Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_harrell_davis.wasp
Title produced by softwareHarrell-Davis Quantiles
Date of computationTue, 09 Mar 2010 11:43:26 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Mar/09/t1268160548j9puv0n9fz2yik3.htm/, Retrieved Wed, 19 Jan 2022 11:27:43 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=74212, Retrieved Wed, 19 Jan 2022 11:27:43 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsKDGP1W41
Estimated Impact125
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Harrell-Davis Quantiles] [harell-davis] [2010-03-09 18:43:26] [a7d39df6c2be69350098f9d3ad37507c] [Current]
Feedback Forum

Post a new message
Dataseries X:
112
118
132
129
121
135
148
148
136
119
104
118
115
126
141
135
125
149
170
170
158
133
114
140
145
150
178
163
172
178
199
199
184
162
146
166
171
180
193
181
183
218
230
242
209
191
172
194
196
196
236
235
229
243
264
272
237
211
180
201
204
188
235
227
234
264
302
293
259
229
203
229
242
233
267
269
270
315
364
347
312
274
237
278
284
277
317
313
318
374
413
405
355
306
271
306
315
301
356
348
355
422
465
467
404
347
305
336
340
318
362
348
363
435
491
505
404
359
310
337
360
342
406
396
420
472
548
559
463
407
362
405
417
391
419
461
472
535
622
606
508
461
390
432




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=74212&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=74212&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=74212&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Harrell-Davis Quantiles
quantilesvaluestandard error
0.01109.1502308497634.63687489625989
0.02113.7790776386132.90870523792072
0.03116.6334422375083.05403495945027
0.04119.0893274506743.81450331742409
0.05121.7052707378984.77924780729857
0.06124.5578644860015.50274117163836
0.07127.5153275110405.81444178231279
0.08130.4195953547805.872127063422
0.09133.2038475762855.93848901802719
0.1135.8998764228826.17477380052541
0.11138.5835914452326.58519697363209
0.12141.3253363414987.10803477546612
0.13144.1729548581217.7096091055799
0.14147.1559449869748.38298004075171
0.15150.2871902873729.07971705454948
0.16153.5536821795719.68249417341907
0.17156.90694886509110.0511379585563
0.18160.26769487346310.1039247987614
0.19163.5472830367879.86154305541607
0.2166.6752010783879.43480784307638
0.21169.6182042627318.97188362039837
0.22172.3836750943358.6003466818426
0.23175.0093500061708.39155396196749
0.24177.5470577807038.35986553453783
0.25180.0479488352548.47712500292052
0.26182.5534395596638.69879912851458
0.27185.0927863856548.98515083720218
0.28187.6860926811729.31588936033581
0.29190.3503483432819.69934019114605
0.3193.10535086818510.1664093184706
0.31195.97624644651210.7499784881771
0.32198.99049323487511.4532734631736
0.33202.16936441370912.2302718470675
0.34205.51688112336312.9826324465661
0.35209.01095447884113.5833193549449
0.36212.60142316489113.9176658894968
0.37216.21741943549813.9207927073359
0.38219.78296572135013.6081073751274
0.39223.23640058975413.0774550130068
0.4226.54753629155912.4906438806074
0.41229.72699443749312.0370329353363
0.42232.82464790985911.8767442991110
0.43235.91753617841412.0966147651242
0.44239.09084141594012.6780607795077
0.45242.41754929942813.5134653612585
0.46245.9427177344414.4417252543967
0.47249.67674921015815.3075015957985
