Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 23 Jan 2017 09:46:12 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Jan/23/t14851611894y1wcntb4j9w56q.htm/, Retrieved Wed, 15 May 2024 07:26:57 +0200
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=, Retrieved Wed, 15 May 2024 07:26:57 +0200
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact0
Dataseries X:
6 1 0 0 0 3.2
7 0 1 0 1 3.3
2 0 1 1 1 3
11 0 1 0 1 3.5
13 0 1 0 0 3.7
3 1 0 0 0 2.7
17 0 1 1 1 3.6
10 0 1 0 1 3.5
4 1 0 0 0 3.8
12 0 1 0 0 3.4
7 0 0 0 1 3.7
11 0 1 0 0 3.5
3 0 0 1 0 2.8
5 1 0 1 0 3.8
1 0 1 0 0 4.3
12 0 0 0 1 3.3
18 0 0 0 0 3.6
8 1 0 1 0 3.6
6 1 1 0 0 3.3
1 0 0 0 0 2.8




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
X5[t] = + 3.15909 + 0.0213425Score[t] + 0.108431X1[t] + 0.191774X2[t] -0.0399256X3[t] -0.0716066X4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
X5[t] =  +  3.15909 +  0.0213425Score[t] +  0.108431X1[t] +  0.191774X2[t] -0.0399256X3[t] -0.0716066X4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]X5[t] =  +  3.15909 +  0.0213425Score[t] +  0.108431X1[t] +  0.191774X2[t] -0.0399256X3[t] -0.0716066X4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
X5[t] = + 3.15909 + 0.0213425Score[t] + 0.108431X1[t] + 0.191774X2[t] -0.0399256X3[t] -0.0716066X4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+3.159 0.264+1.1970e+01 9.68e-09 4.84e-09
Score+0.02134 0.02074+1.0290e+00 0.321 0.1605
X1+0.1084 0.2584+4.1970e-01 0.6811 0.3406
X2+0.1918 0.2136+8.9790e-01 0.3844 0.1922
X3-0.03993 0.2235-1.7860e-01 0.8608 0.4304
X4-0.07161 0.2314-3.0940e-01 0.7616 0.3808

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +3.159 &  0.264 & +1.1970e+01 &  9.68e-09 &  4.84e-09 \tabularnewline
Score & +0.02134 &  0.02074 & +1.0290e+00 &  0.321 &  0.1605 \tabularnewline
X1 & +0.1084 &  0.2584 & +4.1970e-01 &  0.6811 &  0.3406 \tabularnewline
X2 & +0.1918 &  0.2136 & +8.9790e-01 &  0.3844 &  0.1922 \tabularnewline
X3 & -0.03993 &  0.2235 & -1.7860e-01 &  0.8608 &  0.4304 \tabularnewline
X4 & -0.07161 &  0.2314 & -3.0940e-01 &  0.7616 &  0.3808 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+3.159[/C][C] 0.264[/C][C]+1.1970e+01[/C][C] 9.68e-09[/C][C] 4.84e-09[/C][/ROW]
[ROW][C]Score[/C][C]+0.02134[/C][C] 0.02074[/C][C]+1.0290e+00[/C][C] 0.321[/C][C] 0.1605[/C][/ROW]
[ROW][C]X1[/C][C]+0.1084[/C][C] 0.2584[/C][C]+4.1970e-01[/C][C] 0.6811[/C][C] 0.3406[/C][/ROW]
[ROW][C]X2[/C][C]+0.1918[/C][C] 0.2136[/C][C]+8.9790e-01[/C][C] 0.3844[/C][C] 0.1922[/C][/ROW]
[ROW][C]X3[/C][C]-0.03993[/C][C] 0.2235[/C][C]-1.7860e-01[/C][C] 0.8608[/C][C] 0.4304[/C][/ROW]
[ROW][C]X4[/C][C]-0.07161[/C][C] 0.2314[/C][C]-3.0940e-01[/C][C] 0.7616[/C][C] 0.3808[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+3.159 0.264+1.1970e+01 9.68e-09 4.84e-09
Score+0.02134 0.02074+1.0290e+00 0.321 0.1605
X1+0.1084 0.2584+4.1970e-01 0.6811 0.3406
X2+0.1918 0.2136+8.9790e-01 0.3844 0.1922
X3-0.03993 0.2235-1.7860e-01 0.8608 0.4304
X4-0.07161 0.2314-3.0940e-01 0.7616 0.3808







