Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_centraltendency.wasp
Title produced by softwareCentral Tendency
Date of computationThu, 18 Mar 2010 09:08:30 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Mar/18/t1268924990n1qxwbp243x8ipj.htm/, Retrieved Tue, 18 Jan 2022 14:16:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=74550, Retrieved Tue, 18 Jan 2022 14:16:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP1W52
Estimated Impact171
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Central Tendency] [verkoopcijfer - c...] [2010-03-18 15:08:30] [e8bb75392cb2cf20c26f170b87ccd1b7] [Current]
Feedback Forum

Post a new message
Dataseries X:
154
96
73
49
36
59
95
169
210
278
298
245
200
118
90
79
78
91
167
169
289
347
375
203
223
104
107
85
75
99
135
211
335
460
488
326
346
261
224
141
148
145
223
272
445
560
612
467
518
404
300
210
196
186
247
343
464
680
711
610
613
392
273
322
189
257
324
404
677
858
895
664
628
308
324
248
272




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=74550&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=74550&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=74550&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean298.40259740259722.613262125827413.1959111313613
Geometric Mean236.566941546489
Harmonic Mean180.304921895268
Quadratic Mean357.641498652550
Winsorized Mean ( 1 / 25 )298.09090909090922.425681787381813.2923900337619
Winsorized Mean ( 2 / 25 )294.53246753246821.265054049395513.8505393331384
Winsorized Mean ( 3 / 25 )293.8701298701320.884731908250014.0710510990109
Winsorized Mean ( 4 / 25 )293.81818181818220.832508569187714.1038310793139
Winsorized Mean ( 5 / 25 )293.16883116883120.603542112282314.2290500133987
Winsorized Mean ( 6 / 25 )290.44155844155819.947971402064514.5599546233307
Winsorized Mean ( 7 / 25 )289.62337662337719.572341922707814.7975841504872
Winsorized Mean ( 8 / 25 )290.03896103896119.478921442770614.8898881229692
Winsorized Mean ( 9 / 25 )289.92207792207819.412366542732314.9349167338188
Winsorized Mean ( 10 / 25 )283.94805194805217.979291422713215.7930613210563
Winsorized Mean ( 11 / 25 )278.09090909090916.787605909509416.5652512091306
Winsorized Mean ( 12 / 25 )273.88311688311715.864967338835917.2633898976065
Winsorized Mean ( 13 / 25 )271.18181818181815.125276893944717.9290481809548
Winsorized Mean ( 14 / 25 )271.18181818181814.953479093631218.1350317530665
Winsorized Mean ( 15 / 25 )272.54545454545514.516231109941518.7752215076543
Winsorized Mean ( 16 / 25 )272.96103896103913.504884328926220.2120234659383
Winsorized Mean ( 17 / 25 )265.23376623376611.865645340153722.3530839351997
Winsorized Mean ( 18 / 25 )266.16883116883111.737726863401822.6763524374337
Winsorized Mean ( 19 / 25 )263.94805194805211.185060098788023.5982685490134
Winsorized Mean ( 20 / 25 )261.09090909090910.318628208867925.3028700914455
Winsorized Mean ( 21 / 25 )2578.7630578282759729.3276622197713