0.48253.59910242384715.9978213744618
0.49257.67036028225616.4731010757487
0.5261.84770052976216.7643689394466
0.51266.09774517589216.9494557109740
0.52270.40206626101917.1087192086989
0.53274.75389670371617.2816454716199
0.54279.14850388012417.4482639903899
0.55283.57251208437917.5384440274999
0.56287.9979113703617.4699415849820
0.57292.38433297567817.1915474563796
0.58296.68936520404616.7164257193332
0.59300.88292051461216.1290325517544
0.6304.95958076565415.5613840076562
0.61308.94331329678915.1523139786988
0.62312.88175783176314.9910179929937
0.63316.83130527375315.0814430100852
0.64320.83785904643115.3341018644062
0.65324.92007125553515.5970289332971
0.66329.06122681273215.7092121394782
0.67333.2130298998715.5577288646119
0.68337.31049069116115.1108979724758
0.69341.29354673684414.4307350853635
0.7345.12928542210913.660164796795
0.71348.82893601088512.9919166423782
0.72352.45535125134212.6291258604128
0.73356.11834742082112.7401473422285
0.74359.9566459994313.3975971376249
0.75364.10714381202714.5308866349823
0.76368.66610005369415.9135962714383
0.77373.65239113114117.2020994891716
0.78378.98740921177618.0311782774233
0.79384.50503810004418.1347930455094
0.8389.99584480895617.4506220830322
0.81395.27487461120816.1685676554640
0.82400.25013844558314.6874678963088
0.83404.96701426074513.5023718236671
0.84409.61331147664613.0541617167817
0.85414.48251890406713.5842976791154
0.86419.89938071330615.0337078196223
0.87426.11477588339917.0043911809049
0.88433.19206208028818.8088724505235
0.89440.94295677790419.6855361670077
0.9448.99817596462319.2280557726555
0.91457.05539099879517.8348373718043
0.92465.21083642166416.7933977923152
0.93474.1421142395717.5715534447813
0.94484.9414555945820.4413112579313
0.95498.66453051548424.1806678363787
0.96516.00708091612627.2108907676126
0.97537.78763264129229.1328416267477
0.98565.93934495458432.2382707131165
0.99599.48384705047230.192265348984

\begin{tabular}{lllllllll}
\hline
Harrell-Davis Quantiles \tabularnewline
quantiles & value & standard error \tabularnewline
0.01 & 109.150230849763 & 4.63687489625989 \tabularnewline
0.02 & 113.779077638613 & 2.90870523792072 \tabularnewline
0.03 & 116.633442237508 & 3.05403495945027 \tabularnewline
0.04 & 119.089327450674 & 3.81450331742409 \tabularnewline
0.05 & 121.705270737898 & 4.77924780729857 \tabularnewline
0.06 & 124.557864486001 & 5.50274117163836 \tabularnewline
0.07 & 127.515327511040 & 5.81444178231279 \tabularnewline
0.08 & 130.419595354780 & 5.872127063422 \tabularnewline
0.09 & 133.203847576285 & 5.93848901802719 \tabularnewline
0.1 & 135.899876422882 & 6.17477380052541 \tabularnewline
0.11 & 138.583591445232 & 6.58519697363209 \tabularnewline
0.12 & 141.325336341498 & 7.10803477546612 \tabularnewline
0.13 & 144.172954858121 & 7.7096091055799 \tabularnewline
0.14 & 147.155944986974 & 8.38298004075171 \tabularnewline
0.15 & 150.287190287372 & 9.07971705454948 \tabularnewline
0.16 & 153.553682179571 & 9.68249417341907 \tabularnewline
0.17 & 156.906948865091 & 10.0511379585563 \tabularnewline
0.18 & 160.267694873463 & 10.1039247987614 \tabularnewline
0.19 & 163.547283036787 & 9.86154305541607 \tabularnewline
0.2 & 166.675201078387 & 9.43480784307638 \tabularnewline
0.21 & 169.618204262731 & 8.97188362039837 \tabularnewline
