Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_linear_regression.wasp
Title produced by softwareLinear Regression Graphical Model Validation
Date of computationTue, 16 Nov 2010 18:56:14 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Nov/16/t1289933719m8e6ri67k4qma2e.htm/, Retrieved Sun, 05 May 2024 06:52:29 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=96277, Retrieved Sun, 05 May 2024 06:52:29 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact114
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Linear Regression Graphical Model Validation] [Colombia Coffee -...] [2008-02-26 10:22:06] [74be16979710d4c4e7c6647856088456]
-  M D  [Linear Regression Graphical Model Validation] [WS - Minitut] [2010-11-16 00:58:47] [19f9551d4d95750ef21e9f3cf8fe2131]
-    D    [Linear Regression Graphical Model Validation] [mini tut] [2010-11-16 18:38:52] [87116ee6ef949037dfa02b8eb1a3bf97]
F    D        [Linear Regression Graphical Model Validation] [tut] [2010-11-16 18:56:14] [66b4703b90a9701067ac75b10c82aca9] [Current]
-    D          [Linear Regression Graphical Model Validation] [tut 2] [2010-11-16 19:09:07] [87116ee6ef949037dfa02b8eb1a3bf97]
Feedback Forum
2010-11-20 08:40:34 [] [reply
Het lijkt mij mogelijk om hypothese 1 en 2 op te splitsen in telkens 2 hypothesen. Bij hypothese 1 kan gezegd worden: We kunnen spreken van een verband tussen geloven in geluk (Yt) en gelukkig zijn (Xt). Dus geloven in geluk verklaren aan de hand van de variabele gelukkig zijn. En aan de andere kant we kunnen spreken van een verband tussen geloven in geluk (Xt) en gelukkig zijn (Yt). Dus gelukkig zijn verklaren aan de hand van de variabele geloven in geluk. Op deze manier kan hypothese 2 ook opgesplitst worden.

Post a new message
Dataseries X:
1
4
1
2
3
2
2
1
2
1
2
2
2
2
1
2
4
2
2
2
1
1
2
2
2
2
1
3
2
2
4
3
1
1
2
2
1
1
3
2
2
3
1
1
1
3
3
2
2
1
2
2
1
2
1
3
2
2
1
2
1
2
1
1
2
4
1
2
3
2
4
3
1
1
4
2
2
1
2
2
2
3
4
2
2
2
3
1
2
1
4
3
2
2
3
2
2
3
2
1
2
1
2
1
2
2
5
1
3
2
3
2
2
1
2
3
3
3
3
2
3
3
2
2
1
2
1
3
2
2
1
2
1
1
2
2
2
2
1
1
1
1
4
2
1
2
2
3
1
3
2
2
Dataseries Y:
14
18
11
12
16
18
14
14
15
15
17
19
10
16
18
14
14
17
14
16
18
11
14
12
17
9
16
14
15
11
16
13
17
15
14
16
9
15
17
13
15
16
16
12
12
11
15
15
17
13
16
14
11
12
12
15
16
15
12
12
8
13
11
14
15
10
11
12
15
15
14
16
15
15
13
12
17
13
15
13
15
16
15
16
15
14
15
14
13
7
17
13
15
14
13
16
12
14
17
15
17
12
16
11
15
9
16
15
10
10
15
11
13
14
18
16
14
14
14
14
12
14
15
15
15
13
17
17
19
15
13
9
15
15
15
16
11
14
11
15
13
15
16
14
15
16
16
11
12
9
16
13




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=96277&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=96277&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=96277&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'George Udny Yule' @ 72.249.76.132







Simple Linear Regression
StatisticsEstimateS.D.T-STAT (H0: coeff=0)P-value (two-sided)
constant term13.29237021349660.47238049491749828.13911742020210
slope0.3894453666075210.2148177093395561.81291089922170.0718449772782643

\begin{tabular}{lllllllll}
\hline
Simple Linear Regression \tabularnewline
Statistics & Estimate & S.D. & T-STAT (H0: coeff=0) & P-value (two-sided) \tabularnewline
constant term & 13.2923702134966 & 0.472380494917498 & 28.1391174202021 & 0 \tabularnewline
slope & 0.389445366607521 & 0.214817709339556 & 1.8129108992217 & 0.0718449772782643 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=96277&T=1