Winsorized Mean ( 22 / 25 )257.2857142857148.6474753652360329.7526969917759
Winsorized Mean ( 23 / 25 )256.3896103896108.5271099950764430.0675856811569
Winsorized Mean ( 24 / 25 )259.1948051948057.4957960184208634.5786897826243
Winsorized Mean ( 25 / 25 )257.2467532467536.9868579847473636.8186606638256
Trimmed Mean ( 1 / 25 )293.94666666666721.503001201243113.6700297747123
Trimmed Mean ( 2 / 25 )289.57534246575320.39681420240414.1970868387684
Trimmed Mean ( 3 / 25 )286.88732394366219.835222104476514.4635296964442
Trimmed Mean ( 4 / 25 )284.28985507246419.338077821094214.701039974219
Trimmed Mean ( 5 / 25 )284.28985507246418.758990410041315.1548590227057
Trimmed Mean ( 6 / 25 )278.818.133508612934915.3748513843111
Trimmed Mean ( 7 / 25 )276.42857142857117.569213786045215.7336904653145
Trimmed Mean ( 8 / 25 )274.04918032786916.981369190349916.1382263853967
Trimmed Mean ( 9 / 25 )271.44067796610216.279776857600916.6734888530961
Trimmed Mean ( 10 / 25 )271.44067796610215.423396553172917.5992802253575
Trimmed Mean ( 11 / 25 )266.52727272727314.725658555593718.0995146479225
Trimmed Mean ( 12 / 25 )26514.147112205130718.7317380506739
Trimmed Mean ( 13 / 25 )263.88235294117613.637308890379619.3500312314060
Trimmed Mean ( 14 / 25 )26313.160799088697519.9835890075903
Trimmed Mean ( 15 / 25 )262.04255319148912.588298953138520.8163592370165
Trimmed Mean ( 16 / 25 )260.84444444444411.946892396556721.8336648381988
Trimmed Mean ( 17 / 25 )259.48837209302311.352909876865522.8565517481821
Trimmed Mean ( 18 / 25 )258.85365853658510.983166775082723.5682170577471
Trimmed Mean ( 19 / 25 )258.05128205128210.512440334128324.5472291731850
Trimmed Mean ( 20 / 25 )258.05128205128210.019085350492325.7559720297823
Trimmed Mean ( 21 / 25 )2579.5786000977143226.8306430353352
Trimmed Mean ( 22 / 25 )2579.3835567011467627.3883355943906
Trimmed Mean ( 23 / 25 )256.9677419354849.1179232533342928.1827050739339
Trimmed Mean ( 24 / 25 )257.0344827586218.7505781313048529.3734286925672
Trimmed Mean ( 25 / 25 )256.7777777777788.527704696365530.1110072311975
Median257
Midrange465.5
Midmean - Weighted Average at Xnp254.526315789474
Midmean - Weighted Average at X(n+1)p258.051282051282
Midmean - Empirical Distribution Function258.051282051282
Midmean - Empirical Distribution Function - Averaging258.051282051282
Midmean - Empirical Distribution Function - Interpolation258.051282051282
Midmean - Closest Observation255.225
Midmean - True Basic - Statistics Graphics Toolkit258.051282051282
Midmean - MS Excel (old versions)258.051282051282
Number of observations77

\begin{tabular}{lllllllll}
\hline
Central Tendency - Ungrouped Data \tabularnewline
Measure & Value & S.E. & Value/S.E. \tabularnewline
Arithmetic Mean & 298.402597402597 & 22.6132621258274 & 13.1959111313613 \tabularnewline
Geometric Mean & 236.566941546489 &  &  \tabularnewline
