Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_centraltendency.wasp
Title produced by softwareCentral Tendency
Date of computationTue, 16 Mar 2010 13:32:12 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Mar/16/t1268767969v9pexrjkgkqvrvr.htm/, Retrieved Fri, 21 Jan 2022 11:51:20 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=74484, Retrieved Fri, 21 Jan 2022 11:51:20 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP1W52
Estimated Impact145
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Central Tendency] [] [2010-03-16 19:32:12] [56b3fc31615413d546d21242f129ce31] [Current]
Feedback Forum

Post a new message
Dataseries X:
104,9
110,9
104,8
94,1
95,8
99,3
101,1
104
99
105,4
107,1
110,7
117,1
118,7
126,5
127,5
134,6
131,8
135,9
142,7
141,7
153,4
145
137,7
148,3
152,2
169,4
168,6
161,1
174,1
179
190,6
190
181,6
174,8
180,5
196,8
193,8
197
216,3
221,4
217,9
229,7
227,4
204,2
196,6
198,8
207,5
190,7
201,6
210,5
223,5
223,8
231,2
244
234,7
250,2
265,7
287,6
283,3
295,4
312,3
333,8
347,7
383,2
407,1
413,6
362,7
321,9
239,4
191
159,7
163,4
157,6
166,2
176,7
198,3
226,2
216,2
235,9
226,9
242,3
253,1
250
259,4




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=74484&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=74484&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=74484&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean197.8129411764717.9636080157244124.8396129977621
Geometric Mean185.261493209033
Harmonic Mean173.555377200228
Quadratic Mean210.848666388116
Winsorized Mean ( 1 / 28 )197.7564705882357.9361867465297924.9183237371156
Winsorized Mean ( 2 / 28 )197.2694117647067.7561171346934425.4340423615202
Winsorized Mean ( 3 / 28 )196.5564705882357.5564631743989326.0117023072597
Winsorized Mean ( 4 / 28 )195.9352941176477.3644369743552226.6056040400565
Winsorized Mean ( 5 / 28 )195.2882352941187.1436286105053927.3374003523822
Winsorized Mean ( 6 / 28 )194.5047058823536.9462711730650528.0013119321582
Winsorized Mean ( 7 / 28 )193.7223529411766.7762925785832128.5882509786317
Winsorized Mean ( 8 / 28 )192.1788235294126.4513469147407629.788945792126
Winsorized Mean ( 9 / 28 )191.5329411764716.2684612250145330.5550173002828
Winsorized Mean ( 10 / 28 )191.4505882352946.1097494352180131.3352601878775
Winsorized Mean ( 11 / 28 )189.1988235294125.7197229894427433.0783193309585
Winsorized Mean ( 12 / 28 )189.1847058823535.4401048623014434.7759299996872
Winsorized Mean ( 13 / 28 )188.4658823529415.256872133701535.8513347023789
Winsorized Mean ( 14 / 28 )189.2729411764714.9893551640507737.9353513536614
Winsorized Mean ( 15 / 28 )189.4141176470594.9578888140853338.2045916618652
Winsorized Mean ( 16 / 28 )189.0941176470594.6775162053568440.4261811921682
Winsorized Mean ( 17 / 28 )189.3141176470594.5492561502781641.6143016337920
Winsorized Mean ( 18 / 28 )188.9752941176474.4256575911966342.699935596814
Winsorized Mean ( 19 / 28 )188.5952941176474.2635911882354244.2339065335439
Winsorized Mean ( 20 / 28 )189.2541176470594.0943092818732646.2236984599438
Winsorized Mean ( 21 / 28 )188.6364705882353.9474570217470547.7868332825443
Winsorized Mean ( 22 / 28 )188.8435294117653.815836250978649.4894217128249
Winsorized Mean ( 23 / 28 )189.1141176470593.6158417212008152.3015475313048
Winsorized Mean ( 24 / 28 )190.0741176470593.4520327113414455.0615053625019
Winsorized Mean ( 25 / 28 )190.2211764705883.3799765028759356.2788458170446
Winsorized Mean ( 26 / 28 )190.7717647058823.1226069209130761.0937494015736
Winsorized Mean ( 27 / 28 )191.3435294117653.026882101745663.2147282186568
Winsorized Mean ( 28 / 28 )191.1129411764712.8825801488223366.2992636144216
Trimmed Mean ( 1 / 28 )196.4626506024107.6214842626026325.777479009754
Trimmed Mean ( 2 / 28 )195.1049382716057.2509034986696826.9076727207031
Trimmed Mean ( 3 / 28 )193.9405063291146.9304383262757227.9838730537169
Trimmed Mean ( 4 / 28 )192.9779220779226.6457440997241129.037820172151
Trimmed Mean ( 5 / 28 )192.146.3816431559097230.1082331471431
Trimmed Mean ( 6 / 28 )191.4068493150686.1400193508237331.1736557132169
Trimmed Mean ( 7 / 28 )190.7887323943665.9100230483284732.2822315300999
