Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationMon, 23 Jan 2017 09:42:42 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Jan/23/t1485161004mudzqu0pjk2bqkn.htm/, Retrieved Wed, 15 May 2024 16:13:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=304032, Retrieved Wed, 15 May 2024 16:13:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact67
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2017-01-23 08:42:42] [f8e2c3c70b883e93ecb746821352be11] [Current]
Feedback Forum

Post a new message
Dataseries X:
1 1 0 0 0 3.2 3.2 10.24
0 0 1 0 1 3.3 0 10.89
1 0 1 1 1 3 3 9
0 0 1 0 1 3.5 0 12.25
1 0 1 0 0 3.7 3.7 13.69
0 1 0 0 0 2.7 0 7.29
1 0 1 1 1 3.6 3.6 12.96
0 0 1 0 1 3.5 0 12.25
1 1 0 0 0 3.8 3.8 14.44
0 0 1 0 0 3.4 0 11.56
1 0 0 0 1 3.7 3.7 13.69
0 0 1 0 0 3.5 0 12.25
1 0 0 1 0 2.8 2.8 7.84
0 1 0 1 0 3.8 0 14.44
1 0 1 0 0 4.3 4.3 18.49
0 0 0 0 1 3.3 0 10.89
1 0 0 0 0 3.6 3.6 12.96
0 1 0 1 0 3.6 0 12.96
1 1 1 0 0 3.3 3.3 10.89
0 0 0 0 0 2.8 0 7.84




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time6 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304032&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]6 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=304032&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304032&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
X6[t] = -9.71284 -2.90233Geslacht[t] -0.0656943X1[t] + 0.00373411X2[t] + 0.225236X3[t] -0.148518X4[t] + 6.28953X5[t] + 0.861893Inter[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
X6[t] =  -9.71284 -2.90233Geslacht[t] -0.0656943X1[t] +  0.00373411X2[t] +  0.225236X3[t] -0.148518X4[t] +  6.28953X5[t] +  0.861893Inter[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304032&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]X6[t] =  -9.71284 -2.90233Geslacht[t] -0.0656943X1[t] +  0.00373411X2[t] +  0.225236X3[t] -0.148518X4[t] +  6.28953X5[t] +  0.861893Inter[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304032&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304032&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
X6[t] = -9.71284 -2.90233Geslacht[t] -0.0656943X1[t] + 0.00373411X2[t] + 0.225236X3[t] -0.148518X4[t] + 6.28953X5[t] + 0.861893Inter[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-9.713 0.6243-1.5560e+01 2.557e-09 1.278e-09
Geslacht-2.902 0.9154-3.1710e+00 0.00806 0.00403
X1-0.06569 0.1055-6.2270e-01 0.5452 0.2726
X2+0.003734 0.09196+4.0610e-02 0.9683 0.4841
X3+0.2252 0.1121+2.0090e+00 0.06762 0.03381
X4-0.1485 0.09651-1.5390e+00 0.1498 0.07489
X5+6.29 0.1936+3.2490e+01 4.575e-13 2.287e-13
Inter+0.8619 0.2663+3.2360e+00 0.007136 0.003568

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & -9.713 &  0.6243 & -1.5560e+01 &  2.557e-09 &  1.278e-09 \tabularnewline
Geslacht & -2.902 &  0.9154 & -3.1710e+00 &  0.00806 &  0.00403 \tabularnewline
X1 & -0.06569 &  0.1055 & -6.2270e-01 &  0.5452 &  0.2726 \tabularnewline
X2 & +0.003734 &  0.09196 & +4.0610e-02 &  0.9683 &  0.4841 \tabularnewline
X3 & +0.2252 &  0.1121 & +2.0090e+00 &  0.06762 &  0.03381 \tabularnewline
X4 & -0.1485 &  0.09651 & -1.5390e+00 &  0.1498 &  0.07489 \tabularnewline
X5 & +6.29 &  0.1936 & +3.2490e+01 &  4.575e-13 &  2.287e-13 \tabularnewline
Inter & +0.8619 &  0.2663 & +3.2360e+00 &  0.007136 &  0.003568 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304032&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]-9.713[/C][C] 0.6243[/C][C]-1.5560e+01[/C][C] 2.557e-09[/C][C] 1.278e-09[/C][/ROW]
[ROW][C]Geslacht[/C][C]-2.902[/C][C] 0.9154[/C][C]-3.1710e+00[/C][C] 0.00806[/C][C] 0.00403[/C][/ROW]
[ROW][C]X1[/C][C]-0.06569[/C][C] 0.1055[/C][C]-6.2270e-01[/C][C] 0.5452[/C][C] 0.2726[/C][/ROW]
[ROW][C]X2[/C][C]+0.003734[/C][C] 0.09196[/C][C]+4.0610e-02[/C][C] 0.9683[/C][C] 0.4841[/C][/ROW]
[ROW][C]X3[/C][C]+0.2252[/C][C] 0.1121[/C][C]+2.0090e+00[/C][C] 0.06762[/C][C] 0.03381[/C][/ROW]
[ROW][C]X4[/C][C]-0.1485[/C][C] 0.09651[/C][C]-1.5390e+00[/C][C] 0.1498[/C][C] 0.07489[/C][/ROW]
[ROW][C]X5[/C][C]+6.29[/C][C] 0.1936[/C][C]+3.2490e+01[/C][C] 4.575e-13[/C][C] 2.287e-13[/C][/ROW]
[ROW][C]Inter[/C][C]+0.8619[/C][C] 0.2663[/C][C]+3.2360e+00[/C][C] 0.007136[/C][C] 0.003568[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304032&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304032&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)-9.713 0.6243-1.5560e+01 2.557e-09 1.278e-09
Geslacht-2.902 0.9154-3.1710e+00 0.00806 0.00403
X1-0.06569 0.1055-6.2270e-01 0.5452 0.2726
X2+0.003734 0.09196+4.0610e-02 0.9683 0.4841
X3+0.2252 0.1121+2.0090e+00 0.06762 0.03381
X4-0.1485 0.09651-1.5390e+00 0.1498 0.07489
X5+6.29 0.1936+3.2490e+01 4.575e-13 2.287e-13
Inter+0.8619 0.2663+3.2360e+00 0.007136 0.003568