0.22 & 172.383675094335 & 8.6003466818426 \tabularnewline
0.23 & 175.009350006170 & 8.39155396196749 \tabularnewline
0.24 & 177.547057780703 & 8.35986553453783 \tabularnewline
0.25 & 180.047948835254 & 8.47712500292052 \tabularnewline
0.26 & 182.553439559663 & 8.69879912851458 \tabularnewline
0.27 & 185.092786385654 & 8.98515083720218 \tabularnewline
0.28 & 187.686092681172 & 9.31588936033581 \tabularnewline
0.29 & 190.350348343281 & 9.69934019114605 \tabularnewline
0.3 & 193.105350868185 & 10.1664093184706 \tabularnewline
0.31 & 195.976246446512 & 10.7499784881771 \tabularnewline
0.32 & 198.990493234875 & 11.4532734631736 \tabularnewline
0.33 & 202.169364413709 & 12.2302718470675 \tabularnewline
0.34 & 205.516881123363 & 12.9826324465661 \tabularnewline
0.35 & 209.010954478841 & 13.5833193549449 \tabularnewline
0.36 & 212.601423164891 & 13.9176658894968 \tabularnewline
0.37 & 216.217419435498 & 13.9207927073359 \tabularnewline
0.38 & 219.782965721350 & 13.6081073751274 \tabularnewline
0.39 & 223.236400589754 & 13.0774550130068 \tabularnewline
0.4 & 226.547536291559 & 12.4906438806074 \tabularnewline
0.41 & 229.726994437493 & 12.0370329353363 \tabularnewline
0.42 & 232.824647909859 & 11.8767442991110 \tabularnewline
0.43 & 235.917536178414 & 12.0966147651242 \tabularnewline
0.44 & 239.090841415940 & 12.6780607795077 \tabularnewline
0.45 & 242.417549299428 & 13.5134653612585 \tabularnewline
0.46 & 245.94271773444 & 14.4417252543967 \tabularnewline
0.47 & 249.676749210158 & 15.3075015957985 \tabularnewline
0.48 & 253.599102423847 & 15.9978213744618 \tabularnewline
0.49 & 257.670360282256 & 16.4731010757487 \tabularnewline
0.5 & 261.847700529762 & 16.7643689394466 \tabularnewline
0.51 & 266.097745175892 & 16.9494557109740 \tabularnewline
0.52 & 270.402066261019 & 17.1087192086989 \tabularnewline
0.53 & 274.753896703716 & 17.2816454716199 \tabularnewline
0.54 & 279.148503880124 & 17.4482639903899 \tabularnewline
0.55 & 283.572512084379 & 17.5384440274999 \tabularnewline
0.56 & 287.99791137036 & 17.4699415849820 \tabularnewline
0.57 & 292.384332975678 & 17.1915474563796 \tabularnewline
0.58 & 296.689365204046 & 16.7164257193332 \tabularnewline
0.59 & 300.882920514612 & 16.1290325517544 \tabularnewline
0.6 & 304.959580765654 & 15.5613840076562 \tabularnewline
0.61 & 308.943313296789 & 15.1523139786988 \tabularnewline
0.62 & 312.881757831763 & 14.9910179929937 \tabularnewline
0.63 & 316.831305273753 & 15.0814430100852 \tabularnewline
0.64 & 320.837859046431 & 15.3341018644062 \tabularnewline
0.65 & 324.920071255535 & 15.5970289332971 \tabularnewline
0.66 & 329.061226812732 & 15.7092121394782 \tabularnewline
0.67 & 333.21302989987 & 15.5577288646119 \tabularnewline
0.68 & 337.310490691161 & 15.1108979724758 \tabularnewline
0.69 & 341.293546736844 & 14.4307350853635 \tabularnewline
0.7 & 345.129285422109 & 13.660164796795 \tabularnewline
0.71 & 348.828936010885 & 12.9919166423782 \tabularnewline
0.72 & 352.455351251342 & 12.6291258604128 \tabularnewline
0.73 & 356.118347420821 & 12.7401473422285 \tabularnewline
0.74 & 359.95664599943 & 13.3975971376249 \tabularnewline
0.75 & 364.107143812027 & 14.5308866349823 \tabularnewline
0.76 & 368.666100053694 & 15.9135962714383 \tabularnewline
0.77 & 373.652391131141 & 17.2020994891716 \tabularnewline