Trimmed Mean ( 8 / 28 )190.2724637681165.6810988740097133.4921936737605
Trimmed Mean ( 9 / 28 )189.9701492537315.48779535435834.6168428279438
Trimmed Mean ( 10 / 28 )189.7430769230775.2980879031018435.8135010957423
Trimmed Mean ( 11 / 28 )189.5126984126985.1042899801090837.1281214725674
Trimmed Mean ( 12 / 28 )189.5524590163934.9528236725038638.2715944580693
Trimmed Mean ( 13 / 28 )189.5966101694924.8246075392979639.2978306784888
Trimmed Mean ( 14 / 28 )189.7263157894744.7027351172942240.3438235531827
Trimmed Mean ( 15 / 28 )189.7763636363644.6034169446808641.2251086349338
Trimmed Mean ( 16 / 28 )189.8150943396234.4848271832660542.3238369246128
Trimmed Mean ( 17 / 28 )189.8901960784314.3894367452336743.2607204750419
Trimmed Mean ( 18 / 28 )189.9489795918374.2920232555598844.2562792141858
Trimmed Mean ( 19 / 28 )190.0468085106384.1902124305763345.3549340658365
Trimmed Mean ( 20 / 28 )190.1911111111114.0896825371622646.5051038516747
Trimmed Mean ( 21 / 28 )190.2837209302333.992219634557847.6636403676496
Trimmed Mean ( 22 / 28 )190.4463414634153.8921639500614948.9307089595766
Trimmed Mean ( 23 / 28 )190.6051282051283.7854985547394650.3513937329311
Trimmed Mean ( 24 / 28 )190.7540540540543.6855219428067251.7576769353826
Trimmed Mean ( 25 / 28 )190.8228571428573.585632126013153.2187492850905
Trimmed Mean ( 26 / 28 )190.8848484848483.4607379041381755.1572681238294
Trimmed Mean ( 27 / 28 )190.8967741935483.3530774946900956.931810999254
Trimmed Mean ( 28 / 28 )190.8482758620693.2201322552225359.2672166034623
Median191
Midrange253.85
Midmean - Weighted Average at Xnp189.309523809524
Midmean - Weighted Average at X(n+1)p190.283720930233
Midmean - Empirical Distribution Function190.283720930233
Midmean - Empirical Distribution Function - Averaging190.283720930233
Midmean - Empirical Distribution Function - Interpolation190.283720930233
Midmean - Closest Observation189.179545454545
Midmean - True Basic - Statistics Graphics Toolkit190.283720930233
Midmean - MS Excel (old versions)190.283720930233
Number of observations85

\begin{tabular}{lllllllll}
\hline
Central Tendency - Ungrouped Data \tabularnewline
Measure & Value & S.E. & Value/S.E. \tabularnewline
Arithmetic Mean & 197.812941176471 & 7.96360801572441 & 24.8396129977621 \tabularnewline
Geometric Mean & 185.261493209033 &  &  \tabularnewline
Harmonic Mean & 173.555377200228 &  &  \tabularnewline
Quadratic Mean & 210.848666388116 &  &  \tabularnewline
Winsorized Mean ( 1 / 28 ) & 197.756470588235 & 7.93618674652979 & 24.9183237371156 \tabularnewline
Winsorized Mean ( 2 / 28 ) & 197.269411764706 & 7.75611713469344 & 25.4340423615202 \tabularnewline
Winsorized Mean ( 3 / 28 ) & 196.556470588235 & 7.55646317439893 & 26.0117023072597 \tabularnewline
Winsorized Mean ( 4 / 28 ) & 195.935294117647 & 7.36443697435522 & 26.6056040400565 \tabularnewline
Winsorized Mean ( 5 / 28 ) & 195.288235294118 & 7.14362861050539 & 27.3374003523822 \tabularnewline
Winsorized Mean ( 6 / 28 ) & 194.504705882353 & 6.94627117306505 & 28.0013119321582 \tabularnewline
Winsorized Mean ( 7 / 28 ) & 193.722352941176 & 6.77629257858321 & 28.5882509786317 \tabularnewline
Winsorized Mean ( 8 / 28 ) & 192.178823529412 & 6.45134691474076 & 29.788945792126 \tabularnewline
Winsorized Mean ( 9 / 28 ) & 191.532941176471 & 6.26846122501453 & 30.5550173002828 \tabularnewline
Winsorized Mean ( 10 / 28 ) & 191.450588235294 & 6.10974943521801 & 31.3352601878775 \tabularnewline
Winsorized Mean ( 11 / 28 ) & 189.198823529412 & 5.71972298944274 & 33.0783193309585 \tabularnewline
Winsorized Mean ( 12 / 28 ) & 189.184705882353 & 5.44010486230144 & 34.7759299996872 \tabularnewline
Winsorized Mean ( 13 / 28 ) & 188.465882352941 & 5.2568721337015 & 35.8513347023789 \tabularnewline
Winsorized Mean ( 14 / 28 ) & 189.272941176471 & 4.98935516405077 & 37.9353513536614 \tabularnewline
Winsorized Mean ( 15 / 28 ) & 189.414117647059 & 4.95788881408533 & 38.2045916618652 \tabularnewline
Winsorized Mean ( 16 / 28 ) & 189.094117647059 & 4.67751620535684 & 40.4261811921682 \tabularnewline
Winsorized Mean ( 17 / 28 ) & 189.314117647059 & 4.54925615027816 & 41.6143016337920 \tabularnewline
