Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 25 Jan 2017 09:40:50 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Jan/25/t1485333720obj95lboftz8unq.htm/, Retrieved Tue, 14 May 2024 10:54:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=305705, Retrieved Tue, 14 May 2024 10:54:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact37
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [ghffgh] [2017-01-25 08:40:50] [ec61f6472217a68e3e2e99f2db722060] [Current]
Feedback Forum

Post a new message
Dataseries X:
6 1 1 0 0 0 3.2 0.7923 10.24
7 0 0 1 0 1 3.3 -2.468 10.89
2 1 0 1 1 1 3 -2.996 9
11 0 0 1 0 1 3.5 3.119 12.25
13 1 0 1 0 0 3.7 0.04315 13.69
3 0 1 0 0 0 2.7 0.731 7.29
17 1 0 1 1 1 3.6 2.45 12.96
10 0 0 1 0 1 3.5 2.119 12.25
4 1 1 0 0 0 3.8 -1.429 14.44
12 0 0 1 0 0 3.4 -1.644 11.56
7 1 0 0 0 1 3.7 -3.065 13.69
11 0 0 1 0 0 3.5 -1.461 12.25
3 1 0 0 1 0 2.8 1.141 7.84
5 0 1 0 1 0 3.8 1.329 14.44
1 1 0 1 0 0 4.3 0.3396 18.49
12 0 0 0 0 1 3.3 0.8429 10.89
18 1 0 0 0 0 3.6 2.225 12.96
8 0 1 0 1 0 3.6 -1.924 12.96
6 1 1 1 0 0 3.3 0.4999 10.89
1 0 0 0 0 0 2.8 -0.6433 7.84




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time6 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305705&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]6 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=305705&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305705&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
Score[t] = -204.919 + 0.188915Geslacht[t] -4.76681X1[t] -0.630007X2[t] -0.0227888X3[t] -2.19762X4[t] + 124.678X5[t] + 1.02541Alter[t] -17.8367X6[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Score[t] =  -204.919 +  0.188915Geslacht[t] -4.76681X1[t] -0.630007X2[t] -0.0227888X3[t] -2.19762X4[t] +  124.678X5[t] +  1.02541Alter[t] -17.8367X6[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305705&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Score[t] =  -204.919 +  0.188915Geslacht[t] -4.76681X1[t] -0.630007X2[t] -0.0227888X3[t] -2.19762X4[t] +  124.678X5[t] +  1.02541Alter[t] -17.8367X6[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305705&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305705&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Score[t] = -204.919 + 0.188915Geslacht[t] -4.76681X1[t] -0.630007X2[t] -0.0227888X3[t] -2.19762X4[t] + 124.678X5[t] + 1.02541Alter[t] -17.8367X6[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-204.9 43.01-4.7650e+00 0.0005855 0.0002928
Geslacht+0.1889 1.454+1.2990e-01 0.899 0.4495
X1-4.767 1.902-2.5060e+00 0.02918 0.01459
X2-0.63 1.617-3.8950e-01 0.7043 0.3522
X3-0.02279 1.657-1.3750e-02 0.9893 0.4946
X4-2.198 1.834-1.1980e+00 0.2559 0.128
X5+124.7 25.57+4.8750e+00 0.0004905 0.0002453
Alter+1.025 0.3814+2.6880e+00 0.02109 0.01055
X6-17.84 3.746-4.7610e+00 0.000589 0.0002945