0.78 & 378.987409211776 & 18.0311782774233 \tabularnewline
0.79 & 384.505038100044 & 18.1347930455094 \tabularnewline
0.8 & 389.995844808956 & 17.4506220830322 \tabularnewline
0.81 & 395.274874611208 & 16.1685676554640 \tabularnewline
0.82 & 400.250138445583 & 14.6874678963088 \tabularnewline
0.83 & 404.967014260745 & 13.5023718236671 \tabularnewline
0.84 & 409.613311476646 & 13.0541617167817 \tabularnewline
0.85 & 414.482518904067 & 13.5842976791154 \tabularnewline
0.86 & 419.899380713306 & 15.0337078196223 \tabularnewline
0.87 & 426.114775883399 & 17.0043911809049 \tabularnewline
0.88 & 433.192062080288 & 18.8088724505235 \tabularnewline
0.89 & 440.942956777904 & 19.6855361670077 \tabularnewline
0.9 & 448.998175964623 & 19.2280557726555 \tabularnewline
0.91 & 457.055390998795 & 17.8348373718043 \tabularnewline
0.92 & 465.210836421664 & 16.7933977923152 \tabularnewline
0.93 & 474.14211423957 & 17.5715534447813 \tabularnewline
0.94 & 484.94145559458 & 20.4413112579313 \tabularnewline
0.95 & 498.664530515484 & 24.1806678363787 \tabularnewline
0.96 & 516.007080916126 & 27.2108907676126 \tabularnewline
0.97 & 537.787632641292 & 29.1328416267477 \tabularnewline
0.98 & 565.939344954584 & 32.2382707131165 \tabularnewline
0.99 & 599.483847050472 & 30.192265348984 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=74212&T=1

[TABLE]
[ROW][C]Harrell-Davis Quantiles[/C][/ROW]
[ROW][C]quantiles[/C][C]value[/C][C]standard error[/C][/ROW]
[ROW][C]0.01[/C][C]109.150230849763[/C][C]4.63687489625989[/C][/ROW]
[ROW][C]0.02[/C][C]113.779077638613[/C][C]2.90870523792072[/C][/ROW]
[ROW][C]0.03[/C][C]116.633442237508[/C][C]3.05403495945027[/C][/ROW]
[ROW][C]0.04[/C][C]119.089327450674[/C][C]3.81450331742409[/C][/ROW]
[ROW][C]0.05[/C][C]121.705270737898[/C][C]4.77924780729857[/C][/ROW]
[ROW][C]0.06[/C][C]124.557864486001[/C][C]5.50274117163836[/C][/ROW]
[ROW][C]0.07[/C][C]127.515327511040[/C][C]5.81444178231279[/C][/ROW]
[ROW][C]0.08[/C][C]130.419595354780[/C][C]5.872127063422[/C][/ROW]
[ROW][C]0.09[/C][C]133.203847576285[/C][C]5.93848901802719[/C][/ROW]
[ROW][C]0.1[/C][C]135.899876422882[/C][C]6.17477380052541[/C][/ROW]
[ROW][C]0.11[/C][C]138.583591445232[/C][C]6.58519697363209[/C][/ROW]
[ROW][C]0.12[/C][C]141.325336341498[/C][C]7.10803477546612[/C][/ROW]
[ROW][C]0.13[/C][C]144.172954858121[/C][C]7.7096091055799[/C][/ROW]
[ROW][C]0.14[/C][C]147.155944986974[/C][C]8.38298004075171[/C][/ROW]
[ROW][C]0.15[/C][C]150.287190287372[/C][C]9.07971705454948[/C][/ROW]
[ROW][C]0.16[/C][C]153.553682179571[/C][C]9.68249417341907[/C][/ROW]
[ROW][C]0.17[/C][C]156.906948865091[/C][C]10.0511379585563[/C][/ROW]
[ROW][C]0.18[/C][C]160.267694873463[/C][C]10.1039247987614[/C][/ROW]
[ROW][C]0.19[/C][C]163.547283036787[/C][C]9.86154305541607[/C][/ROW]
[ROW][C]0.2[/C][C]166.675201078387[/C][C]9.43480784307638[/C][/ROW]
[ROW][C]0.21[/C][C]169.618204262731[/C][C]8.97188362039837[/C][/ROW]
[ROW][C]0.22[/C][C]172.383675094335[/C][C]8.6003466818426[/C][/ROW]
[ROW][C]0.23[/C][C]175.009350006170[/C][C]8.39155396196749[/C][/ROW]
[ROW][C]0.24[/C][C]177.547057780703[/C][C]8.35986553453783[/C][/ROW]
[ROW][C]0.25[/C][C]180.047948835254[/C][C]8.47712500292052[/C][/ROW]
[ROW][C]0.26[/C][C]182.553439559663[/C][C]8.69879912851458[/C][/ROW]
[ROW][C]0.27[/C][C]185.092786385654[/C][C]8.98515083720218[/C][/ROW]