Winsorized Mean ( 18 / 28 ) & 188.975294117647 & 4.42565759119663 & 42.699935596814 \tabularnewline
Winsorized Mean ( 19 / 28 ) & 188.595294117647 & 4.26359118823542 & 44.2339065335439 \tabularnewline
Winsorized Mean ( 20 / 28 ) & 189.254117647059 & 4.09430928187326 & 46.2236984599438 \tabularnewline
Winsorized Mean ( 21 / 28 ) & 188.636470588235 & 3.94745702174705 & 47.7868332825443 \tabularnewline
Winsorized Mean ( 22 / 28 ) & 188.843529411765 & 3.8158362509786 & 49.4894217128249 \tabularnewline
Winsorized Mean ( 23 / 28 ) & 189.114117647059 & 3.61584172120081 & 52.3015475313048 \tabularnewline
Winsorized Mean ( 24 / 28 ) & 190.074117647059 & 3.45203271134144 & 55.0615053625019 \tabularnewline
Winsorized Mean ( 25 / 28 ) & 190.221176470588 & 3.37997650287593 & 56.2788458170446 \tabularnewline
Winsorized Mean ( 26 / 28 ) & 190.771764705882 & 3.12260692091307 & 61.0937494015736 \tabularnewline
Winsorized Mean ( 27 / 28 ) & 191.343529411765 & 3.0268821017456 & 63.2147282186568 \tabularnewline
Winsorized Mean ( 28 / 28 ) & 191.112941176471 & 2.88258014882233 & 66.2992636144216 \tabularnewline
Trimmed Mean ( 1 / 28 ) & 196.462650602410 & 7.62148426260263 & 25.777479009754 \tabularnewline
Trimmed Mean ( 2 / 28 ) & 195.104938271605 & 7.25090349866968 & 26.9076727207031 \tabularnewline
Trimmed Mean ( 3 / 28 ) & 193.940506329114 & 6.93043832627572 & 27.9838730537169 \tabularnewline
Trimmed Mean ( 4 / 28 ) & 192.977922077922 & 6.64574409972411 & 29.037820172151 \tabularnewline
Trimmed Mean ( 5 / 28 ) & 192.14 & 6.38164315590972 & 30.1082331471431 \tabularnewline
Trimmed Mean ( 6 / 28 ) & 191.406849315068 & 6.14001935082373 & 31.1736557132169 \tabularnewline
Trimmed Mean ( 7 / 28 ) & 190.788732394366 & 5.91002304832847 & 32.2822315300999 \tabularnewline
Trimmed Mean ( 8 / 28 ) & 190.272463768116 & 5.68109887400971 & 33.4921936737605 \tabularnewline
Trimmed Mean ( 9 / 28 ) & 189.970149253731 & 5.487795354358 & 34.6168428279438 \tabularnewline
Trimmed Mean ( 10 / 28 ) & 189.743076923077 & 5.29808790310184 & 35.8135010957423 \tabularnewline
Trimmed Mean ( 11 / 28 ) & 189.512698412698 & 5.10428998010908 & 37.1281214725674 \tabularnewline
Trimmed Mean ( 12 / 28 ) & 189.552459016393 & 4.95282367250386 & 38.2715944580693 \tabularnewline
Trimmed Mean ( 13 / 28 ) & 189.596610169492 & 4.82460753929796 & 39.2978306784888 \tabularnewline
Trimmed Mean ( 14 / 28 ) & 189.726315789474 & 4.70273511729422 & 40.3438235531827 \tabularnewline
Trimmed Mean ( 15 / 28 ) & 189.776363636364 & 4.60341694468086 & 41.2251086349338 \tabularnewline
Trimmed Mean ( 16 / 28 ) & 189.815094339623 & 4.48482718326605 & 42.3238369246128 \tabularnewline
Trimmed Mean ( 17 / 28 ) & 189.890196078431 & 4.38943674523367 & 43.2607204750419 \tabularnewline
Trimmed Mean ( 18 / 28 ) & 189.948979591837 & 4.29202325555988 & 44.2562792141858 \tabularnewline
Trimmed Mean ( 19 / 28 ) & 190.046808510638 & 4.19021243057633 & 45.3549340658365 \tabularnewline
Trimmed Mean ( 20 / 28 ) & 190.191111111111 & 4.08968253716226 & 46.5051038516747 \tabularnewline
Trimmed Mean ( 21 / 28 ) & 190.283720930233 & 3.9922196345578 & 47.6636403676496 \tabularnewline
Trimmed Mean ( 22 / 28 ) & 190.446341463415 & 3.89216395006149 & 48.9307089595766 \tabularnewline
Trimmed Mean ( 23 / 28 ) & 190.605128205128 & 3.78549855473946 & 50.3513937329311 \tabularnewline
Trimmed Mean ( 24 / 28 ) & 190.754054054054 & 3.68552194280672 & 51.7576769353826 \tabularnewline
Trimmed Mean ( 25 / 28 ) & 190.822857142857 & 3.5856321260131 & 53.2187492850905 \tabularnewline
Trimmed Mean ( 26 / 28 ) & 190.884848484848 & 3.46073790413817 & 55.1572681238294 \tabularnewline
Trimmed Mean ( 27 / 28 ) & 190.896774193548 & 3.35307749469009 & 56.931810999254 \tabularnewline
Trimmed Mean ( 28 / 28 ) & 190.848275862069 & 3.22013225522253 & 59.2672166034623 \tabularnewline
Median & 191 &  &  \tabularnewline
Midrange & 253.85 &  &  \tabularnewline
Midmean - Weighted Average at Xnp & 189.309523809524 &  &  \tabularnewline
Midmean - Weighted Average at X(n+1)p & 190.283720930233 &  &  \tabularnewline
Midmean - Empirical Distribution Function & 190.283720930233 &  &  \tabularnewline
Midmean - Empirical Distribution Function - Averaging & 190.283720930233 &  &  \tabularnewline
