Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_variability.wasp
Title produced by softwareVariability
Date of computationTue, 10 May 2011 13:10:28 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2011/May/10/t1305032823xf1p5t74ew5fl4f.htm/, Retrieved Mon, 13 May 2024 07:32:20 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=121386, Retrieved Mon, 13 May 2024 07:32:20 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP2W83
Estimated Impact117
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Variability] [Opgave 8 - Spreid...] [2011-05-10 13:10:28] [0a8e532a214d2021d09549c2863783b9] [Current]
Feedback Forum

Post a new message
Dataseries X:
131676
135050
129070
137792
139762
142917
144198
142648
152170
136022
138142
138135
135027
132911
133976
137012
119610
118106
120383
133185
131416
134248
134397
127728
131837
125955
134187
143291
145074
149812
144668
147253
145568
155564
155872
156323
158010
155598
154785
157294
162938
157283
166074
169282
172552
174055
175409
173696
171283
173322
170717
174229
175339
173511
175839
173816
173990
174777
174819
176726
176199
180952
176663
182346
180605
182497
187856
190020
190108
193288
193230
199068
195076
191563
191067
186665
185508
184371
183046
175714
175768
171029
170465
170102
156389
124291
99360
86675
85056
128236
164257
162401
152779
156005
153387
153190
148840
144211
145953
145542
150271
147489
143824
134754
131736
126304
125511
125495
130133
126257
110323
98417
105749
120665
124075
127245
146731
144979
148210
144670
142970
142524
146142
146522
148128
148798
150181
152388
155694
160662
155520
158262
154338
158196
160371
154856
150636
145899
141242
140834
141119
139104
134437
129425
123155
119273
120472
121523
121983
123658
124794
124827
120382
117395
115790
114283
117271
117448
118764
120550
123554
125412
124182
119828
115361
114226
115214
115864
114276
113469
114883
114172
111225
112149
115618
118002
121382
120663




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'Gwilym Jenkins' @ www.wessa.org

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 0 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ www.wessa.org \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=121386&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]0 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ www.wessa.org[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=121386&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=121386&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time0 seconds
R Server'Gwilym Jenkins' @ www.wessa.org







Variability - Ungrouped Data
Absolute range114012
Relative range (unbiased)4.70733535981767
Relative range (biased)4.72061418833988
Variance (unbiased)586611873.865962
Variance (biased)583316301.540872
Standard Deviation (unbiased)24220.0717147155
Standard Deviation (biased)24151.9419828069
Coefficient of Variation (unbiased)0.166787858609774
Coefficient of Variation (biased)0.166318693521143
Mean Squared Error (MSE versus 0)21670665209.3202
Mean Squared Error (MSE versus Mean)583316301.540872
Mean Absolute Deviation from Mean (MAD Mean)19953.7960484787
Mean Absolute Deviation from Median (MAD Median)19937.297752809
Median Absolute Deviation from Mean19711.8370786517
Median Absolute Deviation from Median18986
Mean Squared Deviation from Mean583316301.540872
Mean Squared Deviation from Median583917449.126405
Interquartile Difference (Weighted Average at Xnp)36721
Interquartile Difference (Weighted Average at X(n+1)p)37716.5
Interquartile Difference (Empirical Distribution Function)37574
Interquartile Difference (Empirical Distribution Function - Averaging)37574
Interquartile Difference (Empirical Distribution Function - Interpolation)36993
Interquartile Difference (Closest Observation)37574
