 4.327
13 22.3 27.61-5.306
14 21.7 18.09 3.608
15 21.6 20.42 1.178
16 21.3 36.88-15.58
17 21.2 21.76-0.5598
18 20.8 23.51-2.707
19 20.3 25.62-5.322
20 18.9 23.01-4.111
21 18.8 23.66-4.858
22 18.6 18.11 0.4861
23 18 25.45-7.449
24 17.6 19.28-1.679
25 17 19.58-2.581
26 16.7 22.41-5.707
27 15.9 23.05-7.154
28 15.3 19.06-3.763
29 15 17.47-2.467
30 14.8 24.03-9.225







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5 0.6282 0.7436 0.3718
6 0.7906 0.4188 0.2094
7 0.9443 0.1115 0.05573
8 0.9913 0.01737 0.008685
9 0.9963 0.007445 0.003722
10 0.9991 0.001767 0.0008833
11 0.9995 0.0009293 0.0004647
12 0.9997 0.0006398 0.0003199
13 0.9999 0.0002498 0.0001249
14 0.9999 0.0001917 9.586e-05
15 0.9999 0.000114 5.699e-05
16 1 3.492e-05 1.746e-05
17 1 2.785e-05 1.393e-05
18 1 2.879e-05 1.439e-05
19 1 3.754e-05 1.877e-05
20 1 8.458e-05 4.229e-05
21 0.9999 0.0001645 8.223e-05
22 0.9999 0.0002471 0.0001235
23 0.9997 0.0005692 0.0002846
24 0.9993 0.001434 0.0007172
25 0.9979 0.004291 0.002146

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
5 &  0.6282 &  0.7436 &  0.3718 \tabularnewline
6 &  0.7906 &  0.4188 &  0.2094 \tabularnewline
7 &  0.9443 &  0.1115 &  0.05573 \tabularnewline
8 &  0.9913 &  0.01737 &  0.008685 \tabularnewline
9 &  0.9963 &  0.007445 &  0.003722 \tabularnewline
10 &  0.9991 &  0.001767 &  0.0008833 \tabularnewline
11 &  0.9995 &  0.0009293 &  0.0004647 \tabularnewline
12 &  0.9997 &  0.0006398 &  0.0003199 \tabularnewline
13 &  0.9999 &  0.0002498 &  0.0001249 \tabularnewline
14 &  0.9999 &  0.0001917 &  9.586e-05 \tabularnewline
15 &  0.9999 &  0.000114 &  5.699e-05 \tabularnewline
16 &  1 &  3.492e-05 &  1.746e-05 \tabularnewline
17 &  1 &  2.785e-05 &  1.393e-05 \tabularnewline
18 &  1 &  2.879e-05 &  1.439e-05 \tabularnewline
19 &  1 &  3.754e-05 &  1.877e-05 \tabularnewline
20 &  1 &  8.458e-05 &  4.229e-05 \tabularnewline
21 &  0.9999 &  0.0001645 &  8.223e-05 \tabularnewline
22 &  0.9999 &  0.0002471 &  0.0001235 \tabularnewline
23 &  0.9997 &  0.0005692 &  0.0002846 \tabularnewline
24 &  0.9993 &  0.001434 &  0.0007172 \tabularnewline
25 &  0.9979 &  0.004291 &  0.002146 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=6