Multiple Linear Regression - Regression Statistics
Multiple R 0.9987
R-squared 0.9973
Adjusted R-squared 0.9957
F-TEST (value) 633.8
F-TEST (DF numerator)7
F-TEST (DF denominator)12
p-value 1.91e-14
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.1742
Sum Squared Residuals 0.3641

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.9987 \tabularnewline
R-squared &  0.9973 \tabularnewline
Adjusted R-squared &  0.9957 \tabularnewline
F-TEST (value) &  633.8 \tabularnewline
F-TEST (DF numerator) & 7 \tabularnewline
F-TEST (DF denominator) & 12 \tabularnewline
p-value &  1.91e-14 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  0.1742 \tabularnewline
Sum Squared Residuals &  0.3641 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304032&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.9987[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.9973[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.9957[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 633.8[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]7[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]12[/C][/ROW]
[ROW][C]p-value[/C][C] 1.91e-14[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 0.1742[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 0.3641[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304032&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304032&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.9987
R-squared 0.9973
Adjusted R-squared 0.9957
F-TEST (value) 633.8
F-TEST (DF numerator)7
F-TEST (DF denominator)12
p-value 1.91e-14
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.1742
Sum Squared Residuals 0.3641







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 10.24 10.2 0.0363
2 10.89 10.9-0.007836
3 9 8.92 0.08044
4 12.25 12.16 0.09426
5 13.69 13.85-0.1588
6 7.29 7.203 0.08679
7 12.96 13.21-0.2504
8 12.25 12.16 0.09426
9 14.44 14.49-0.05456
10 11.56 11.68-0.1153
11 13.69 13.7-0.006593
12 12.25 12.3-0.05426
13 7.84 7.634 0.2059
14 14.44 14.35 0.09307
15 18.49 18.14 0.3503
16 10.89 10.89-0.004102
17 12.96 13.13-0.17
18 12.96 13.09-0.129
19 10.89 10.92-0.03258
20 7.84 7.898-0.05785