Interquartile Difference (True Basic - Statistics Graphics Toolkit)38001.5
Interquartile Difference (MS Excel (old versions))37574
Semi Interquartile Difference (Weighted Average at Xnp)18360.5
Semi Interquartile Difference (Weighted Average at X(n+1)p)18858.25
Semi Interquartile Difference (Empirical Distribution Function)18787
Semi Interquartile Difference (Empirical Distribution Function - Averaging)18787
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)18496.5
Semi Interquartile Difference (Closest Observation)18787
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)19000.75
Semi Interquartile Difference (MS Excel (old versions))18787
Coefficient of Quartile Variation (Weighted Average at Xnp)0.128241752868947
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.131254480536203
Coefficient of Quartile Variation (Empirical Distribution Function)0.1308159371649
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.1308159371649
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.128922647457042
Coefficient of Quartile Variation (Closest Observation)0.1308159371649
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.132130414525427
Coefficient of Quartile Variation (MS Excel (old versions))0.1308159371649
Number of all Pairs of Observations15753
Squared Differences between all Pairs of Observations1173223747.73192
Mean Absolute Differences between all Pairs of Observations27682.6101060116
Gini Mean Difference27682.6101060116
Leik Measure of Dispersion0.476331554381566
Index of Diversity0.994226618495424
Index of Qualitative Variation0.999843718034946
Coefficient of Dispersion0.138146393808333
Observations178

\begin{tabular}{lllllllll}
\hline
Variability - Ungrouped Data \tabularnewline
Absolute range & 114012 \tabularnewline
Relative range (unbiased) & 4.70733535981767 \tabularnewline
Relative range (biased) & 4.72061418833988 \tabularnewline
Variance (unbiased) & 586611873.865962 \tabularnewline
Variance (biased) & 583316301.540872 \tabularnewline
Standard Deviation (unbiased) & 24220.0717147155 \tabularnewline
Standard Deviation (biased) & 24151.9419828069 \tabularnewline
Coefficient of Variation (unbiased) & 0.166787858609774 \tabularnewline
Coefficient of Variation (biased) & 0.166318693521143 \tabularnewline
Mean Squared Error (MSE versus 0) & 21670665209.3202 \tabularnewline
Mean Squared Error (MSE versus Mean) & 583316301.540872 \tabularnewline
Mean Absolute Deviation from Mean (MAD Mean) & 19953.7960484787 \tabularnewline
Mean Absolute Deviation from Median (MAD Median) & 19937.297752809 \tabularnewline
Median Absolute Deviation from Mean & 19711.8370786517 \tabularnewline
Median Absolute Deviation from Median & 18986 \tabularnewline
Mean Squared Deviation from Mean & 583316301.540872 \tabularnewline
Mean Squared Deviation from Median & 583917449.126405 \tabularnewline
Interquartile Difference (Weighted Average at Xnp) & 36721 \tabularnewline
Interquartile Difference (Weighted Average at X(n+1)p) & 37716.5 \tabularnewline
Interquartile Difference (Empirical Distribution Function) & 37574 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Averaging) & 37574 \tabularnewline
Interquartile Difference (Empirical Distribution Function - Interpolation) & 36993 \tabularnewline
Interquartile Difference (Closest Observation) & 37574 \tabularnewline
Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 38001.5 \tabularnewline
Interquartile Difference (MS Excel (old versions)) & 37574 \tabularnewline
Semi Interquartile Difference (Weighted Average at Xnp) & 18360.5 \tabularnewline
Semi Interquartile Difference (Weighted Average at X(n+1)p) & 18858.25 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function) & 18787 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Averaging) & 18787 \tabularnewline