Harmonic Mean & 180.304921895268 &  &  \tabularnewline
Quadratic Mean & 357.641498652550 &  &  \tabularnewline
Winsorized Mean ( 1 / 25 ) & 298.090909090909 & 22.4256817873818 & 13.2923900337619 \tabularnewline
Winsorized Mean ( 2 / 25 ) & 294.532467532468 & 21.2650540493955 & 13.8505393331384 \tabularnewline
Winsorized Mean ( 3 / 25 ) & 293.87012987013 & 20.8847319082500 & 14.0710510990109 \tabularnewline
Winsorized Mean ( 4 / 25 ) & 293.818181818182 & 20.8325085691877 & 14.1038310793139 \tabularnewline
Winsorized Mean ( 5 / 25 ) & 293.168831168831 & 20.6035421122823 & 14.2290500133987 \tabularnewline
Winsorized Mean ( 6 / 25 ) & 290.441558441558 & 19.9479714020645 & 14.5599546233307 \tabularnewline
Winsorized Mean ( 7 / 25 ) & 289.623376623377 & 19.5723419227078 & 14.7975841504872 \tabularnewline
Winsorized Mean ( 8 / 25 ) & 290.038961038961 & 19.4789214427706 & 14.8898881229692 \tabularnewline
Winsorized Mean ( 9 / 25 ) & 289.922077922078 & 19.4123665427323 & 14.9349167338188 \tabularnewline
Winsorized Mean ( 10 / 25 ) & 283.948051948052 & 17.9792914227132 & 15.7930613210563 \tabularnewline
Winsorized Mean ( 11 / 25 ) & 278.090909090909 & 16.7876059095094 & 16.5652512091306 \tabularnewline
Winsorized Mean ( 12 / 25 ) & 273.883116883117 & 15.8649673388359 & 17.2633898976065 \tabularnewline
Winsorized Mean ( 13 / 25 ) & 271.181818181818 & 15.1252768939447 & 17.9290481809548 \tabularnewline
Winsorized Mean ( 14 / 25 ) & 271.181818181818 & 14.9534790936312 & 18.1350317530665 \tabularnewline
Winsorized Mean ( 15 / 25 ) & 272.545454545455 & 14.5162311099415 & 18.7752215076543 \tabularnewline
Winsorized Mean ( 16 / 25 ) & 272.961038961039 & 13.5048843289262 & 20.2120234659383 \tabularnewline
Winsorized Mean ( 17 / 25 ) & 265.233766233766 & 11.8656453401537 & 22.3530839351997 \tabularnewline
Winsorized Mean ( 18 / 25 ) & 266.168831168831 & 11.7377268634018 & 22.6763524374337 \tabularnewline
Winsorized Mean ( 19 / 25 ) & 263.948051948052 & 11.1850600987880 & 23.5982685490134 \tabularnewline
Winsorized Mean ( 20 / 25 ) & 261.090909090909 & 10.3186282088679 & 25.3028700914455 \tabularnewline
Winsorized Mean ( 21 / 25 ) & 257 & 8.76305782827597 & 29.3276622197713 \tabularnewline
Winsorized Mean ( 22 / 25 ) & 257.285714285714 & 8.64747536523603 & 29.7526969917759 \tabularnewline
Winsorized Mean ( 23 / 25 ) & 256.389610389610 & 8.52710999507644 & 30.0675856811569 \tabularnewline
Winsorized Mean ( 24 / 25 ) & 259.194805194805 & 7.49579601842086 & 34.5786897826243 \tabularnewline
Winsorized Mean ( 25 / 25 ) & 257.246753246753 & 6.98685798474736 & 36.8186606638256 \tabularnewline
Trimmed Mean ( 1 / 25 ) & 293.946666666667 & 21.5030012012431 & 13.6700297747123 \tabularnewline
Trimmed Mean ( 2 / 25 ) & 289.575342465753 & 20.396814202404 & 14.1970868387684 \tabularnewline
Trimmed Mean ( 3 / 25 ) & 286.887323943662 & 19.8352221044765 & 14.4635296964442 \tabularnewline