Multiple Linear Regression - Regression Statistics
Multiple R 0.3678
R-squared 0.1353
Adjusted R-squared-0.1735
F-TEST (value) 0.4381
F-TEST (DF numerator)5
F-TEST (DF denominator)14
p-value 0.8147
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.4226
Sum Squared Residuals 2.501

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.3678 \tabularnewline
R-squared &  0.1353 \tabularnewline
Adjusted R-squared & -0.1735 \tabularnewline
F-TEST (value) &  0.4381 \tabularnewline
F-TEST (DF numerator) & 5 \tabularnewline
F-TEST (DF denominator) & 14 \tabularnewline
p-value &  0.8147 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  0.4226 \tabularnewline
Sum Squared Residuals &  2.501 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.3678[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.1353[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.1735[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.4381[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]5[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]14[/C][/ROW]
[ROW][C]p-value[/C][C] 0.8147[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 0.4226[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 2.501[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.3678
R-squared 0.1353
Adjusted R-squared-0.1735
F-TEST (value) 0.4381
F-TEST (DF numerator)5
F-TEST (DF denominator)14
p-value 0.8147
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.4226
Sum Squared Residuals 2.501







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 3.2 3.396-0.1956
2 3.3 3.429-0.1287
3 3 3.282-0.282
4 3.5 3.514-0.01402
5 3.7 3.628 0.07168
6 2.7 3.332-0.6315
7 3.6 3.602-0.002154
8 3.5 3.493 0.007319
9 3.8 3.353 0.4471
10 3.4 3.607-0.207
11 3.7 3.237 0.4631
12 3.5 3.586-0.08563
13 2.8 3.183-0.3832
14 3.8 3.334 0.4657
15 4.3 3.372 0.9278
16 3.3 3.344-0.04359
17 3.6 3.543 0.05675
18 3.6 3.398 0.2017
19 3.3 3.587-0.2873
20 2.8 3.18-0.3804