Midmean - Empirical Distribution Function - Interpolation & 190.283720930233 &  &  \tabularnewline
Midmean - Closest Observation & 189.179545454545 &  &  \tabularnewline
Midmean - True Basic - Statistics Graphics Toolkit & 190.283720930233 &  &  \tabularnewline
Midmean - MS Excel (old versions) & 190.283720930233 &  &  \tabularnewline
Number of observations & 85 &  &  \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=74484&T=1

[TABLE]
[ROW][C]Central Tendency - Ungrouped Data[/C][/ROW]
[ROW][C]Measure[/C][C]Value[/C][C]S.E.[/C][C]Value/S.E.[/C][/ROW]
[ROW][C]Arithmetic Mean[/C][C]197.812941176471[/C][C]7.96360801572441[/C][C]24.8396129977621[/C][/ROW]
[ROW][C]Geometric Mean[/C][C]185.261493209033[/C][C][/C][C][/C][/ROW]
[ROW][C]Harmonic Mean[/C][C]173.555377200228[/C][C][/C][C][/C][/ROW]
[ROW][C]Quadratic Mean[/C][C]210.848666388116[/C][C][/C][C][/C][/ROW]
[ROW][C]Winsorized Mean ( 1 / 28 )[/C][C]197.756470588235[/C][C]7.93618674652979[/C][C]24.9183237371156[/C][/ROW]
[ROW][C]Winsorized Mean ( 2 / 28 )[/C][C]197.269411764706[/C][C]7.75611713469344[/C][C]25.4340423615202[/C][/ROW]
[ROW][C]Winsorized Mean ( 3 / 28 )[/C][C]196.556470588235[/C][C]7.55646317439893[/C][C]26.0117023072597[/C][/ROW]
[ROW][C]Winsorized Mean ( 4 / 28 )[/C][C]195.935294117647[/C][C]7.36443697435522[/C][C]26.6056040400565[/C][/ROW]
[ROW][C]Winsorized Mean ( 5 / 28 )[/C][C]195.288235294118[/C][C]7.14362861050539[/C][C]27.3374003523822[/C][/ROW]
[ROW][C]Winsorized Mean ( 6 / 28 )[/C][C]194.504705882353[/C][C]6.94627117306505[/C][C]28.0013119321582[/C][/ROW]
[ROW][C]Winsorized Mean ( 7 / 28 )[/C][C]193.722352941176[/C][C]6.77629257858321[/C][C]28.5882509786317[/C][/ROW]
[ROW][C]Winsorized Mean ( 8 / 28 )[/C][C]192.178823529412[/C][C]6.45134691474076[/C][C]29.788945792126[/C][/ROW]
[ROW][C]Winsorized Mean ( 9 / 28 )[/C][C]191.532941176471[/C][C]6.26846122501453[/C][C]30.5550173002828[/C][/ROW]
[ROW][C]Winsorized Mean ( 10 / 28 )[/C][C]191.450588235294[/C][C]6.10974943521801[/C][C]31.3352601878775[/C][/ROW]
[ROW][C]Winsorized Mean ( 11 / 28 )[/C][C]189.198823529412[/C][C]5.71972298944274[/C][C]33.0783193309585[/C][/ROW]
[ROW][C]Winsorized Mean ( 12 / 28 )[/C][C]189.184705882353[/C][C]5.44010486230144[/C][C]34.7759299996872[/C][/ROW]
[ROW][C]Winsorized Mean ( 13 / 28 )[/C][C]188.465882352941[/C][C]5.2568721337015[/C][C]35.8513347023789[/C][/ROW]
[ROW][C]Winsorized Mean ( 14 / 28 )[/C][C]189.272941176471[/C][C]4.98935516405077[/C][C]37.9353513536614[/C][/ROW]
[ROW][C]Winsorized Mean ( 15 / 28 )[/C][C]189.414117647059[/C][C]4.95788881408533[/C][C]38.2045916618652[/C][/ROW]
[ROW][C]Winsorized Mean ( 16 / 28 )[/C][C]189.094117647059[/C][C]4.67751620535684[/C][C]40.4261811921682[/C][/ROW]
[ROW][C]Winsorized Mean ( 17 / 28 )[/C][C]189.314117647059[/C][C]4.54925615027816[/C][C]41.6143016337920[/C][/ROW]
[ROW][C]Winsorized Mean ( 18 / 28 )[/C][C]188.975294117647[/C][C]4.42565759119663[/C][C]42.699935596814[/C][/ROW]
[ROW][C]Winsorized Mean ( 19 / 28 )[/C][C]188.595294117647[/C][C]4.26359118823542[/C][C]44.2339065335439[/C][/ROW]
[ROW][C]Winsorized Mean ( 20 / 28 )[/C][C]189.254117647059[/C][C]4.09430928187326[/C][C]46.2236984599438[/C][/ROW]
[ROW][C]Winsorized Mean ( 21 / 28 )[/C][C]188.636470588235[/C][C]3.94745702174705[/C][C]47.7868332825443[/C][/ROW]
[ROW][C]Winsorized Mean ( 22 / 28 )[/C][C]188.843529411765[/C][C]3.8158362509786[/C][C]49.4894217128249[/C][/ROW]
[ROW][C]Winsorized Mean ( 23 / 28 )[/C][C]189.114117647059[/C][C]3.61584172120081[/C][C]52.3015475313048[/C][/ROW]
[ROW][C]Winsorized Mean ( 24 / 28 )[/C][C]190.074117647059[/C][C]3.45203271134144[/C][C]55.0615053625019[/C][/ROW]
[ROW][C]Winsorized Mean ( 25 / 28 )[/C][C]190.221176470588[/C][C]3.37997650287593[/C][C]56.2788458170446[/C][/ROW]
[ROW][C]Winsorized Mean ( 26 / 28 )[/C][C]190.771764705882[/C][C]3.12260692091307[/C][C]61.0937494015736[/C][/ROW]
[ROW][C]Winsorized Mean ( 27 / 28 )[/C][C]191.343529411765[/C][C]3.0268821017456[/C][C]63.2147282186568[/C][/ROW]
[ROW][C]Winsorized Mean ( 28 / 28 )[/C][C]191.112941176471[/C][C]2.88258014882233[/C][C]66.2992636144216[/C][/ROW]
[ROW][C]Trimmed Mean ( 1 / 28 )[/C][C]196.462650602410[/C][C]7.62148426260263[/C][C]25.777479009754[/C][/ROW]