Trimmed Mean ( 4 / 25 ) & 284.289855072464 & 19.3380778210942 & 14.701039974219 \tabularnewline
Trimmed Mean ( 5 / 25 ) & 284.289855072464 & 18.7589904100413 & 15.1548590227057 \tabularnewline
Trimmed Mean ( 6 / 25 ) & 278.8 & 18.1335086129349 & 15.3748513843111 \tabularnewline
Trimmed Mean ( 7 / 25 ) & 276.428571428571 & 17.5692137860452 & 15.7336904653145 \tabularnewline
Trimmed Mean ( 8 / 25 ) & 274.049180327869 & 16.9813691903499 & 16.1382263853967 \tabularnewline
Trimmed Mean ( 9 / 25 ) & 271.440677966102 & 16.2797768576009 & 16.6734888530961 \tabularnewline
Trimmed Mean ( 10 / 25 ) & 271.440677966102 & 15.4233965531729 & 17.5992802253575 \tabularnewline
Trimmed Mean ( 11 / 25 ) & 266.527272727273 & 14.7256585555937 & 18.0995146479225 \tabularnewline
Trimmed Mean ( 12 / 25 ) & 265 & 14.1471122051307 & 18.7317380506739 \tabularnewline
Trimmed Mean ( 13 / 25 ) & 263.882352941176 & 13.6373088903796 & 19.3500312314060 \tabularnewline
Trimmed Mean ( 14 / 25 ) & 263 & 13.1607990886975 & 19.9835890075903 \tabularnewline
Trimmed Mean ( 15 / 25 ) & 262.042553191489 & 12.5882989531385 & 20.8163592370165 \tabularnewline
Trimmed Mean ( 16 / 25 ) & 260.844444444444 & 11.9468923965567 & 21.8336648381988 \tabularnewline
Trimmed Mean ( 17 / 25 ) & 259.488372093023 & 11.3529098768655 & 22.8565517481821 \tabularnewline
Trimmed Mean ( 18 / 25 ) & 258.853658536585 & 10.9831667750827 & 23.5682170577471 \tabularnewline
Trimmed Mean ( 19 / 25 ) & 258.051282051282 & 10.5124403341283 & 24.5472291731850 \tabularnewline
Trimmed Mean ( 20 / 25 ) & 258.051282051282 & 10.0190853504923 & 25.7559720297823 \tabularnewline
Trimmed Mean ( 21 / 25 ) & 257 & 9.57860009771432 & 26.8306430353352 \tabularnewline
Trimmed Mean ( 22 / 25 ) & 257 & 9.38355670114676 & 27.3883355943906 \tabularnewline
Trimmed Mean ( 23 / 25 ) & 256.967741935484 & 9.11792325333429 & 28.1827050739339 \tabularnewline
Trimmed Mean ( 24 / 25 ) & 257.034482758621 & 8.75057813130485 & 29.3734286925672 \tabularnewline
Trimmed Mean ( 25 / 25 ) & 256.777777777778 & 8.5277046963655 & 30.1110072311975 \tabularnewline
Median & 257 &  &  \tabularnewline
Midrange & 465.5 &  &  \tabularnewline
Midmean - Weighted Average at Xnp & 254.526315789474 &  &  \tabularnewline
Midmean - Weighted Average at X(n+1)p & 258.051282051282 &  &  \tabularnewline
Midmean - Empirical Distribution Function & 258.051282051282 &  &  \tabularnewline
Midmean - Empirical Distribution Function - Averaging & 258.051282051282 &  &  \tabularnewline
Midmean - Empirical Distribution Function - Interpolation & 258.051282051282 &  &  \tabularnewline
Midmean - Closest Observation & 255.225 &  &  \tabularnewline
Midmean - True Basic - Statistics Graphics Toolkit & 258.051282051282 &  &  \tabularnewline
Midmean - MS Excel (old versions) & 258.051282051282 &  &  \tabularnewline
Number of observations & 77 &  &  \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=74550&T=1