[ROW][C]0.28[/C][C]187.686092681172[/C][C]9.31588936033581[/C][/ROW]
[ROW][C]0.29[/C][C]190.350348343281[/C][C]9.69934019114605[/C][/ROW]
[ROW][C]0.3[/C][C]193.105350868185[/C][C]10.1664093184706[/C][/ROW]
[ROW][C]0.31[/C][C]195.976246446512[/C][C]10.7499784881771[/C][/ROW]
[ROW][C]0.32[/C][C]198.990493234875[/C][C]11.4532734631736[/C][/ROW]
[ROW][C]0.33[/C][C]202.169364413709[/C][C]12.2302718470675[/C][/ROW]
[ROW][C]0.34[/C][C]205.516881123363[/C][C]12.9826324465661[/C][/ROW]
[ROW][C]0.35[/C][C]209.010954478841[/C][C]13.5833193549449[/C][/ROW]
[ROW][C]0.36[/C][C]212.601423164891[/C][C]13.9176658894968[/C][/ROW]
[ROW][C]0.37[/C][C]216.217419435498[/C][C]13.9207927073359[/C][/ROW]
[ROW][C]0.38[/C][C]219.782965721350[/C][C]13.6081073751274[/C][/ROW]
[ROW][C]0.39[/C][C]223.236400589754[/C][C]13.0774550130068[/C][/ROW]
[ROW][C]0.4[/C][C]226.547536291559[/C][C]12.4906438806074[/C][/ROW]
[ROW][C]0.41[/C][C]229.726994437493[/C][C]12.0370329353363[/C][/ROW]
[ROW][C]0.42[/C][C]232.824647909859[/C][C]11.8767442991110[/C][/ROW]
[ROW][C]0.43[/C][C]235.917536178414[/C][C]12.0966147651242[/C][/ROW]
[ROW][C]0.44[/C][C]239.090841415940[/C][C]12.6780607795077[/C][/ROW]
[ROW][C]0.45[/C][C]242.417549299428[/C][C]13.5134653612585[/C][/ROW]
[ROW][C]0.46[/C][C]245.94271773444[/C][C]14.4417252543967[/C][/ROW]
[ROW][C]0.47[/C][C]249.676749210158[/C][C]15.3075015957985[/C][/ROW]
[ROW][C]0.48[/C][C]253.599102423847[/C][C]15.9978213744618[/C][/ROW]
[ROW][C]0.49[/C][C]257.670360282256[/C][C]16.4731010757487[/C][/ROW]
[ROW][C]0.5[/C][C]261.847700529762[/C][C]16.7643689394466[/C][/ROW]
[ROW][C]0.51[/C][C]266.097745175892[/C][C]16.9494557109740[/C][/ROW]
[ROW][C]0.52[/C][C]270.402066261019[/C][C]17.1087192086989[/C][/ROW]
[ROW][C]0.53[/C][C]274.753896703716[/C][C]17.2816454716199[/C][/ROW]
[ROW][C]0.54[/C][C]279.148503880124[/C][C]17.4482639903899[/C][/ROW]
[ROW][C]0.55[/C][C]283.572512084379[/C][C]17.5384440274999[/C][/ROW]
[ROW][C]0.56[/C][C]287.99791137036[/C][C]17.4699415849820[/C][/ROW]
[ROW][C]0.57[/C][C]292.384332975678[/C][C]17.1915474563796[/C][/ROW]
[ROW][C]0.58[/C][C]296.689365204046[/C][C]16.7164257193332[/C][/ROW]
[ROW][C]0.59[/C][C]300.882920514612[/C][C]16.1290325517544[/C][/ROW]
[ROW][C]0.6[/C][C]304.959580765654[/C][C]15.5613840076562[/C][/ROW]
[ROW][C]0.61[/C][C]308.943313296789[/C][C]15.1523139786988[/C][/ROW]
[ROW][C]0.62[/C][C]312.881757831763[/C][C]14.9910179929937[/C][/ROW]
[ROW][C]0.63[/C][C]316.831305273753[/C][C]15.0814430100852[/C][/ROW]
[ROW][C]0.64[/C][C]320.837859046431[/C][C]15.3341018644062[/C][/ROW]
[ROW][C]0.65[/C][C]324.920071255535[/C][C]15.5970289332971[/C][/ROW]
[ROW][C]0.66[/C][C]329.061226812732[/C][C]15.7092121394782[/C][/ROW]
[ROW][C]0.67[/C][C]333.21302989987[/C][C]15.5577288646119[/C][/ROW]
[ROW][C]0.68[/C][C]337.310490691161[/C][C]15.1108979724758[/C][/ROW]
[ROW][C]0.69[/C][C]341.293546736844[/C][C]14.4307350853635[/C][/ROW]
[ROW][C]0.7[/C][C]345.129285422109[/C][C]13.660164796795[/C][/ROW]
[ROW][C]0.71[/C][C]348.828936010885[/C][C]12.9919166423782[/C][/ROW]
[ROW][C]0.72[/C][C]352.455351251342[/C][C]12.6291258604128[/C][/ROW]
[ROW][C]0.73[/C][C]356.118347420821[/C][C]12.7401473422285[/C][/ROW]
[ROW][C]0.74[/C][C]359.95664599943[/C][C]13.3975971376249[/C][/ROW]