Semi Interquartile Difference (Empirical Distribution Function - Interpolation) & 18496.5 \tabularnewline
Semi Interquartile Difference (Closest Observation) & 18787 \tabularnewline
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit) & 19000.75 \tabularnewline
Semi Interquartile Difference (MS Excel (old versions)) & 18787 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at Xnp) & 0.128241752868947 \tabularnewline
Coefficient of Quartile Variation (Weighted Average at X(n+1)p) & 0.131254480536203 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function) & 0.1308159371649 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging) & 0.1308159371649 \tabularnewline
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation) & 0.128922647457042 \tabularnewline
Coefficient of Quartile Variation (Closest Observation) & 0.1308159371649 \tabularnewline
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit) & 0.132130414525427 \tabularnewline
Coefficient of Quartile Variation (MS Excel (old versions)) & 0.1308159371649 \tabularnewline
Number of all Pairs of Observations & 15753 \tabularnewline
Squared Differences between all Pairs of Observations & 1173223747.73192 \tabularnewline
Mean Absolute Differences between all Pairs of Observations & 27682.6101060116 \tabularnewline
Gini Mean Difference & 27682.6101060116 \tabularnewline
Leik Measure of Dispersion & 0.476331554381566 \tabularnewline
Index of Diversity & 0.994226618495424 \tabularnewline
Index of Qualitative Variation & 0.999843718034946 \tabularnewline
Coefficient of Dispersion & 0.138146393808333 \tabularnewline
Observations & 178 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=121386&T=1

[TABLE]
[ROW][C]Variability - Ungrouped Data[/C][/ROW]
[ROW][C]Absolute range[/C][C]114012[/C][/ROW]
[ROW][C]Relative range (unbiased)[/C][C]4.70733535981767[/C][/ROW]
[ROW][C]Relative range (biased)[/C][C]4.72061418833988[/C][/ROW]
[ROW][C]Variance (unbiased)[/C][C]586611873.865962[/C][/ROW]
[ROW][C]Variance (biased)[/C][C]583316301.540872[/C][/ROW]
[ROW][C]Standard Deviation (unbiased)[/C][C]24220.0717147155[/C][/ROW]
[ROW][C]Standard Deviation (biased)[/C][C]24151.9419828069[/C][/ROW]
[ROW][C]Coefficient of Variation (unbiased)[/C][C]0.166787858609774[/C][/ROW]
[ROW][C]Coefficient of Variation (biased)[/C][C]0.166318693521143[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus 0)[/C][C]21670665209.3202[/C][/ROW]
[ROW][C]Mean Squared Error (MSE versus Mean)[/C][C]583316301.540872[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Mean (MAD Mean)[/C][C]19953.7960484787[/C][/ROW]
[ROW][C]Mean Absolute Deviation from Median (MAD Median)[/C][C]19937.297752809[/C][/ROW]
[ROW][C]Median Absolute Deviation from Mean[/C][C]19711.8370786517[/C][/ROW]
[ROW][C]Median Absolute Deviation from Median[/C][C]18986[/C][/ROW]
[ROW][C]Mean Squared Deviation from Mean[/C][C]583316301.540872[/C][/ROW]
[ROW][C]Mean Squared Deviation from Median[/C][C]583917449.126405[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at Xnp)[/C][C]36721[/C][/ROW]
[ROW][C]Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]37716.5[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function)[/C][C]37574[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]37574[/C][/ROW]
[ROW][C]Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]36993[/C][/ROW]
[ROW][C]Interquartile Difference (Closest Observation)[/C][C]37574[/C][/ROW]
[ROW][C]Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]38001.5[/C][/ROW]