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  10.24 &  10.2 &  0.0363 \tabularnewline
2 &  10.89 &  10.9 & -0.007836 \tabularnewline
3 &  9 &  8.92 &  0.08044 \tabularnewline
4 &  12.25 &  12.16 &  0.09426 \tabularnewline
5 &  13.69 &  13.85 & -0.1588 \tabularnewline
6 &  7.29 &  7.203 &  0.08679 \tabularnewline
7 &  12.96 &  13.21 & -0.2504 \tabularnewline
8 &  12.25 &  12.16 &  0.09426 \tabularnewline
9 &  14.44 &  14.49 & -0.05456 \tabularnewline
10 &  11.56 &  11.68 & -0.1153 \tabularnewline
11 &  13.69 &  13.7 & -0.006593 \tabularnewline
12 &  12.25 &  12.3 & -0.05426 \tabularnewline
13 &  7.84 &  7.634 &  0.2059 \tabularnewline
14 &  14.44 &  14.35 &  0.09307 \tabularnewline
15 &  18.49 &  18.14 &  0.3503 \tabularnewline
16 &  10.89 &  10.89 & -0.004102 \tabularnewline
17 &  12.96 &  13.13 & -0.17 \tabularnewline
18 &  12.96 &  13.09 & -0.129 \tabularnewline
19 &  10.89 &  10.92 & -0.03258 \tabularnewline
20 &  7.84 &  7.898 & -0.05785 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304032&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 10.24[/C][C] 10.2[/C][C] 0.0363[/C][/ROW]
[ROW][C]2[/C][C] 10.89[/C][C] 10.9[/C][C]-0.007836[/C][/ROW]
[ROW][C]3[/C][C] 9[/C][C] 8.92[/C][C] 0.08044[/C][/ROW]
[ROW][C]4[/C][C] 12.25[/C][C] 12.16[/C][C] 0.09426[/C][/ROW]
[ROW][C]5[/C][C] 13.69[/C][C] 13.85[/C][C]-0.1588[/C][/ROW]
[ROW][C]6[/C][C] 7.29[/C][C] 7.203[/C][C] 0.08679[/C][/ROW]
[ROW][C]7[/C][C] 12.96[/C][C] 13.21[/C][C]-0.2504[/C][/ROW]
[ROW][C]8[/C][C] 12.25[/C][C] 12.16[/C][C] 0.09426[/C][/ROW]
[ROW][C]9[/C][C] 14.44[/C][C] 14.49[/C][C]-0.05456[/C][/ROW]
[ROW][C]10[/C][C] 11.56[/C][C] 11.68[/C][C]-0.1153[/C][/ROW]
[ROW][C]11[/C][C] 13.69[/C][C] 13.7[/C][C]-0.006593[/C][/ROW]
[ROW][C]12[/C][C] 12.25[/C][C] 12.3[/C][C]-0.05426[/C][/ROW]
[ROW][C]13[/C][C] 7.84[/C][C] 7.634[/C][C] 0.2059[/C][/ROW]
[ROW][C]14[/C][C] 14.44[/C][C] 14.35[/C][C] 0.09307[/C][/ROW]
[ROW][C]15[/C][C] 18.49[/C][C] 18.14[/C][C] 0.3503[/C][/ROW]
[ROW][C]16[/C][C] 10.89[/C][C] 10.89[/C][C]-0.004102[/C][/ROW]
[ROW][C]17[/C][C] 12.96[/C][C] 13.13[/C][C]-0.17[/C][/ROW]
[ROW][C]18[/C][C] 12.96[/C][C] 13.09[/C][C]-0.129[/C][/ROW]
[ROW][C]19[/C][C] 10.89[/C][C] 10.92[/C][C]-0.03258[/C][/ROW]
[ROW][C]20[/C][C] 7.84[/C][C] 7.898[/C][C]-0.05785[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304032&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304032&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 10.24 10.2 0.0363
2 10.89 10.9-0.007836
3 9 8.92 0.08044
4 12.25 12.16 0.09426
5 13.69 13.85-0.1588
6 7.29 7.203 0.08679
7 12.96 13.21-0.2504
8 12.25 12.16 0.09426
9 14.44 14.49-0.05456
10 11.56 11.68-0.1153
11 13.69 13.7-0.006593
12 12.25 12.3-0.05426
13 7.84 7.634 0.2059
14 14.44 14.35 0.09307
15 18.49 18.14 0.3503
16 10.89 10.89-0.004102
17 12.96 13.13-0.17
18 12.96 13.09-0.129
19 10.89 10.92-0.03258
20 7.84 7.898-0.05785







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2756.9, df1 = 2, df2 = 10, p-value = 1.945e-14
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = -2.7532e+27, df1 = 14, df2 = -2, p-value = NA
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 34.639, df1 = 2, df2 = 10, p-value = 3.193e-05

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2756.9, df1 = 2, df2 = 10, p-value = 1.945e-14
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = -2.7532e+27, df1 = 14, df2 = -2, p-value = NA
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 34.639, df1 = 2, df2 = 10, p-value = 3.193e-05
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=304032&T=5

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2756.9, df1 = 2, df2 = 10, p-value = 1.945e-14
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = -2.7532e+27, df1 = 14, df2 = -2, p-value = NA
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 34.639, df1 = 2, df2 = 10, p-value = 3.193e-05
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=304032&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304032&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2756.9, df1 = 2, df2 = 10, p-value = 1.945e-14
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = -2.7532e+27, df1 = 14, df2 = -2, p-value = NA
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 34.639, df1 = 2, df2 = 10, p-value = 3.193e-05







Variance Inflation Factors (Multicollinearity)
> vif
  Geslacht         X1         X2         X3         X4         X5      Inter 
138.083106   1.540826   1.393605   1.553991   1.396834   3.572375 147.159518 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
  Geslacht         X1         X2         X3         X4         X5      Inter 
138.083106   1.540826   1.393605   1.553991   1.396834   3.572375 147.159518 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=304032&T=6

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
  Geslacht         X1         X2         X3         X4         X5      Inter 
138.083106   1.540826   1.393605   1.553991   1.396834   3.572375 147.159518 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=304032&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304032&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
  Geslacht         X1         X2         X3         X4         X5      Inter 
138.083106   1.540826   1.393605   1.553991   1.396834   3.572375 147.159518 



Parameters (Session):
Parameters (R input):
par1 = 8 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
par5 <- ''
par4 <- ''
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- ''
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')