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]5[/C][C] 0.6282[/C][C] 0.7436[/C][C] 0.3718[/C][/ROW]
[ROW][C]6[/C][C] 0.7906[/C][C] 0.4188[/C][C] 0.2094[/C][/ROW]
[ROW][C]7[/C][C] 0.9443[/C][C] 0.1115[/C][C] 0.05573[/C][/ROW]
[ROW][C]8[/C][C] 0.9913[/C][C] 0.01737[/C][C] 0.008685[/C][/ROW]
[ROW][C]9[/C][C] 0.9963[/C][C] 0.007445[/C][C] 0.003722[/C][/ROW]
[ROW][C]10[/C][C] 0.9991[/C][C] 0.001767[/C][C] 0.0008833[/C][/ROW]
[ROW][C]11[/C][C] 0.9995[/C][C] 0.0009293[/C][C] 0.0004647[/C][/ROW]
[ROW][C]12[/C][C] 0.9997[/C][C] 0.0006398[/C][C] 0.0003199[/C][/ROW]
[ROW][C]13[/C][C] 0.9999[/C][C] 0.0002498[/C][C] 0.0001249[/C][/ROW]
[ROW][C]14[/C][C] 0.9999[/C][C] 0.0001917[/C][C] 9.586e-05[/C][/ROW]
[ROW][C]15[/C][C] 0.9999[/C][C] 0.000114[/C][C] 5.699e-05[/C][/ROW]
[ROW][C]16[/C][C] 1[/C][C] 3.492e-05[/C][C] 1.746e-05[/C][/ROW]
[ROW][C]17[/C][C] 1[/C][C] 2.785e-05[/C][C] 1.393e-05[/C][/ROW]
[ROW][C]18[/C][C] 1[/C][C] 2.879e-05[/C][C] 1.439e-05[/C][/ROW]
[ROW][C]19[/C][C] 1[/C][C] 3.754e-05[/C][C] 1.877e-05[/C][/ROW]
[ROW][C]20[/C][C] 1[/C][C] 8.458e-05[/C][C] 4.229e-05[/C][/ROW]
[ROW][C]21[/C][C] 0.9999[/C][C] 0.0001645[/C][C] 8.223e-05[/C][/ROW]
[ROW][C]22[/C][C] 0.9999[/C][C] 0.0002471[/C][C] 0.0001235[/C][/ROW]
[ROW][C]23[/C][C] 0.9997[/C][C] 0.0005692[/C][C] 0.0002846[/C][/ROW]
[ROW][C]24[/C][C] 0.9993[/C][C] 0.001434[/C][C] 0.0007172[/C][/ROW]
[ROW][C]25[/C][C] 0.9979[/C][C] 0.004291[/C][C] 0.002146[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
5 0.6282 0.7436 0.3718
6 0.7906 0.4188 0.2094
7 0.9443 0.1115 0.05573
8 0.9913 0.01737 0.008685
9 0.9963 0.007445 0.003722
10 0.9991 0.001767 0.0008833
11 0.9995 0.0009293 0.0004647
12 0.9997 0.0006398 0.0003199
13 0.9999 0.0002498 0.0001249
14 0.9999 0.0001917 9.586e-05
15 0.9999 0.000114 5.699e-05
16 1 3.492e-05 1.746e-05
17 1 2.785e-05 1.393e-05
18 1 2.879e-05 1.439e-05
19 1 3.754e-05 1.877e-05
20 1 8.458e-05 4.229e-05
21 0.9999 0.0001645 8.223e-05
22 0.9999 0.0002471 0.0001235
23 0.9997 0.0005692 0.0002846
24 0.9993 0.001434 0.0007172
25 0.9979 0.004291 0.002146







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level17 0.8095NOK
5% type I error level180.857143NOK
10% type I error level180.857143NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 17 &  0.8095 & NOK \tabularnewline
5% type I error level & 18 & 0.857143 & NOK \tabularnewline
10% type I error level & 18 & 0.857143 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=7

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]17[/C][C] 0.8095[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]18[/C][C]0.857143[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]18[/C][C]0.857143[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level17 0.8095NOK
5% type I error level180.857143NOK
10% type I error level180.857143NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=8

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 2.5152, df1 = 2, df2 = 26, p-value = 0.1003