[TABLE]
[ROW][C]Central Tendency - Ungrouped Data[/C][/ROW]
[ROW][C]Measure[/C][C]Value[/C][C]S.E.[/C][C]Value/S.E.[/C][/ROW]
[ROW][C]Arithmetic Mean[/C][C]298.402597402597[/C][C]22.6132621258274[/C][C]13.1959111313613[/C][/ROW]
[ROW][C]Geometric Mean[/C][C]236.566941546489[/C][C][/C][C][/C][/ROW]
[ROW][C]Harmonic Mean[/C][C]180.304921895268[/C][C][/C][C][/C][/ROW]
[ROW][C]Quadratic Mean[/C][C]357.641498652550[/C][C][/C][C][/C][/ROW]
[ROW][C]Winsorized Mean ( 1 / 25 )[/C][C]298.090909090909[/C][C]22.4256817873818[/C][C]13.2923900337619[/C][/ROW]
[ROW][C]Winsorized Mean ( 2 / 25 )[/C][C]294.532467532468[/C][C]21.2650540493955[/C][C]13.8505393331384[/C][/ROW]
[ROW][C]Winsorized Mean ( 3 / 25 )[/C][C]293.87012987013[/C][C]20.8847319082500[/C][C]14.0710510990109[/C][/ROW]
[ROW][C]Winsorized Mean ( 4 / 25 )[/C][C]293.818181818182[/C][C]20.8325085691877[/C][C]14.1038310793139[/C][/ROW]
[ROW][C]Winsorized Mean ( 5 / 25 )[/C][C]293.168831168831[/C][C]20.6035421122823[/C][C]14.2290500133987[/C][/ROW]
[ROW][C]Winsorized Mean ( 6 / 25 )[/C][C]290.441558441558[/C][C]19.9479714020645[/C][C]14.5599546233307[/C][/ROW]
[ROW][C]Winsorized Mean ( 7 / 25 )[/C][C]289.623376623377[/C][C]19.5723419227078[/C][C]14.7975841504872[/C][/ROW]
[ROW][C]Winsorized Mean ( 8 / 25 )[/C][C]290.038961038961[/C][C]19.4789214427706[/C][C]14.8898881229692[/C][/ROW]
[ROW][C]Winsorized Mean ( 9 / 25 )[/C][C]289.922077922078[/C][C]19.4123665427323[/C][C]14.9349167338188[/C][/ROW]
[ROW][C]Winsorized Mean ( 10 / 25 )[/C][C]283.948051948052[/C][C]17.9792914227132[/C][C]15.7930613210563[/C][/ROW]
[ROW][C]Winsorized Mean ( 11 / 25 )[/C][C]278.090909090909[/C][C]16.7876059095094[/C][C]16.5652512091306[/C][/ROW]
[ROW][C]Winsorized Mean ( 12 / 25 )[/C][C]273.883116883117[/C][C]15.8649673388359[/C][C]17.2633898976065[/C][/ROW]
[ROW][C]Winsorized Mean ( 13 / 25 )[/C][C]271.181818181818[/C][C]15.1252768939447[/C][C]17.9290481809548[/C][/ROW]
[ROW][C]Winsorized Mean ( 14 / 25 )[/C][C]271.181818181818[/C][C]14.9534790936312[/C][C]18.1350317530665[/C][/ROW]
[ROW][C]Winsorized Mean ( 15 / 25 )[/C][C]272.545454545455[/C][C]14.5162311099415[/C][C]18.7752215076543[/C][/ROW]
[ROW][C]Winsorized Mean ( 16 / 25 )[/C][C]272.961038961039[/C][C]13.5048843289262[/C][C]20.2120234659383[/C][/ROW]
[ROW][C]Winsorized Mean ( 17 / 25 )[/C][C]265.233766233766[/C][C]11.8656453401537[/C][C]22.3530839351997[/C][/ROW]
[ROW][C]Winsorized Mean ( 18 / 25 )[/C][C]266.168831168831[/C][C]11.7377268634018[/C][C]22.6763524374337[/C][/ROW]
[ROW][C]Winsorized Mean ( 19 / 25 )[/C][C]263.948051948052[/C][C]11.1850600987880[/C][C]23.5982685490134[/C][/ROW]
[ROW][C]Winsorized Mean ( 20 / 25 )[/C][C]261.090909090909[/C][C]10.3186282088679[/C][C]25.3028700914455[/C][/ROW]
[ROW][C]Winsorized Mean ( 21 / 25 )[/C][C]257[/C][C]8.76305782827597[/C][C]29.3276622197713[/C][/ROW]