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -204.9 &  43.01 & -4.7650e+00 &  0.0005855 &  0.0002928 \tabularnewline
Geslacht & +0.1889 &  1.454 & +1.2990e-01 &  0.899 &  0.4495 \tabularnewline
X1 & -4.767 &  1.902 & -2.5060e+00 &  0.02918 &  0.01459 \tabularnewline
X2 & -0.63 &  1.617 & -3.8950e-01 &  0.7043 &  0.3522 \tabularnewline
X3 & -0.02279 &  1.657 & -1.3750e-02 &  0.9893 &  0.4946 \tabularnewline
X4 & -2.198 &  1.834 & -1.1980e+00 &  0.2559 &  0.128 \tabularnewline
X5 & +124.7 &  25.57 & +4.8750e+00 &  0.0004905 &  0.0002453 \tabularnewline
Alter & +1.025 &  0.3814 & +2.6880e+00 &  0.02109 &  0.01055 \tabularnewline
X6 & -17.84 &  3.746 & -4.7610e+00 &  0.000589 &  0.0002945 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305705&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-204.9[/C][C] 43.01[/C][C]-4.7650e+00[/C][C] 0.0005855[/C][C] 0.0002928[/C][/ROW]
[ROW][C]Geslacht[/C][C]+0.1889[/C][C] 1.454[/C][C]+1.2990e-01[/C][C] 0.899[/C][C] 0.4495[/C][/ROW]
[ROW][C]X1[/C][C]-4.767[/C][C] 1.902[/C][C]-2.5060e+00[/C][C] 0.02918[/C][C] 0.01459[/C][/ROW]
[ROW][C]X2[/C][C]-0.63[/C][C] 1.617[/C][C]-3.8950e-01[/C][C] 0.7043[/C][C] 0.3522[/C][/ROW]
[ROW][C]X3[/C][C]-0.02279[/C][C] 1.657[/C][C]-1.3750e-02[/C][C] 0.9893[/C][C] 0.4946[/C][/ROW]
[ROW][C]X4[/C][C]-2.198[/C][C] 1.834[/C][C]-1.1980e+00[/C][C] 0.2559[/C][C] 0.128[/C][/ROW]
[ROW][C]X5[/C][C]+124.7[/C][C] 25.57[/C][C]+4.8750e+00[/C][C] 0.0004905[/C][C] 0.0002453[/C][/ROW]
[ROW][C]Alter[/C][C]+1.025[/C][C] 0.3814[/C][C]+2.6880e+00[/C][C] 0.02109[/C][C] 0.01055[/C][/ROW]
[ROW][C]X6[/C][C]-17.84[/C][C] 3.746[/C][C]-4.7610e+00[/C][C] 0.000589[/C][C] 0.0002945[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305705&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305705&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-204.9 43.01-4.7650e+00 0.0005855 0.0002928
Geslacht+0.1889 1.454+1.2990e-01 0.899 0.4495
X1-4.767 1.902-2.5060e+00 0.02918 0.01459
X2-0.63 1.617-3.8950e-01 0.7043 0.3522
X3-0.02279 1.657-1.3750e-02 0.9893 0.4946
X4-2.198 1.834-1.1980e+00 0.2559 0.128
X5+124.7 25.57+4.8750e+00 0.0004905 0.0002453
Alter+1.025 0.3814+2.6880e+00 0.02109 0.01055
X6-17.84 3.746-4.7610e+00 0.000589 0.0002945







Multiple Linear Regression - Regression Statistics
Multiple R 0.8833
R-squared 0.7802
Adjusted R-squared 0.6204
F-TEST (value) 4.882
F-TEST (DF numerator)8
F-TEST (DF denominator)11
p-value 0.008987
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 3.092
Sum Squared Residuals 105.2

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.8833 \tabularnewline
R-squared &  0.7802 \tabularnewline
Adjusted R-squared &  0.6204 \tabularnewline
F-TEST (value) &  4.882 \tabularnewline
F-TEST (DF numerator) & 8 \tabularnewline
F-TEST (DF denominator) & 11 \tabularnewline
p-value &  0.008987 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  3.092 \tabularnewline
Sum Squared Residuals &  105.2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305705&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.8833[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.7802[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.6204[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 4.882[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]8[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]11[/C][/ROW]
[ROW][C]p-value[/C][C] 0.008987[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 3.092[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 105.2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305705&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305705&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.8833
R-squared 0.7802
Adjusted R-squared 0.6204
F-TEST (value) 4.882
F-TEST (DF numerator)8
F-TEST (DF denominator)11
p-value 0.008987
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 3.092
Sum Squared Residuals 105.2







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 6 7.637-1.637
2 7 6.918 0.0816
3 2 2.851-0.8511
4 11 13.32-2.325
5 13 11.81 1.192
6 3-2.335 5.335
7 17 12.61 4.391
8 10 12.3-2.3
9 4 5.252-1.252
10 12 10.48 1.522
11 7 7.054-0.05356
12 11 10.83 0.1737
13 3 5.676-2.676
14 5 7.869-2.869
15 1 1.303-0.3028
16 12 10.94 1.057
17 18 15.23 2.771
18 8 5.996 2.004
19 6 7.581-1.581
20 1 3.68-2.68