Parameters (Session):
par1 = two.sidedtwo.sided11110.950.950.950.950.950.951two.sidedtwo.sided1110.95111111111111112121two.sidedtwo.sidedtwo.sided11122FALSE00120.950.9511two.sided11111two.sided0.9512120.950.95pearsontwo.sided122FALSE1212-0.3-0.3-0.4FALSE121two.sided11110.951212120.951 ; par2 = 0.950.952222100100100100100100Do not include Seasonal Dummies0.950.95222100222222221002100100Include Seasonal Dummies0.520.950.990.9922233-0.3-0.3-0.3-0.31001001001000.9722221000.95-3SingleDouble1000.99233-0.3010-0.3-0.31000.972221003DoubleDoubleDouble100Do not include Seasonal Dummies ; par3 = 201000.950.950.950.95No Linear Trend20200.950.950.95Pearson Chi-SquaredExact Pearson Chi-Squared by SimulationExact Pearson Chi-Squared by SimulationPearson Chi-SquaredExact Pearson Chi-Squared by SimulationTRUEFALSETRUE3No Linear TrendNo Linear TrendLinear Trend0TRUE15151533Pearson Chi-SquaredPearson Chi-SquaredExact Pearson Chi-Squared by Simulation0000No Linear TrendNo Linear TrendNo Linear TrendNo Linear Trend1930.99Pearson Chi-SquaredExact Pearson Chi-Squared by SimulationNo Linear Trend-3additiveadditive153Pearson Chi-SquaredExact Pearson Chi-Squared by Simulation011100No Linear Trend1930.99Exact Pearson Chi-Squared by SimulationNo Linear TrendadditiveadditiveadditiveNo Linear Trend ; par4 = two.sidedgreatergreatergreaterlesslesslesstwo.sidedtwo.sidedtwo.sided0two.sidedgreatertwo.sidedTRUETRUE1TRUETRUE1111TRUEtwo.sided1212TRUE112121211TRUEtwo.sided1212120 ; par5 = pairedpairedpairedpairedpairedpairedpairedpairedpairedpaired0pairedpairedunpaired1212121212paired121212paired0 ; par6 = 0.00.00.00.0120.00.00.012121233333121212120123331201212 ; par7 = 01000010 ; par8 = 12222222 ; par9 = 11000010 ; par10 = FALSEFALSEFALSEFALSEFALSE ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ; par6 = 12 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par6 <- as.numeric(par6)
if(is.na(par6)) {
par6 <- 12
mywarning = 'Warning: you did not specify the seasonality. The seasonal period was set to s = 12.'
}
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (!is.numeric(par4)) par4 <- 0
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
if (!is.numeric(par5)) par5 <- 0
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s)'){
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - par6)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-Bs)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+par6,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*par6,par5), dimnames=list(1:(n-par5*par6), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*par6)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*par6-j*par6,par1]
}
}
x <- cbind(x[(par5*par6+1):n,], x2)
n <- n - par5*par6
}
if (par2 == 'Include Seasonal Dummies'){
x2 <- array(0, dim=c(n,par6-1), dimnames=list(1:n, paste('M', seq(1:(par6-1)), sep ='')))
for (i in 1:(par6-1)){
x2[seq(i,n,par6),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
a <-table.start()
a <- table.row.start(a)
a <- table.element(a,'Menu of Residual Diagnostics',2,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Description',1,TRUE)
a <- table.element(a,'Link',1,TRUE)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Histogram',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_histogram.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_centraltendency.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'QQ Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_fitdistrnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Kernel Density Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_density.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness/Kurtosis Test',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Skewness-Kurtosis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_skewness_kurtosis_plot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Harrell-Davis Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_harrell_davis.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Blocked Bootstrap Plot -- Central Tendency',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_bootstrapplot.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'(Partial) Autocorrelation Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_autocorrelation.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Spectral Analysis',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_spectrum.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Tukey lambda PPCC Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_tukeylambda.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <-table.element(a,'Box-Cox Normality Plot',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_boxcoxnorm.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a <- table.row.start(a)
a <- table.element(a,'Summary Statistics',1,header=TRUE)
a <- table.element(a,hyperlink( paste('https://supernova.wessa.net/rwasp_summary1.wasp?convertgetintopost=1&data=',paste(as.character(mysum$resid),sep='',collapse=' '),sep='') ,'Compute','Click here to examine the Residuals.'),1)
a <- table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable7.tab')
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')