[ROW][C]Winsorized Mean ( 22 / 25 )[/C][C]257.285714285714[/C][C]8.64747536523603[/C][C]29.7526969917759[/C][/ROW]
[ROW][C]Winsorized Mean ( 23 / 25 )[/C][C]256.389610389610[/C][C]8.52710999507644[/C][C]30.0675856811569[/C][/ROW]
[ROW][C]Winsorized Mean ( 24 / 25 )[/C][C]259.194805194805[/C][C]7.49579601842086[/C][C]34.5786897826243[/C][/ROW]
[ROW][C]Winsorized Mean ( 25 / 25 )[/C][C]257.246753246753[/C][C]6.98685798474736[/C][C]36.8186606638256[/C][/ROW]
[ROW][C]Trimmed Mean ( 1 / 25 )[/C][C]293.946666666667[/C][C]21.5030012012431[/C][C]13.6700297747123[/C][/ROW]
[ROW][C]Trimmed Mean ( 2 / 25 )[/C][C]289.575342465753[/C][C]20.396814202404[/C][C]14.1970868387684[/C][/ROW]
[ROW][C]Trimmed Mean ( 3 / 25 )[/C][C]286.887323943662[/C][C]19.8352221044765[/C][C]14.4635296964442[/C][/ROW]
[ROW][C]Trimmed Mean ( 4 / 25 )[/C][C]284.289855072464[/C][C]19.3380778210942[/C][C]14.701039974219[/C][/ROW]
[ROW][C]Trimmed Mean ( 5 / 25 )[/C][C]284.289855072464[/C][C]18.7589904100413[/C][C]15.1548590227057[/C][/ROW]
[ROW][C]Trimmed Mean ( 6 / 25 )[/C][C]278.8[/C][C]18.1335086129349[/C][C]15.3748513843111[/C][/ROW]
[ROW][C]Trimmed Mean ( 7 / 25 )[/C][C]276.428571428571[/C][C]17.5692137860452[/C][C]15.7336904653145[/C][/ROW]
[ROW][C]Trimmed Mean ( 8 / 25 )[/C][C]274.049180327869[/C][C]16.9813691903499[/C][C]16.1382263853967[/C][/ROW]
[ROW][C]Trimmed Mean ( 9 / 25 )[/C][C]271.440677966102[/C][C]16.2797768576009[/C][C]16.6734888530961[/C][/ROW]
[ROW][C]Trimmed Mean ( 10 / 25 )[/C][C]271.440677966102[/C][C]15.4233965531729[/C][C]17.5992802253575[/C][/ROW]
[ROW][C]Trimmed Mean ( 11 / 25 )[/C][C]266.527272727273[/C][C]14.7256585555937[/C][C]18.0995146479225[/C][/ROW]
[ROW][C]Trimmed Mean ( 12 / 25 )[/C][C]265[/C][C]14.1471122051307[/C][C]18.7317380506739[/C][/ROW]
[ROW][C]Trimmed Mean ( 13 / 25 )[/C][C]263.882352941176[/C][C]13.6373088903796[/C][C]19.3500312314060[/C][/ROW]
[ROW][C]Trimmed Mean ( 14 / 25 )[/C][C]263[/C][C]13.1607990886975[/C][C]19.9835890075903[/C][/ROW]
[ROW][C]Trimmed Mean ( 15 / 25 )[/C][C]262.042553191489[/C][C]12.5882989531385[/C][C]20.8163592370165[/C][/ROW]
[ROW][C]Trimmed Mean ( 16 / 25 )[/C][C]260.844444444444[/C][C]11.9468923965567[/C][C]21.8336648381988[/C][/ROW]
[ROW][C]Trimmed Mean ( 17 / 25 )[/C][C]259.488372093023[/C][C]11.3529098768655[/C][C]22.8565517481821[/C][/ROW]
[ROW][C]Trimmed Mean ( 18 / 25 )[/C][C]258.853658536585[/C][C]10.9831667750827[/C][C]23.5682170577471[/C][/ROW]
[ROW][C]Trimmed Mean ( 19 / 25 )[/C][C]258.051282051282[/C][C]10.5124403341283[/C][C]24.5472291731850[/C][/ROW]
[ROW][C]Trimmed Mean ( 20 / 25 )[/C][C]258.051282051282[/C][C]10.0190853504923[/C][C]25.7559720297823[/C][/ROW]
[ROW][C]Trimmed Mean ( 21 / 25 )[/C][C]257[/C][C]9.57860009771432[/C][C]26.8306430353352[/C][/ROW]
[ROW][C]Trimmed Mean ( 22 / 25 )[/C][C]257[/C][C]9.38355670114676[/C][C]27.3883355943906[/C][/ROW]
[ROW][C]Trimmed Mean ( 23 / 25 )[/C][C]256.967741935484[/C][C]9.11792325333429[/C][C]28.1827050739339[/C][/ROW]