[ROW][C]Interquartile Difference (MS Excel (old versions))[/C][C]37574[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at Xnp)[/C][C]18360.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Weighted Average at X(n+1)p)[/C][C]18858.25[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function)[/C][C]18787[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Averaging)[/C][C]18787[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Empirical Distribution Function - Interpolation)[/C][C]18496.5[/C][/ROW]
[ROW][C]Semi Interquartile Difference (Closest Observation)[/C][C]18787[/C][/ROW]
[ROW][C]Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)[/C][C]19000.75[/C][/ROW]
[ROW][C]Semi Interquartile Difference (MS Excel (old versions))[/C][C]18787[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at Xnp)[/C][C]0.128241752868947[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Weighted Average at X(n+1)p)[/C][C]0.131254480536203[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function)[/C][C]0.1308159371649[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)[/C][C]0.1308159371649[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)[/C][C]0.128922647457042[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (Closest Observation)[/C][C]0.1308159371649[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)[/C][C]0.132130414525427[/C][/ROW]
[ROW][C]Coefficient of Quartile Variation (MS Excel (old versions))[/C][C]0.1308159371649[/C][/ROW]
[ROW][C]Number of all Pairs of Observations[/C][C]15753[/C][/ROW]
[ROW][C]Squared Differences between all Pairs of Observations[/C][C]1173223747.73192[/C][/ROW]
[ROW][C]Mean Absolute Differences between all Pairs of Observations[/C][C]27682.6101060116[/C][/ROW]
[ROW][C]Gini Mean Difference[/C][C]27682.6101060116[/C][/ROW]
[ROW][C]Leik Measure of Dispersion[/C][C]0.476331554381566[/C][/ROW]
[ROW][C]Index of Diversity[/C][C]0.994226618495424[/C][/ROW]
[ROW][C]Index of Qualitative Variation[/C][C]0.999843718034946[/C][/ROW]
[ROW][C]Coefficient of Dispersion[/C][C]0.138146393808333[/C][/ROW]
[ROW][C]Observations[/C][C]178[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=121386&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=121386&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variability - Ungrouped Data
Absolute range114012
Relative range (unbiased)4.70733535981767
Relative range (biased)4.72061418833988
Variance (unbiased)586611873.865962
Variance (biased)583316301.540872
Standard Deviation (unbiased)24220.0717147155
Standard Deviation (biased)24151.9419828069
Coefficient of Variation (unbiased)0.166787858609774
Coefficient of Variation (biased)0.166318693521143
Mean Squared Error (MSE versus 0)21670665209.3202
Mean Squared Error (MSE versus Mean)583316301.540872
Mean Absolute Deviation from Mean (MAD Mean)19953.7960484787
Mean Absolute Deviation from Median (MAD Median)19937.297752809
Median Absolute Deviation from Mean19711.8370786517
Median Absolute Deviation from Median18986
Mean Squared Deviation from Mean583316301.540872
Mean Squared Deviation from Median583917449.126405
Interquartile Difference (Weighted Average at Xnp)36721
Interquartile Difference (Weighted Average at X(n+1)p)37716.5
Interquartile Difference (Empirical Distribution Function)37574
Interquartile Difference (Empirical Distribution Function - Averaging)37574
Interquartile Difference (Empirical Distribution Function - Interpolation)36993
Interquartile Difference (Closest Observation)37574
Interquartile Difference (True Basic - Statistics Graphics Toolkit)38001.5
Interquartile Difference (MS Excel (old versions))37574
Semi Interquartile Difference (Weighted Average at Xnp)18360.5
Semi Interquartile Difference (Weighted Average at X(n+1)p)18858.25
Semi Interquartile Difference (Empirical Distribution Function)18787
Semi Interquartile Difference (Empirical Distribution Function - Averaging)18787
Semi Interquartile Difference (Empirical Distribution Function - Interpolation)18496.5