[ROW][C]Trimmed Mean ( 2 / 28 )[/C][C]195.104938271605[/C][C]7.25090349866968[/C][C]26.9076727207031[/C][/ROW]
[ROW][C]Trimmed Mean ( 3 / 28 )[/C][C]193.940506329114[/C][C]6.93043832627572[/C][C]27.9838730537169[/C][/ROW]
[ROW][C]Trimmed Mean ( 4 / 28 )[/C][C]192.977922077922[/C][C]6.64574409972411[/C][C]29.037820172151[/C][/ROW]
[ROW][C]Trimmed Mean ( 5 / 28 )[/C][C]192.14[/C][C]6.38164315590972[/C][C]30.1082331471431[/C][/ROW]
[ROW][C]Trimmed Mean ( 6 / 28 )[/C][C]191.406849315068[/C][C]6.14001935082373[/C][C]31.1736557132169[/C][/ROW]
[ROW][C]Trimmed Mean ( 7 / 28 )[/C][C]190.788732394366[/C][C]5.91002304832847[/C][C]32.2822315300999[/C][/ROW]
[ROW][C]Trimmed Mean ( 8 / 28 )[/C][C]190.272463768116[/C][C]5.68109887400971[/C][C]33.4921936737605[/C][/ROW]
[ROW][C]Trimmed Mean ( 9 / 28 )[/C][C]189.970149253731[/C][C]5.487795354358[/C][C]34.6168428279438[/C][/ROW]
[ROW][C]Trimmed Mean ( 10 / 28 )[/C][C]189.743076923077[/C][C]5.29808790310184[/C][C]35.8135010957423[/C][/ROW]
[ROW][C]Trimmed Mean ( 11 / 28 )[/C][C]189.512698412698[/C][C]5.10428998010908[/C][C]37.1281214725674[/C][/ROW]
[ROW][C]Trimmed Mean ( 12 / 28 )[/C][C]189.552459016393[/C][C]4.95282367250386[/C][C]38.2715944580693[/C][/ROW]
[ROW][C]Trimmed Mean ( 13 / 28 )[/C][C]189.596610169492[/C][C]4.82460753929796[/C][C]39.2978306784888[/C][/ROW]
[ROW][C]Trimmed Mean ( 14 / 28 )[/C][C]189.726315789474[/C][C]4.70273511729422[/C][C]40.3438235531827[/C][/ROW]
[ROW][C]Trimmed Mean ( 15 / 28 )[/C][C]189.776363636364[/C][C]4.60341694468086[/C][C]41.2251086349338[/C][/ROW]
[ROW][C]Trimmed Mean ( 16 / 28 )[/C][C]189.815094339623[/C][C]4.48482718326605[/C][C]42.3238369246128[/C][/ROW]
[ROW][C]Trimmed Mean ( 17 / 28 )[/C][C]189.890196078431[/C][C]4.38943674523367[/C][C]43.2607204750419[/C][/ROW]
[ROW][C]Trimmed Mean ( 18 / 28 )[/C][C]189.948979591837[/C][C]4.29202325555988[/C][C]44.2562792141858[/C][/ROW]
[ROW][C]Trimmed Mean ( 19 / 28 )[/C][C]190.046808510638[/C][C]4.19021243057633[/C][C]45.3549340658365[/C][/ROW]
[ROW][C]Trimmed Mean ( 20 / 28 )[/C][C]190.191111111111[/C][C]4.08968253716226[/C][C]46.5051038516747[/C][/ROW]
[ROW][C]Trimmed Mean ( 21 / 28 )[/C][C]190.283720930233[/C][C]3.9922196345578[/C][C]47.6636403676496[/C][/ROW]
[ROW][C]Trimmed Mean ( 22 / 28 )[/C][C]190.446341463415[/C][C]3.89216395006149[/C][C]48.9307089595766[/C][/ROW]
[ROW][C]Trimmed Mean ( 23 / 28 )[/C][C]190.605128205128[/C][C]3.78549855473946[/C][C]50.3513937329311[/C][/ROW]
[ROW][C]Trimmed Mean ( 24 / 28 )[/C][C]190.754054054054[/C][C]3.68552194280672[/C][C]51.7576769353826[/C][/ROW]
[ROW][C]Trimmed Mean ( 25 / 28 )[/C][C]190.822857142857[/C][C]3.5856321260131[/C][C]53.2187492850905[/C][/ROW]
[ROW][C]Trimmed Mean ( 26 / 28 )[/C][C]190.884848484848[/C][C]3.46073790413817[/C][C]55.1572681238294[/C][/ROW]
[ROW][C]Trimmed Mean ( 27 / 28 )[/C][C]190.896774193548[/C][C]3.35307749469009[/C][C]56.931810999254[/C][/ROW]
[ROW][C]Trimmed Mean ( 28 / 28 )[/C][C]190.848275862069[/C][C]3.22013225522253[/C][C]59.2672166034623[/C][/ROW]
[ROW][C]Median[/C][C]191[/C][C][/C][C][/C][/ROW]
[ROW][C]Midrange[/C][C]253.85[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Weighted Average at Xnp[/C][C]189.309523809524[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Weighted Average at X(n+1)p[/C][C]190.283720930233[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Empirical Distribution Function[/C][C]190.283720930233[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Empirical Distribution Function - Averaging[/C][C]190.283720930233[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Empirical Distribution Function - Interpolation[/C][C]190.283720930233[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - Closest Observation[/C][C]189.179545454545[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - True Basic - Statistics Graphics Toolkit[/C][C]190.283720930233[/C][C][/C][C][/C][/ROW]
[ROW][C]Midmean - MS Excel (old versions)[/C][C]190.283720930233[/C][C][/C][C][/C][/ROW]
[ROW][C]Number of observations[/C][C]85[/C][C][/C][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=74484&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=74484&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Central Tendency - Ungrouped Data