[ROW][C]Trimmed Mean ( 24 / 25 )[/C][C]257.034482758621[/C][C]8.75057813130485[/C][C]29.3734286925672[/C][/ROW]
[ROW][C]Trimmed Mean ( 25 / 25 )[/C][C]256.777777777778[/C][C]8.5277046963655[/C][C]30.1110072311975[/C][/ROW]
[ROW][C]Median[/C][C]257[/C][C][/C][C][/C][/ROW]
[ROW][C]Midrange[/C][C]465.5[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Weighted Average at Xnp[/C][C]254.526315789474[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Weighted Average at X(n+1)p[/C][C]258.051282051282[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Empirical Distribution Function[/C][C]258.051282051282[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Empirical Distribution Function - Averaging[/C][C]258.051282051282[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Empirical Distribution Function - Interpolation[/C][C]258.051282051282[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Closest Observation[/C][C]255.225[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - True Basic - Statistics Graphics Toolkit[/C][C]258.051282051282[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - MS Excel (old versions)[/C][C]258.051282051282[/C][C][/C][C][/C][/ROW]
[ROW][C]Number of observations[/C][C]77[/C][C][/C][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=74550&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=74550&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean298.40259740259722.613262125827413.1959111313613
Geometric Mean236.566941546489
Harmonic Mean180.304921895268
Quadratic Mean357.641498652550
Winsorized Mean ( 1 / 25 )298.09090909090922.425681787381813.2923900337619
Winsorized Mean ( 2 / 25 )294.53246753246821.265054049395513.8505393331384
Winsorized Mean ( 3 / 25 )293.8701298701320.884731908250014.0710510990109
Winsorized Mean ( 4 / 25 )293.81818181818220.832508569187714.1038310793139
Winsorized Mean ( 5 / 25 )293.16883116883120.603542112282314.2290500133987
Winsorized Mean ( 6 / 25 )290.44155844155819.947971402064514.5599546233307
Winsorized Mean ( 7 / 25 )289.62337662337719.572341922707814.7975841504872
Winsorized Mean ( 8 / 25 )290.03896103896119.478921442770614.8898881229692
Winsorized Mean ( 9 / 25 )289.92207792207819.412366542732314.9349167338188
Winsorized Mean ( 10 / 25 )283.94805194805217.979291422713215.7930613210563
Winsorized Mean ( 11 / 25 )278.09090909090916.787605909509416.5652512091306
Winsorized Mean ( 12 / 25 )273.88311688311715.864967338835917.2633898976065
Winsorized Mean ( 13 / 25 )271.18181818181815.125276893944717.9290481809548
Winsorized Mean ( 14 / 25 )271.18181818181814.953479093631218.1350317530665
Winsorized Mean ( 15 / 25 )272.54545454545514.516231109941518.7752215076543
Winsorized Mean ( 16 / 25 )272.96103896103913.504884328926220.2120234659383
Winsorized Mean ( 17 / 25 )265.23376623376611.865645340153722.3530839351997