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  3.2 &  3.396 & -0.1956 \tabularnewline
2 &  3.3 &  3.429 & -0.1287 \tabularnewline
3 &  3 &  3.282 & -0.282 \tabularnewline
4 &  3.5 &  3.514 & -0.01402 \tabularnewline
5 &  3.7 &  3.628 &  0.07168 \tabularnewline
6 &  2.7 &  3.332 & -0.6315 \tabularnewline
7 &  3.6 &  3.602 & -0.002154 \tabularnewline
8 &  3.5 &  3.493 &  0.007319 \tabularnewline
9 &  3.8 &  3.353 &  0.4471 \tabularnewline
10 &  3.4 &  3.607 & -0.207 \tabularnewline
11 &  3.7 &  3.237 &  0.4631 \tabularnewline
12 &  3.5 &  3.586 & -0.08563 \tabularnewline
13 &  2.8 &  3.183 & -0.3832 \tabularnewline
14 &  3.8 &  3.334 &  0.4657 \tabularnewline
15 &  4.3 &  3.372 &  0.9278 \tabularnewline
16 &  3.3 &  3.344 & -0.04359 \tabularnewline
17 &  3.6 &  3.543 &  0.05675 \tabularnewline
18 &  3.6 &  3.398 &  0.2017 \tabularnewline
19 &  3.3 &  3.587 & -0.2873 \tabularnewline
20 &  2.8 &  3.18 & -0.3804 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 3.2[/C][C] 3.396[/C][C]-0.1956[/C][/ROW]
[ROW][C]2[/C][C] 3.3[/C][C] 3.429[/C][C]-0.1287[/C][/ROW]
[ROW][C]3[/C][C] 3[/C][C] 3.282[/C][C]-0.282[/C][/ROW]
[ROW][C]4[/C][C] 3.5[/C][C] 3.514[/C][C]-0.01402[/C][/ROW]
[ROW][C]5[/C][C] 3.7[/C][C] 3.628[/C][C] 0.07168[/C][/ROW]
[ROW][C]6[/C][C] 2.7[/C][C] 3.332[/C][C]-0.6315[/C][/ROW]
[ROW][C]7[/C][C] 3.6[/C][C] 3.602[/C][C]-0.002154[/C][/ROW]
[ROW][C]8[/C][C] 3.5[/C][C] 3.493[/C][C] 0.007319[/C][/ROW]
[ROW][C]9[/C][C] 3.8[/C][C] 3.353[/C][C] 0.4471[/C][/ROW]
[ROW][C]10[/C][C] 3.4[/C][C] 3.607[/C][C]-0.207[/C][/ROW]
[ROW][C]11[/C][C] 3.7[/C][C] 3.237[/C][C] 0.4631[/C][/ROW]
[ROW][C]12[/C][C] 3.5[/C][C] 3.586[/C][C]-0.08563[/C][/ROW]
[ROW][C]13[/C][C] 2.8[/C][C] 3.183[/C][C]-0.3832[/C][/ROW]
[ROW][C]14[/C][C] 3.8[/C][C] 3.334[/C][C] 0.4657[/C][/ROW]
[ROW][C]15[/C][C] 4.3[/C][C] 3.372[/C][C] 0.9278[/C][/ROW]
[ROW][C]16[/C][C] 3.3[/C][C] 3.344[/C][C]-0.04359[/C][/ROW]
[ROW][C]17[/C][C] 3.6[/C][C] 3.543[/C][C] 0.05675[/C][/ROW]
[ROW][C]18[/C][C] 3.6[/C][C] 3.398[/C][C] 0.2017[/C][/ROW]
[ROW][C]19[/C][C] 3.3[/C][C] 3.587[/C][C]-0.2873[/C][/ROW]
[ROW][C]20[/C][C] 2.8[/C][C] 3.18[/C][C]-0.3804[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 3.2 3.396-0.1956
2 3.3 3.429-0.1287
3 3 3.282-0.282
4 3.5 3.514-0.01402
5 3.7 3.628 0.07168
6 2.7 3.332-0.6315
7 3.6 3.602-0.002154
8 3.5 3.493 0.007319
9 3.8 3.353 0.4471
10 3.4 3.607-0.207
11 3.7 3.237 0.4631
12 3.5 3.586-0.08563
13 2.8 3.183-0.3832
14 3.8 3.334 0.4657
15 4.3 3.372 0.9278
16 3.3 3.344-0.04359
17 3.6 3.543 0.05675
18 3.6 3.398 0.2017
19 3.3 3.587-0.2873
20 2.8 3.18-0.3804







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.2938, df1 = 2, df2 = 12, p-value = 0.1433
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.00031604, df1 = 10, df2 = 4, p-value = 1
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.0031914, df1 = 2, df2 = 12, p-value = 0.9968

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.2938, df1 = 2, df2 = 12, p-value = 0.1433
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.00031604, df1 = 10, df2 = 4, p-value = 1
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.0031914, df1 = 2, df2 = 12, p-value = 0.9968
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=5

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.2938, df1 = 2, df2 = 12, p-value = 0.1433
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.00031604, df1 = 10, df2 = 4, p-value = 1
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.0031914, df1 = 2, df2 = 12, p-value = 0.9968
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.2938, df1 = 2, df2 = 12, p-value = 0.1433
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.00031604, df1 = 10, df2 = 4, p-value = 1
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.0031914, df1 = 2, df2 = 12, p-value = 0.9968







Variance Inflation Factors (Multicollinearity)
> vif
   Score       X1       X2       X3       X4 
1.152628 1.569714 1.276952 1.049103 1.364181 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
   Score       X1       X2       X3       X4 
1.152628 1.569714 1.276952 1.049103 1.364181 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=&T=6

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
   Score       X1       X2       X3       X4 
1.152628 1.569714 1.276952 1.049103 1.364181 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
   Score       X1       X2       X3       X4 
1.152628 1.569714 1.276952 1.049103 1.364181 



Parameters (Session):
par1 = 1ScoreScoreScore199116 ; par2 = 2X1X1X12Do not include Seasonal DummiesDo not include Seasonal DummiesDo not include Seasonal Dummies22Do not include Seasonal Dummies ; par3 = Exact Pearson Chi-Squared by SimulationGroepLabelGroepLabelGroepLabelExact Pearson Chi-Squared by SimulationNo Linear TrendNo Linear TrendNo Linear TrendPearson Chi-SquaredExact Pearson Chi-Squared by SimulationNo Linear Trend ; par4 = TRUETRUETRUE ;
Parameters (R input):
par1 = 6 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')