MeasureValueS.E.Value/S.E.
Arithmetic Mean197.8129411764717.9636080157244124.8396129977621
Geometric Mean185.261493209033
Harmonic Mean173.555377200228
Quadratic Mean210.848666388116
Winsorized Mean ( 1 / 28 )197.7564705882357.9361867465297924.9183237371156
Winsorized Mean ( 2 / 28 )197.2694117647067.7561171346934425.4340423615202
Winsorized Mean ( 3 / 28 )196.5564705882357.5564631743989326.0117023072597
Winsorized Mean ( 4 / 28 )195.9352941176477.3644369743552226.6056040400565
Winsorized Mean ( 5 / 28 )195.2882352941187.1436286105053927.3374003523822
Winsorized Mean ( 6 / 28 )194.5047058823536.9462711730650528.0013119321582
Winsorized Mean ( 7 / 28 )193.7223529411766.7762925785832128.5882509786317
Winsorized Mean ( 8 / 28 )192.1788235294126.4513469147407629.788945792126
Winsorized Mean ( 9 / 28 )191.5329411764716.2684612250145330.5550173002828
Winsorized Mean ( 10 / 28 )191.4505882352946.1097494352180131.3352601878775
Winsorized Mean ( 11 / 28 )189.1988235294125.7197229894427433.0783193309585
Winsorized Mean ( 12 / 28 )189.1847058823535.4401048623014434.7759299996872
Winsorized Mean ( 13 / 28 )188.4658823529415.256872133701535.8513347023789
Winsorized Mean ( 14 / 28 )189.2729411764714.9893551640507737.9353513536614
Winsorized Mean ( 15 / 28 )189.4141176470594.9578888140853338.2045916618652
Winsorized Mean ( 16 / 28 )189.0941176470594.6775162053568440.4261811921682
Winsorized Mean ( 17 / 28 )189.3141176470594.5492561502781641.6143016337920
Winsorized Mean ( 18 / 28 )188.9752941176474.4256575911966342.699935596814
Winsorized Mean ( 19 / 28 )188.5952941176474.2635911882354244.2339065335439
Winsorized Mean ( 20 / 28 )189.2541176470594.0943092818732646.2236984599438
Winsorized Mean ( 21 / 28 )188.6364705882353.9474570217470547.7868332825443
Winsorized Mean ( 22 / 28 )188.8435294117653.815836250978649.4894217128249
Winsorized Mean ( 23 / 28 )189.1141176470593.6158417212008152.3015475313048
Winsorized Mean ( 24 / 28 )190.0741176470593.4520327113414455.0615053625019
Winsorized Mean ( 25 / 28 )190.2211764705883.3799765028759356.2788458170446
Winsorized Mean ( 26 / 28 )190.7717647058823.1226069209130761.0937494015736
Winsorized Mean ( 27 / 28 )191.3435294117653.026882101745663.2147282186568
Winsorized Mean ( 28 / 28 )191.1129411764712.8825801488223366.2992636144216
Trimmed Mean ( 1 / 28 )196.4626506024107.6214842626026325.777479009754
Trimmed Mean ( 2 / 28 )195.1049382716057.2509034986696826.9076727207031
Trimmed Mean ( 3 / 28 )193.9405063291146.9304383262757227.9838730537169
Trimmed Mean ( 4 / 28 )192.9779220779226.6457440997241129.037820172151
Trimmed Mean ( 5 / 28 )192.146.3816431559097230.1082331471431
Trimmed Mean ( 6 / 28 )191.4068493150686.1400193508237331.1736557132169
Trimmed Mean ( 7 / 28 )190.7887323943665.9100230483284732.2822315300999
Trimmed Mean ( 8 / 28 )190.2724637681165.6810988740097133.4921936737605
Trimmed Mean ( 9 / 28 )189.9701492537315.48779535435834.6168428279438
Trimmed Mean ( 10 / 28 )189.7430769230775.2980879031018435.8135010957423
Trimmed Mean ( 11 / 28 )189.5126984126985.1042899801090837.1281214725674
Trimmed Mean ( 12 / 28 )189.5524590163934.9528236725038638.2715944580693
Trimmed Mean ( 13 / 28 )189.5966101694924.8246075392979639.2978306784888
Trimmed Mean ( 14 / 28 )189.7263157894744.7027351172942240.3438235531827
Trimmed Mean ( 15 / 28 )189.7763636363644.6034169446808641.2251086349338
Trimmed Mean ( 16 / 28 )189.8150943396234.4848271832660542.3238369246128
Trimmed Mean ( 17 / 28 )189.8901960784314.3894367452336743.2607204750419
Trimmed Mean ( 18 / 28 )189.9489795918374.2920232555598844.2562792141858
Trimmed Mean ( 19 / 28 )190.0468085106384.1902124305763345.3549340658365
Trimmed Mean ( 20 / 28 )190.1911111111114.0896825371622646.5051038516747
Trimmed Mean ( 21 / 28 )190.2837209302333.992219634557847.6636403676496
Trimmed Mean ( 22 / 28 )190.4463414634153.8921639500614948.9307089595766
Trimmed Mean ( 23 / 28 )190.6051282051283.7854985547394650.3513937329311
Trimmed Mean ( 24 / 28 )190.7540540540543.6855219428067251.7576769353826
