Estimated Parameters of Exponential Smoothing
ParameterValue
alpha1
beta0.226903627980521
gammaFALSE


Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
382.683.33-0.730000000000004
482.7183.1843603515742-0.474360351574219
582.9883.1867262668319-0.206726266831907
683.1183.4098193268889-0.299819326888894
783.2283.4717892338791-0.251789233879123
883.3283.5246573432255-0.20465734322552
983.3983.5782198495548-0.188219849554784
1083.4583.6055120828329-0.155512082832857
1183.5283.6302258270433-0.11022582704328
1283.5983.67521518699-0.0852151869899984
1383.9783.72587955190290.244120448097064
1484.4884.16127136724040.318728632759615
1584.884.74359205035480.0564079496451768
1684.9385.0763912187763-0.146391218776245
1785.1485.1731745201314-0.0331745201314391
1885.2285.3756471011571-0.155647101157101
1985.5485.42033020921990.119669790780108
2085.585.7674837189076-0.267483718907584
2185.6185.6667906926617-0.0567906926617212
2285.7585.7639046784612-0.0139046784612447
2385.8985.9007496564725-0.010749656472484
2485.9486.0383105204193-0.0983105204193464
2586.0886.06600350666750.0139964933324705
2686.386.20917936178370.0908206382163144
2786.9786.44978689409050.520213105909534
2887.387.23782513514430.062174864855649
2987.6287.58193283754930.0380671624507016
3087.5987.9105704148163-0.320570414816288
3187.7887.8078318246713-0.027831824671253
3287.8787.99151668268-0.121516682680024
3388.1788.05394410651980.116055893480222
3488.6788.3802776097990.28972239020105
3588.8488.9460166712428-0.106016671242756
3688.989.0919611039114-0.191961103911353
3788.9889.1084044330027-0.128404433002729
3889.2789.15926900130560.110730998694365
3989.6989.47439426663930.215605733360718
4089.7289.9433159897522-0.223315989752237
4189.7989.9226447814914-0.132644781491379
4289.8289.9625471993383-0.142547199338324
4389.9889.960202722650.0197972773500226
4490.0990.1246947967048-0.0346947967048408
4590.3190.22682242146050.0831775785395337
4690.390.4656957157977-0.165695715797725
4790.4890.41809875674240.0619012432576227
4890.5290.6121443734141-0.0921443734140581
4990.5390.6312364807884-0.101236480788401
5091.3890.61826555601350.761734443986455
5191.8791.64110586491180.228894135088225
5291.992.1830427745868-0.283042774586775
5392.0892.1488193421594-0.0688193421593724
5492.1492.3132039837482-0.173203983748166
5592.0992.333903371455-0.243903371455019
5692.3292.22856081159520.0914391884047916
5792.6792.47930869518380.19069130481617
5892.7892.872577244071-0.0925772440709665
5992.9692.9615711315228-0.00157113152283728
6093.1293.1412146360802-0.021214636080245
6193.3293.29640095818740.0235990418126164
6294.1293.50175566639150.618244333608502
6394.3494.4420375486657-0.102037548665677
6494.5294.6388848586832-0.118884858683202
6594.8194.7919094529360.0180905470639772
6694.9595.086014263697-0.136014263696993
6794.9995.1951521338071-0.205152133807061
6895.0395.1886023703583-0.158602370358281
6995.1695.1926149171177-0.0326149171176837
7095.4195.31521447409740.0947855259026085
7195.4695.5867216538047-0.126721653804736
7295.6295.60796805081270.0120319491872607
7395.6695.770698143735-0.110698143735021
7495.9695.78558033331080.174419666689161
7596.1896.12515678847370.0548432115262614
7696.2496.3576009121392-0.117600912139181
7797.0396.3909168385210.639083161479036
7897.1197.3259271264418-0.215927126441827
7997.2897.3569324780728-0.0769324780727629
8097.7497.50947621968850.230523780311472
8197.8398.021782901777-0.191782901776975
8298.1498.06826666557910.0717333344208555
8398.1898.3945432194064-0.21454321940638
8498.2198.3858625845645-0.17586258456447
8598.4398.37595872610070.0540412738992728
8698.6798.60822088720920.0617791127908163
8799.5198.86223879203480.647761207965175
8899.6499.8492181601872-0.209218160187177
8999.8399.9317458006013-0.101745800601293
9099.84100.098659309313-0.258659309313074
9199.94100.049968573619-0.109968573619014
92100.17100.1250163053010.044983694698999
93100.56100.3652232688280.194776731171828
94101.05100.7994188157770.250581184222739
95101.17101.346276595581-0.176276595581044
96101.21101.426278796516-0.216278796515667
97101.01101.417204352931-0.407204352930975
98101.92101.1248082079210.795191792078512
99102.33102.2152401104840.114759889515568
100102.41102.651279545762-0.241279545762168
101102.5102.676532341471-0.17653234147123
102102.69102.726476512736-0.0364765127355184
103102.98102.908199859660.0718001403402582
104103.11103.214491571992-0.104491571992469
105103.36103.3207820552140.0392179447860173
106103.8103.5796807491680.220319250832119
107104.07104.0696719864960.000328013504358182
108104.15104.33974641395-0.189746413949791
109104.19104.376692264228-0.186692264228313
110104.64104.3743311121590.265668887841002
111104.98104.8846123466520.0953876533483253
112105.25105.2462561512610.00374384873903466
113105.43105.517105644122-0.0871056441224454
114105.59105.677341057454-0.0873410574535001
115105.84105.8175230546460.0224769453543558
116105.87106.072623155092-0.202623155092468
117106106.056647226089-0.056647226089126
118106.14106.173793764974-0.0337937649744617
119106.24106.306125837099-0.0661258370986388
120106.31106.391121644758-0.081121644757701


Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
121106.442714849254105.995341005967106.890088692541
122106.575429698509105.867321196706107.283538200312
123106.708144547763105.74667081023107.669618285296
124106.840859397018105.62028800929108.061430784746
125106.973574246272105.484240567068108.462907925476
126107.106289095527105.337108070775108.875470120278
127107.239003944781105.178406107383109.299601782179
128107.371718794036105.008054367891109.73538322018
129107.50443364329104.826160211003110.182707075577
130107.637148492544104.632919891477110.641377093612
131107.769863341799104.428570012634111.111156670963
132107.902578191053104.213362513677111.591793868429