[ROW][C]0.75[/C][C]364.107143812027[/C][C]14.5308866349823[/C][/ROW]
[ROW][C]0.76[/C][C]368.666100053694[/C][C]15.9135962714383[/C][/ROW]
[ROW][C]0.77[/C][C]373.652391131141[/C][C]17.2020994891716[/C][/ROW]
[ROW][C]0.78[/C][C]378.987409211776[/C][C]18.0311782774233[/C][/ROW]
[ROW][C]0.79[/C][C]384.505038100044[/C][C]18.1347930455094[/C][/ROW]
[ROW][C]0.8[/C][C]389.995844808956[/C][C]17.4506220830322[/C][/ROW]
[ROW][C]0.81[/C][C]395.274874611208[/C][C]16.1685676554640[/C][/ROW]
[ROW][C]0.82[/C][C]400.250138445583[/C][C]14.6874678963088[/C][/ROW]
[ROW][C]0.83[/C][C]404.967014260745[/C][C]13.5023718236671[/C][/ROW]
[ROW][C]0.84[/C][C]409.613311476646[/C][C]13.0541617167817[/C][/ROW]
[ROW][C]0.85[/C][C]414.482518904067[/C][C]13.5842976791154[/C][/ROW]
[ROW][C]0.86[/C][C]419.899380713306[/C][C]15.0337078196223[/C][/ROW]
[ROW][C]0.87[/C][C]426.114775883399[/C][C]17.0043911809049[/C][/ROW]
[ROW][C]0.88[/C][C]433.192062080288[/C][C]18.8088724505235[/C][/ROW]
[ROW][C]0.89[/C][C]440.942956777904[/C][C]19.6855361670077[/C][/ROW]
[ROW][C]0.9[/C][C]448.998175964623[/C][C]19.2280557726555[/C][/ROW]
[ROW][C]0.91[/C][C]457.055390998795[/C][C]17.8348373718043[/C][/ROW]
[ROW][C]0.92[/C][C]465.210836421664[/C][C]16.7933977923152[/C][/ROW]
[ROW][C]0.93[/C][C]474.14211423957[/C][C]17.5715534447813[/C][/ROW]
[ROW][C]0.94[/C][C]484.94145559458[/C][C]20.4413112579313[/C][/ROW]
[ROW][C]0.95[/C][C]498.664530515484[/C][C]24.1806678363787[/C][/ROW]
[ROW][C]0.96[/C][C]516.007080916126[/C][C]27.2108907676126[/C][/ROW]
[ROW][C]0.97[/C][C]537.787632641292[/C][C]29.1328416267477[/C][/ROW]
[ROW][C]0.98[/C][C]565.939344954584[/C][C]32.2382707131165[/C][/ROW]
[ROW][C]0.99[/C][C]599.483847050472[/C][C]30.192265348984[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=74212&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=74212&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Harrell-Davis Quantiles
quantilesvaluestandard error
0.01109.1502308497634.63687489625989
0.02113.7790776386132.90870523792072
0.03116.6334422375083.05403495945027
0.04119.0893274506743.81450331742409
0.05121.7052707378984.77924780729857
0.06124.5578644860015.50274117163836
0.07127.5153275110405.81444178231279
0.08130.4195953547805.872127063422
0.09133.2038475762855.93848901802719
0.1135.8998764228826.17477380052541
0.11138.5835914452326.58519697363209
0.12141.3253363414987.10803477546612
0.13144.1729548581217.7096091055799
0.14147.1559449869748.38298004075171
0.15150.2871902873729.07971705454948
0.16153.5536821795719.68249417341907
0.17156.90694886509110.0511379585563
0.18160.26769487346310.1039247987614
0.19163.5472830367879.86154305541607
0.2166.6752010783879.43480784307638
0.21169.6182042627318.97188362039837
0.22172.3836750943358.6003466818426
0.23175.0093500061708.39155396196749
0.24177.5470577807038.35986553453783
0.25180.0479488352548.47712500292052
0.26182.5534395596638.69879912851458
0.27185.0927863856548.98515083720218
0.28187.6860926811729.31588936033581
0.29190.3503483432819.69934019114605
0.3193.10535086818510.1664093184706
0.31195.97624644651210.7499784881771
0.32198.99049323487511.4532734631736
0.33202.16936441370912.2302718470675
0.34205.51688112336312.9826324465661
0.35209.01095447884113.5833193549449
0.36212.60142316489113.9176658894968
0.37216.21741943549813.9207927073359