Semi Interquartile Difference (Closest Observation)18787
Semi Interquartile Difference (True Basic - Statistics Graphics Toolkit)19000.75
Semi Interquartile Difference (MS Excel (old versions))18787
Coefficient of Quartile Variation (Weighted Average at Xnp)0.128241752868947
Coefficient of Quartile Variation (Weighted Average at X(n+1)p)0.131254480536203
Coefficient of Quartile Variation (Empirical Distribution Function)0.1308159371649
Coefficient of Quartile Variation (Empirical Distribution Function - Averaging)0.1308159371649
Coefficient of Quartile Variation (Empirical Distribution Function - Interpolation)0.128922647457042
Coefficient of Quartile Variation (Closest Observation)0.1308159371649
Coefficient of Quartile Variation (True Basic - Statistics Graphics Toolkit)0.132130414525427
Coefficient of Quartile Variation (MS Excel (old versions))0.1308159371649
Number of all Pairs of Observations15753
Squared Differences between all Pairs of Observations1173223747.73192
Mean Absolute Differences between all Pairs of Observations27682.6101060116
Gini Mean Difference27682.6101060116
Leik Measure of Dispersion0.476331554381566
Index of Diversity0.994226618495424
Index of Qualitative Variation0.999843718034946
Coefficient of Dispersion0.138146393808333
Observations178



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
num <- 50
res <- array(NA,dim=c(num,3))
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
iqd <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
iqdiff <- qvalue3 - qvalue1
return(c(iqdiff,iqdiff/2,iqdiff/(qvalue3 + qvalue1)))
}
range <- max(x) - min(x)
lx <- length(x)
biasf <- (lx-1)/lx
varx <- var(x)
bvarx <- varx*biasf
sdx <- sqrt(varx)
mx <- mean(x)
bsdx <- sqrt(bvarx)
x2 <- x*x
mse0 <- sum(x2)/lx
xmm <- x-mx
xmm2 <- xmm*xmm
msem <- sum(xmm2)/lx
axmm <- abs(x - mx)
medx <- median(x)
axmmed <- abs(x - medx)
xmmed <- x - medx
xmmed2 <- xmmed*xmmed
msemed <- sum(xmmed2)/lx
qarr <- array(NA,dim=c(8,3))
for (j in 1:8) {
qarr[j,] <- iqd(x,j)
}
sdpo <- 0
adpo <- 0
for (i in 1:(lx-1)) {
for (j in (i+1):lx) {
ldi <- x[i]-x[j]
aldi <- abs(ldi)
sdpo = sdpo + ldi * ldi
adpo = adpo + aldi
}
}
denom <- (lx*(lx-1)/2)
sdpo = sdpo / denom
adpo = adpo / denom
gmd <- 0
for (i in 1:lx) {
for (j in 1:lx) {
ldi <- abs(x[i]-x[j])
gmd = gmd + ldi
}
}
gmd <- gmd / (lx*(lx-1))
sumx <- sum(x)
pk <- x / sumx
ck <- cumsum(pk)
dk <- array(NA,dim=lx)
for (i in 1:lx) {
if (ck[i] <= 0.5) dk[i] <- ck[i] else dk[i] <- 1 - ck[i]
}
bigd <- sum(dk) * 2 / (lx-1)
iod <- 1 - sum(pk*pk)
res[1,] <- c('Absolute range','absolute.htm', range)
res[2,] <- c('Relative range (unbiased)','relative.htm', range/sd(x))
res[3,] <- c('Relative range (biased)','relative.htm', range/sqrt(varx*biasf))
res[4,] <- c('Variance (unbiased)','unbiased.htm', varx)
res[5,] <- c('Variance (biased)','biased.htm', bvarx)
res[6,] <- c('Standard Deviation (unbiased)','unbiased1.htm', sdx)
res[7,] <- c('Standard Deviation (biased)','biased1.htm', bsdx)
res[8,] <- c('Coefficient of Variation (unbiased)','variation.htm', sdx/mx)
res[9,] <- c('Coefficient of Variation (biased)','variation.htm', bsdx/mx)
res[10,] <- c('Mean Squared Error (MSE versus 0)','mse.htm', mse0)
res[11,] <- c('Mean Squared Error (MSE versus Mean)','mse.htm', msem)
res[12,] <- c('Mean Absolute Deviation from Mean (MAD Mean)', 'mean2.htm', sum(axmm)/lx)
res[13,] <- c('Mean Absolute Deviation from Median (MAD Median)', 'median1.htm', sum(axmmed)/lx)
res[14,] <- c('Median Absolute Deviation from Mean', 'mean3.htm', median(axmm))
res[15,] <- c('Median Absolute Deviation from Median', 'median2.htm', median(axmmed))
res[16,] <- c('Mean Squared Deviation from Mean', 'mean1.htm', msem)
res[17,] <- c('Mean Squared Deviation from Median', 'median.htm', msemed)
load(file='createtable')