[TABLE]
[ROW][C]Simple Linear Regression[/C][/ROW]
[ROW][C]Statistics[/C][C]Estimate[/C][C]S.D.[/C][C]T-STAT (H0: coeff=0)[/C][C]P-value (two-sided)[/C][/ROW]
[ROW][C]constant term[/C][C]13.2923702134966[/C][C]0.472380494917498[/C][C]28.1391174202021[/C][C]0[/C][/ROW]
[ROW][C]slope[/C][C]0.389445366607521[/C][C]0.214817709339556[/C][C]1.8129108992217[/C][C]0.0718449772782643[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=96277&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=96277&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Simple Linear Regression
StatisticsEstimateS.D.T-STAT (H0: coeff=0)P-value (two-sided)
constant term13.29237021349660.47238049491749828.13911742020210
slope0.3894453666075210.2148177093395561.81291089922170.0718449772782643



Parameters (Session):
par1 = 0 ;
Parameters (R input):
par1 = 0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
library(lattice)
z <- as.data.frame(cbind(x,y))
m <- lm(y~x)
summary(m)
bitmap(file='test1.png')
plot(z,main='Scatterplot, lowess, and regression line')
lines(lowess(z),col='red')
abline(m)
grid()
dev.off()
bitmap(file='test2.png')
m2 <- lm(m$fitted.values ~ x)
summary(m2)
z2 <- as.data.frame(cbind(x,m$fitted.values))
names(z2) <- list('x','Fitted')
plot(z2,main='Scatterplot, lowess, and regression line')
lines(lowess(z2),col='red')
abline(m2)
grid()
dev.off()
bitmap(file='test3.png')
m3 <- lm(m$residuals ~ x)
summary(m3)
z3 <- as.data.frame(cbind(x,m$residuals))
names(z3) <- list('x','Residuals')
plot(z3,main='Scatterplot, lowess, and regression line')
lines(lowess(z3),col='red')
abline(m3)
grid()
dev.off()
bitmap(file='test4.png')
m4 <- lm(m$fitted.values ~ m$residuals)
summary(m4)
z4 <- as.data.frame(cbind(m$residuals,m$fitted.values))
names(z4) <- list('Residuals','Fitted')
plot(z4,main='Scatterplot, lowess, and regression line')
lines(lowess(z4),col='red')
abline(m4)
grid()
dev.off()
bitmap(file='test5.png')
myr <- as.ts(m$residuals)
z5 <- as.data.frame(cbind(lag(myr,1),myr))
names(z5) <- list('Lagged Residuals','Residuals')
plot(z5,main='Lag plot')
m5 <- lm(z5)
summary(m5)
abline(m5)
grid()
dev.off()
bitmap(file='test6.png')
hist(m$residuals,main='Residual Histogram',xlab='Residuals')
dev.off()
bitmap(file='test7.png')
if (par1 > 0)
{
densityplot(~m$residuals,col='black',main=paste('Density Plot bw = ',par1),bw=par1)
} else {
densityplot(~m$residuals,col='black',main='Density Plot')
}
dev.off()
bitmap(file='test8.png')
acf(m$residuals,main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test9.png')
qqnorm(x)
qqline(x)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Simple Linear Regression',5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Statistics',1,TRUE)
a<-table.element(a,'Estimate',1,TRUE)
a<-table.element(a,'S.D.',1,TRUE)
a<-table.element(a,'T-STAT (H0: coeff=0)',1,TRUE)
a<-table.element(a,'P-value (two-sided)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'constant term',header=TRUE)
a<-table.element(a,m$coefficients[[1]])
sd <- sqrt(vcov(m)[1,1])
a<-table.element(a,sd)
tstat <- m$coefficients[[1]]/sd
a<-table.element(a,tstat)
pval <- 2*(1-pt(abs(tstat),length(x)-2))
a<-table.element(a,pval)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'slope',header=TRUE)
a<-table.element(a,m$coefficients[[2]])
sd <- sqrt(vcov(m)[2,2])
a<-table.element(a,sd)
tstat <- m$coefficients[[2]]/sd
a<-table.element(a,tstat)
pval <- 2*(1-pt(abs(tstat),length(x)-2))
a<-table.element(a,pval)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')