Trimmed Mean ( 25 / 28 )190.8228571428573.585632126013153.2187492850905
Trimmed Mean ( 26 / 28 )190.8848484848483.4607379041381755.1572681238294
Trimmed Mean ( 27 / 28 )190.8967741935483.3530774946900956.931810999254
Trimmed Mean ( 28 / 28 )190.8482758620693.2201322552225359.2672166034623
Median191
Midrange253.85
Midmean - Weighted Average at Xnp189.309523809524
Midmean - Weighted Average at X(n+1)p190.283720930233
Midmean - Empirical Distribution Function190.283720930233
Midmean - Empirical Distribution Function - Averaging190.283720930233
Midmean - Empirical Distribution Function - Interpolation190.283720930233
Midmean - Closest Observation189.179545454545
Midmean - True Basic - Statistics Graphics Toolkit190.283720930233
Midmean - MS Excel (old versions)190.283720930233
Number of observations85



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
geomean <- function(x) {
return(exp(mean(log(x))))
}
harmean <- function(x) {
return(1/mean(1/x))
}
quamean <- function(x) {
return(sqrt(mean(x*x)))
}
winmean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
win <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
win[j,1] <- (j*x[j+1]+sum(x[(j+1):(n-j)])+j*x[n-j])/n
win[j,2] <- sd(c(rep(x[j+1],j),x[(j+1):(n-j)],rep(x[n-j],j)))/sqrtn
}
return(win)
}
trimean <- function(x) {
x <-sort(x[!is.na(x)])
n<-length(x)
denom <- 3
nodenom <- n/denom
if (nodenom>40) denom <- n/40
sqrtn = sqrt(n)
roundnodenom = floor(nodenom)
tri <- array(NA,dim=c(roundnodenom,2))
for (j in 1:roundnodenom) {
tri[j,1] <- mean(x,trim=j/n)
tri[j,2] <- sd(x[(j+1):(n-j)]) / sqrt(n-j*2)
}
return(tri)
}
midrange <- function(x) {
return((max(x)+min(x))/2)
}
q1 <- function(data,n,p,i,f) {
np <- n*p;
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q2 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
qvalue <- (1-f)*data[i] + f*data[i+1]
}
q3 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
q4 <- function(data,n,p,i,f) {
np <- n*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- (data[i]+data[i+1])/2
} else {
qvalue <- data[i+1]
}
}
q5 <- function(data,n,p,i,f) {
np <- (n-1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i+1]
} else {
qvalue <- data[i+1] + f*(data[i+2]-data[i+1])
}
}
q6 <- function(data,n,p,i,f) {
np <- n*p+0.5
i <<- floor(np)
f <<- np - i
qvalue <- data[i]
}
q7 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
qvalue <- f*data[i] + (1-f)*data[i+1]
}
}
q8 <- function(data,n,p,i,f) {
np <- (n+1)*p
i <<- floor(np)
f <<- np - i
if (f==0) {
qvalue <- data[i]
} else {
if (f == 0.5) {
qvalue <- (data[i]+data[i+1])/2
} else {
if (f < 0.5) {
qvalue <- data[i]
} else {
qvalue <- data[i+1]
}
}
}
}
midmean <- function(x,def) {
x <-sort(x[!is.na(x)])
n<-length(x)
if (def==1) {
qvalue1 <- q1(x,n,0.25,i,f)
qvalue3 <- q1(x,n,0.75,i,f)
}
if (def==2) {
qvalue1 <- q2(x,n,0.25,i,f)
qvalue3 <- q2(x,n,0.75,i,f)
}
if (def==3) {
qvalue1 <- q3(x,n,0.25,i,f)
qvalue3 <- q3(x,n,0.75,i,f)
}
if (def==4) {
qvalue1 <- q4(x,n,0.25,i,f)
qvalue3 <- q4(x,n,0.75,i,f)
}
if (def==5) {
qvalue1 <- q5(x,n,0.25,i,f)
qvalue3 <- q5(x,n,0.75,i,f)
}
if (def==6) {
qvalue1 <- q6(x,n,0.25,i,f)
qvalue3 <- q6(x,n,0.75,i,f)
}
if (def==7) {
qvalue1 <- q7(x,n,0.25,i,f)
qvalue3 <- q7(x,n,0.75,i,f)
}
if (def==8) {
qvalue1 <- q8(x,n,0.25,i,f)
qvalue3 <- q8(x,n,0.75,i,f)
}
midm <- 0
myn <- 0
roundno4 <- round(n/4)
round3no4 <- round(3*n/4)
for (i in 1:n) {
if ((x[i]>=qvalue1) & (x[i]<=qvalue3)){
midm = midm + x[i]
myn = myn + 1
}
}
midm = midm / myn
return(midm)
}
(arm <- mean(x))
sqrtn <- sqrt(length(x))
(armse <- sd(x) / sqrtn)
(armose <- arm / armse)
(geo <- geomean(x))
(har <- harmean(x))
(qua <- quamean(x))
(win <- winmean(x))
(tri <- trimean(x))
(midr <- midrange(x))
midm <- array(NA,dim=8)
for (j in 1:8) midm[j] <- midmean(x,j)
midm
bitmap(file='test1.png')
lb <- win[,1] - 2*win[,2]
ub <- win[,1] + 2*win[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(win[,1],type='b',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(win[,1],type='l',main=main, xlab='j', pch=19, ylab='Winsorized Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
bitmap(file='test2.png')
lb <- tri[,1] - 2*tri[,2]
ub <- tri[,1] + 2*tri[,2]