Winsorized Mean ( 18 / 25 )266.16883116883111.737726863401822.6763524374337
Winsorized Mean ( 19 / 25 )263.94805194805211.185060098788023.5982685490134
Winsorized Mean ( 20 / 25 )261.09090909090910.318628208867925.3028700914455
Winsorized Mean ( 21 / 25 )2578.7630578282759729.3276622197713
Winsorized Mean ( 22 / 25 )257.2857142857148.6474753652360329.7526969917759
Winsorized Mean ( 23 / 25 )256.3896103896108.5271099950764430.0675856811569
Winsorized Mean ( 24 / 25 )259.1948051948057.4957960184208634.5786897826243
Winsorized Mean ( 25 / 25 )257.2467532467536.9868579847473636.8186606638256
Trimmed Mean ( 1 / 25 )293.94666666666721.503001201243113.6700297747123
Trimmed Mean ( 2 / 25 )289.57534246575320.39681420240414.1970868387684
Trimmed Mean ( 3 / 25 )286.88732394366219.835222104476514.4635296964442
Trimmed Mean ( 4 / 25 )284.28985507246419.338077821094214.701039974219
Trimmed Mean ( 5 / 25 )284.28985507246418.758990410041315.1548590227057
Trimmed Mean ( 6 / 25 )278.818.133508612934915.3748513843111
Trimmed Mean ( 7 / 25 )276.42857142857117.569213786045215.7336904653145
Trimmed Mean ( 8 / 25 )274.04918032786916.981369190349916.1382263853967
Trimmed Mean ( 9 / 25 )271.44067796610216.279776857600916.6734888530961
Trimmed Mean ( 10 / 25 )271.44067796610215.423396553172917.5992802253575
Trimmed Mean ( 11 / 25 )266.52727272727314.725658555593718.0995146479225
Trimmed Mean ( 12 / 25 )26514.147112205130718.7317380506739
Trimmed Mean ( 13 / 25 )263.88235294117613.637308890379619.3500312314060
Trimmed Mean ( 14 / 25 )26313.160799088697519.9835890075903
Trimmed Mean ( 15 / 25 )262.04255319148912.588298953138520.8163592370165
Trimmed Mean ( 16 / 25 )260.84444444444411.946892396556721.8336648381988
Trimmed Mean ( 17 / 25 )259.48837209302311.352909876865522.8565517481821
Trimmed Mean ( 18 / 25 )258.85365853658510.983166775082723.5682170577471
Trimmed Mean ( 19 / 25 )258.05128205128210.512440334128324.5472291731850
Trimmed Mean ( 20 / 25 )258.05128205128210.019085350492325.7559720297823
Trimmed Mean ( 21 / 25 )2579.5786000977143226.8306430353352
Trimmed Mean ( 22 / 25 )2579.3835567011467627.3883355943906
Trimmed Mean ( 23 / 25 )256.9677419354849.1179232533342928.1827050739339
Trimmed Mean ( 24 / 25 )257.0344827586218.7505781313048529.3734286925672
Trimmed Mean ( 25 / 25 )256.7777777777788.527704696365530.1110072311975
Median257
Midrange465.5
Midmean - Weighted Average at Xnp254.526315789474
Midmean - Weighted Average at X(n+1)p258.051282051282
Midmean - Empirical Distribution Function258.051282051282
Midmean - Empirical Distribution Function - Averaging258.051282051282
Midmean - Empirical Distribution Function - Interpolation258.051282051282
Midmean - Closest Observation255.225
Midmean - True Basic - Statistics Graphics Toolkit258.051282051282
Midmean - MS Excel (old versions)258.051282051282
Number of observations77



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')