0.38219.78296572135013.6081073751274
0.39223.23640058975413.0774550130068
0.4226.54753629155912.4906438806074
0.41229.72699443749312.0370329353363
0.42232.82464790985911.8767442991110
0.43235.91753617841412.0966147651242
0.44239.09084141594012.6780607795077
0.45242.41754929942813.5134653612585
0.46245.9427177344414.4417252543967
0.47249.67674921015815.3075015957985
0.48253.59910242384715.9978213744618
0.49257.67036028225616.4731010757487
0.5261.84770052976216.7643689394466
0.51266.09774517589216.9494557109740
0.52270.40206626101917.1087192086989
0.53274.75389670371617.2816454716199
0.54279.14850388012417.4482639903899
0.55283.57251208437917.5384440274999
0.56287.9979113703617.4699415849820
0.57292.38433297567817.1915474563796
0.58296.68936520404616.7164257193332
0.59300.88292051461216.1290325517544
0.6304.95958076565415.5613840076562
0.61308.94331329678915.1523139786988
0.62312.88175783176314.9910179929937
0.63316.83130527375315.0814430100852
0.64320.83785904643115.3341018644062
0.65324.92007125553515.5970289332971
0.66329.06122681273215.7092121394782
0.67333.2130298998715.5577288646119
0.68337.31049069116115.1108979724758
0.69341.29354673684414.4307350853635
0.7345.12928542210913.660164796795
0.71348.82893601088512.9919166423782
0.72352.45535125134212.6291258604128
0.73356.11834742082112.7401473422285
0.74359.9566459994313.3975971376249
0.75364.10714381202714.5308866349823
0.76368.66610005369415.9135962714383
0.77373.65239113114117.2020994891716
0.78378.98740921177618.0311782774233
0.79384.50503810004418.1347930455094
0.8389.99584480895617.4506220830322
0.81395.27487461120816.1685676554640
0.82400.25013844558314.6874678963088
0.83404.96701426074513.5023718236671
0.84409.61331147664613.0541617167817
0.85414.48251890406713.5842976791154
0.86419.89938071330615.0337078196223
0.87426.11477588339917.0043911809049
0.88433.19206208028818.8088724505235
0.89440.94295677790419.6855361670077
0.9448.99817596462319.2280557726555
0.91457.05539099879517.8348373718043
0.92465.21083642166416.7933977923152
0.93474.1421142395717.5715534447813
0.94484.9414555945820.4413112579313
0.95498.66453051548424.1806678363787
0.96516.00708091612627.2108907676126
0.97537.78763264129229.1328416267477
0.98565.93934495458432.2382707131165
0.99599.48384705047230.192265348984



Parameters (Session):
par1 = 0.01 ; par2 = 0.99 ; par3 = 0.01 ;
Parameters (R input):
par1 = 0.01 ; par2 = 0.99 ; par3 = 0.01 ;
R code (references can be found in the software module):
par1 <- as(par1,'numeric')
par2 <- as(par2,'numeric')
par3 <- as(par3,'numeric')
library(Hmisc)
myseq <- seq(par1, par2, par3)
hd <- hdquantile(x, probs = myseq, se = TRUE, na.rm = FALSE, names = TRUE, weights=FALSE)
bitmap(file='test1.png')
plot(myseq,hd,col=2,main=main,xlab=xlab,ylab=ylab)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Harrell-Davis Quantiles',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'quantiles',header=TRUE)
a<-table.element(a,'value',header=TRUE)
a<-table.element(a,'standard error',header=TRUE)
a<-table.row.end(a)
length(hd)
for (i in 1:length(hd))
{
a<-table.row.start(a)
a<-table.element(a,as(labels(hd)[i],'numeric'),header=TRUE)
a<-table.element(a,as.matrix(hd[i])[1,1])
a<-table.element(a,as.matrix(attr(hd,'se')[i])[1,1])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')