if ((ylimmin == '') | (ylimmax == '')) plot(tri[,1],type='b',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(min(lb),max(ub))) else plot(tri[,1],type='l',main=main, xlab='j', pch=19, ylab='Trimmed Mean(j/n)', ylim=c(ylimmin,ylimmax))
lines(ub,lty=3)
lines(lb,lty=3)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Central Tendency - Ungrouped Data',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Measure',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.element(a,'S.E.',header=TRUE)
a<-table.element(a,'Value/S.E.',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('arithmetic_mean.htm', 'Arithmetic Mean', 'click to view the definition of the Arithmetic Mean'),header=TRUE)
a<-table.element(a,arm)
a<-table.element(a,hyperlink('arithmetic_mean_standard_error.htm', armse, 'click to view the definition of the Standard Error of the Arithmetic Mean'))
a<-table.element(a,armose)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('geometric_mean.htm', 'Geometric Mean', 'click to view the definition of the Geometric Mean'),header=TRUE)
a<-table.element(a,geo)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('harmonic_mean.htm', 'Harmonic Mean', 'click to view the definition of the Harmonic Mean'),header=TRUE)
a<-table.element(a,har)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('quadratic_mean.htm', 'Quadratic Mean', 'click to view the definition of the Quadratic Mean'),header=TRUE)
a<-table.element(a,qua)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
for (j in 1:length(win[,1])) {
a<-table.row.start(a)
mylabel <- paste('Winsorized Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(win[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('winsorized_mean.htm', mylabel, 'click to view the definition of the Winsorized Mean'),header=TRUE)
a<-table.element(a,win[j,1])
a<-table.element(a,win[j,2])
a<-table.element(a,win[j,1]/win[j,2])
a<-table.row.end(a)
}
for (j in 1:length(tri[,1])) {
a<-table.row.start(a)
mylabel <- paste('Trimmed Mean (',j)
mylabel <- paste(mylabel,'/')
mylabel <- paste(mylabel,length(tri[,1]))
mylabel <- paste(mylabel,')')
a<-table.element(a,hyperlink('arithmetic_mean.htm', mylabel, 'click to view the definition of the Trimmed Mean'),header=TRUE)
a<-table.element(a,tri[j,1])
a<-table.element(a,tri[j,2])
a<-table.element(a,tri[j,1]/tri[j,2])
a<-table.row.end(a)
}
a<-table.row.start(a)
a<-table.element(a,hyperlink('median_1.htm', 'Median', 'click to view the definition of the Median'),header=TRUE)
a<-table.element(a,median(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('midrange.htm', 'Midrange', 'click to view the definition of the Midrange'),header=TRUE)
a<-table.element(a,midr)
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_1.htm','Weighted Average at Xnp',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[1])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_2.htm','Weighted Average at X(n+1)p',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[2])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_3.htm','Empirical Distribution Function',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[3])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_4.htm','Empirical Distribution Function - Averaging',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[4])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_5.htm','Empirical Distribution Function - Interpolation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[5])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_6.htm','Closest Observation',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[6])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_7.htm','True Basic - Statistics Graphics Toolkit',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[7])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
mymid <- hyperlink('midmean.htm', 'Midmean', 'click to view the definition of the Midmean')
mylabel <- paste(mymid,hyperlink('method_8.htm','MS Excel (old versions)',''),sep=' - ')
a<-table.element(a,mylabel,header=TRUE)
a<-table.element(a,midm[8])
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.element(a,'')
a<-table.element(a,'')
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')