mylink1 <- hyperlink('difference.htm','Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[18,] <- c('', mylink2, qarr[1,1])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[19,] <- c('', mylink2, qarr[2,1])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[20,] <- c('', mylink2, qarr[3,1])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[21,] <- c('', mylink2, qarr[4,1])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[22,] <- c('', mylink2, qarr[5,1])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[23,] <- c('', mylink2, qarr[6,1])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[24,] <- c('', mylink2, qarr[7,1])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[25,] <- c('', mylink2, qarr[8,1])
mylink1 <- hyperlink('deviation.htm','Semi Interquartile Difference','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[26,] <- c('', mylink2, qarr[1,2])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[27,] <- c('', mylink2, qarr[2,2])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[28,] <- c('', mylink2, qarr[3,2])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[29,] <- c('', mylink2, qarr[4,2])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[30,] <- c('', mylink2, qarr[5,2])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[31,] <- c('', mylink2, qarr[6,2])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[32,] <- c('', mylink2, qarr[7,2])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[33,] <- c('', mylink2, qarr[8,2])
mylink1 <- hyperlink('variation1.htm','Coefficient of Quartile Variation','')
mylink2 <- paste(mylink1,hyperlink('method_1.htm','(Weighted Average at Xnp)',''),sep=' ')
res[34,] <- c('', mylink2, qarr[1,3])
mylink2 <- paste(mylink1,hyperlink('method_2.htm','(Weighted Average at X(n+1)p)',''),sep=' ')
res[35,] <- c('', mylink2, qarr[2,3])
mylink2 <- paste(mylink1,hyperlink('method_3.htm','(Empirical Distribution Function)',''),sep=' ')
res[36,] <- c('', mylink2, qarr[3,3])
mylink2 <- paste(mylink1,hyperlink('method_4.htm','(Empirical Distribution Function - Averaging)',''),sep=' ')
res[37,] <- c('', mylink2, qarr[4,3])
mylink2 <- paste(mylink1,hyperlink('method_5.htm','(Empirical Distribution Function - Interpolation)',''),sep=' ')
res[38,] <- c('', mylink2, qarr[5,3])
mylink2 <- paste(mylink1,hyperlink('method_6.htm','(Closest Observation)',''),sep=' ')
res[39,] <- c('', mylink2, qarr[6,3])
mylink2 <- paste(mylink1,hyperlink('method_7.htm','(True Basic - Statistics Graphics Toolkit)',''),sep=' ')
res[40,] <- c('', mylink2, qarr[7,3])
mylink2 <- paste(mylink1,hyperlink('method_8.htm','(MS Excel (old versions))',''),sep=' ')
res[41,] <- c('', mylink2, qarr[8,3])
res[42,] <- c('Number of all Pairs of Observations', 'pair_numbers.htm', lx*(lx-1)/2)
res[43,] <- c('Squared Differences between all Pairs of Observations', 'squared_differences.htm', sdpo)
res[44,] <- c('Mean Absolute Differences between all Pairs of Observations', 'mean_abs_differences.htm', adpo)
res[45,] <- c('Gini Mean Difference', 'gini_mean_difference.htm', gmd)
res[46,] <- c('Leik Measure of Dispersion', 'leiks_d.htm', bigd)
res[47,] <- c('Index of Diversity', 'diversity.htm', iod)
res[48,] <- c('Index of Qualitative Variation', 'qualitative_variation.htm', iod*lx/(lx-1))
res[49,] <- c('Coefficient of Dispersion', 'dispersion.htm', sum(axmm)/lx/medx)
res[50,] <- c('Observations', '', lx)
res
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variability - Ungrouped Data',2,TRUE)
a<-table.row.end(a)
for (i in 1:num) {
a<-table.row.start(a)
if (res[i,1] != '') {
a<-table.element(a,hyperlink(res[i,2],res[i,1],''),header=TRUE)
} else {
a<-table.element(a,res[i,2],header=TRUE)
}
a<-table.element(a,res[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')