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  6 &  7.637 & -1.637 \tabularnewline
2 &  7 &  6.918 &  0.0816 \tabularnewline
3 &  2 &  2.851 & -0.8511 \tabularnewline
4 &  11 &  13.32 & -2.325 \tabularnewline
5 &  13 &  11.81 &  1.192 \tabularnewline
6 &  3 & -2.335 &  5.335 \tabularnewline
7 &  17 &  12.61 &  4.391 \tabularnewline
8 &  10 &  12.3 & -2.3 \tabularnewline
9 &  4 &  5.252 & -1.252 \tabularnewline
10 &  12 &  10.48 &  1.522 \tabularnewline
11 &  7 &  7.054 & -0.05356 \tabularnewline
12 &  11 &  10.83 &  0.1737 \tabularnewline
13 &  3 &  5.676 & -2.676 \tabularnewline
14 &  5 &  7.869 & -2.869 \tabularnewline
15 &  1 &  1.303 & -0.3028 \tabularnewline
16 &  12 &  10.94 &  1.057 \tabularnewline
17 &  18 &  15.23 &  2.771 \tabularnewline
18 &  8 &  5.996 &  2.004 \tabularnewline
19 &  6 &  7.581 & -1.581 \tabularnewline
20 &  1 &  3.68 & -2.68 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=305705&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 6[/C][C] 7.637[/C][C]-1.637[/C][/ROW]
[ROW][C]2[/C][C] 7[/C][C] 6.918[/C][C] 0.0816[/C][/ROW]
[ROW][C]3[/C][C] 2[/C][C] 2.851[/C][C]-0.8511[/C][/ROW]
[ROW][C]4[/C][C] 11[/C][C] 13.32[/C][C]-2.325[/C][/ROW]
[ROW][C]5[/C][C] 13[/C][C] 11.81[/C][C] 1.192[/C][/ROW]
[ROW][C]6[/C][C] 3[/C][C]-2.335[/C][C] 5.335[/C][/ROW]
[ROW][C]7[/C][C] 17[/C][C] 12.61[/C][C] 4.391[/C][/ROW]
[ROW][C]8[/C][C] 10[/C][C] 12.3[/C][C]-2.3[/C][/ROW]
[ROW][C]9[/C][C] 4[/C][C] 5.252[/C][C]-1.252[/C][/ROW]
[ROW][C]10[/C][C] 12[/C][C] 10.48[/C][C] 1.522[/C][/ROW]
[ROW][C]11[/C][C] 7[/C][C] 7.054[/C][C]-0.05356[/C][/ROW]
[ROW][C]12[/C][C] 11[/C][C] 10.83[/C][C] 0.1737[/C][/ROW]
[ROW][C]13[/C][C] 3[/C][C] 5.676[/C][C]-2.676[/C][/ROW]
[ROW][C]14[/C][C] 5[/C][C] 7.869[/C][C]-2.869[/C][/ROW]
[ROW][C]15[/C][C] 1[/C][C] 1.303[/C][C]-0.3028[/C][/ROW]
[ROW][C]16[/C][C] 12[/C][C] 10.94[/C][C] 1.057[/C][/ROW]
[ROW][C]17[/C][C] 18[/C][C] 15.23[/C][C] 2.771[/C][/ROW]
[ROW][C]18[/C][C] 8[/C][C] 5.996[/C][C] 2.004[/C][/ROW]
[ROW][C]19[/C][C] 6[/C][C] 7.581[/C][C]-1.581[/C][/ROW]
[ROW][C]20[/C][C] 1[/C][C] 3.68[/C][C]-2.68[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=305705&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305705&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 6 7.637-1.637
2 7 6.918 0.0816
3 2 2.851-0.8511
4 11 13.32-2.325
5 13 11.81 1.192
6 3-2.335 5.335
7 17 12.61 4.391
8 10 12.3-2.3
9 4 5.252-1.252
10 12 10.48 1.522
11 7 7.054-0.05356
12 11 10.83 0.1737
13 3 5.676-2.676
14 5 7.869-2.869
15 1 1.303-0.3028
16 12 10.94 1.057
17 18 15.23 2.771
18 8 5.996 2.004
19 6 7.581-1.581
20 1 3.68-2.68







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 11.741, df1 = 2, df2 = 9, p-value = 0.003103
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = -1.0024, df1 = 16, df2 = -5, p-value = NA
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.27985, df1 = 2, df2 = 9, p-value = 0.7622

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 11.741, df1 = 2, df2 = 9, p-value = 0.003103
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = -1.0024, df1 = 16, df2 = -5, p-value = NA
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.27985, df1 = 2, df2 = 9, p-value = 0.7622
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=305705&T=5

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 11.741, df1 = 2, df2 = 9, p-value = 0.003103
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = -1.0024, df1 = 16, df2 = -5, p-value = NA
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.27985, df1 = 2, df2 = 9, p-value = 0.7622
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=305705&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305705&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 11.741, df1 = 2, df2 = 9, p-value = 0.003103
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = -1.0024, df1 = 16, df2 = -5, p-value = NA
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.27985, df1 = 2, df2 = 9, p-value = 0.7622







Variance Inflation Factors (Multicollinearity)
> vif
  Geslacht         X1         X2         X3         X4         X5      Alter 
  1.105511   1.589205   1.368225   1.077301   1.600269 197.827128   1.003326 
        X6 
198.132535 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
  Geslacht         X1         X2         X3         X4         X5      Alter 
  1.105511   1.589205   1.368225   1.077301   1.600269 197.827128   1.003326 
        X6 
198.132535 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=305705&T=6

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
  Geslacht         X1         X2         X3         X4         X5      Alter 
  1.105511   1.589205   1.368225   1.077301   1.600269 197.827128   1.003326 
        X6 
198.132535 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=305705&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=305705&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
  Geslacht         X1         X2         X3         X4         X5      Alter 
  1.105511   1.589205   1.368225   1.077301   1.600269 197.827128   1.003326 
        X6 
198.132535 



Parameters (Session):
par1 = 12 ; par2 = Single ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')