Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationSat, 24 Jul 2010 17:03:42 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Jul/24/t1279991021tz5hko4r6fo8upv.htm/, Retrieved Wed, 01 May 2024 14:55:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=78097, Retrieved Wed, 01 May 2024 14:55:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsHabimana Christelle
Estimated Impact193
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Standard Deviation-Mean Plot] [Tijdreeks 1 - Sta...] [2010-07-24 17:03:42] [ac302f869d0778eba7cafda3b14e71eb] [Current]
Feedback Forum

Post a new message
Dataseries X:
900
899
898
896
916
915
900
890
891
891
892
894
896
889
878
883
901
897
881
866
867
866
862
871
865
856
847
859
870
872
856
839
829
825
822
827
822
812
810
816
820
823
810
793
777
772
765
765
753
742
736
740
742
742
728
707
699
696
689
692
673
653
642
648
654
653
630
609
598
601
592
591
568
538
523
530
529
534
513
491
480
478
462
461
437
411
400
405
395
407
385
366
349
343
332
327
306
276
269
268
260
274
247
226
212
199
188
179
155
124
117
116
105
112
86
64
53
42
32
24




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78097&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78097&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78097&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1898.58.7230103227560826
2879.7513.639014893779139
3847.2518.291205040078250
4798.7522.974788553780258
5722.16666666666723.617533291770364
6628.66666666666728.92100002462382
7508.91666666666733.8967907661245107
8379.7535.4865531510945110
924240.3619983287610127
1085.833333333333341.9649926255278131

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 898.5 & 8.72301032275608 & 26 \tabularnewline
2 & 879.75 & 13.6390148937791 & 39 \tabularnewline
3 & 847.25 & 18.2912050400782 & 50 \tabularnewline
4 & 798.75 & 22.9747885537802 & 58 \tabularnewline
5 & 722.166666666667 & 23.6175332917703 & 64 \tabularnewline
6 & 628.666666666667 & 28.921000024623 & 82 \tabularnewline
7 & 508.916666666667 & 33.8967907661245 & 107 \tabularnewline
8 & 379.75 & 35.4865531510945 & 110 \tabularnewline
9 & 242 & 40.3619983287610 & 127 \tabularnewline
10 & 85.8333333333333 & 41.9649926255278 & 131 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78097&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]898.5[/C][C]8.72301032275608[/C][C]26[/C][/ROW]
[ROW][C]2[/C][C]879.75[/C][C]13.6390148937791[/C][C]39[/C][/ROW]
[ROW][C]3[/C][C]847.25[/C][C]18.2912050400782[/C][C]50[/C][/ROW]
[ROW][C]4[/C][C]798.75[/C][C]22.9747885537802[/C][C]58[/C][/ROW]
[ROW][C]5[/C][C]722.166666666667[/C][C]23.6175332917703[/C][C]64[/C][/ROW]
[ROW][C]6[/C][C]628.666666666667[/C][C]28.921000024623[/C][C]82[/C][/ROW]
[ROW][C]7[/C][C]508.916666666667[/C][C]33.8967907661245[/C][C]107[/C][/ROW]
[ROW][C]8[/C][C]379.75[/C][C]35.4865531510945[/C][C]110[/C][/ROW]
[ROW][C]9[/C][C]242[/C][C]40.3619983287610[/C][C]127[/C][/ROW]
[ROW][C]10[/C][C]85.8333333333333[/C][C]41.9649926255278[/C][C]131[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78097&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78097&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1898.58.7230103227560826
2879.7513.639014893779139
3847.2518.291205040078250
4798.7522.974788553780258
5722.16666666666723.617533291770364
6628.66666666666728.92100002462382
7508.91666666666733.8967907661245107
8379.7535.4865531510945110
924240.3619983287610127
1085.833333333333341.9649926255278131







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha49.2494312890777
beta-0.0374888261409725
S.D.0.00435252133872591
T-STAT-8.61312862671604
p-value2.55669605283736e-05

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 49.2494312890777 \tabularnewline
beta & -0.0374888261409725 \tabularnewline
S.D. & 0.00435252133872591 \tabularnewline
T-STAT & -8.61312862671604 \tabularnewline
p-value & 2.55669605283736e-05 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78097&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]49.2494312890777[/C][/ROW]
[ROW][C]beta[/C][C]-0.0374888261409725[/C][/ROW]
[ROW][C]S.D.[/C][C]0.00435252133872591[/C][/ROW]
[ROW][C]T-STAT[/C][C]-8.61312862671604[/C][/ROW]
[ROW][C]p-value[/C][C]2.55669605283736e-05[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78097&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78097&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha49.2494312890777
beta-0.0374888261409725
S.D.0.00435252133872591
T-STAT-8.61312862671604
p-value2.55669605283736e-05







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha6.2636516386081
beta-0.495025131558517
S.D.0.162589811816292
T-STAT-3.04462577346383
p-value0.0159507509372291
Lambda1.49502513155852

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 6.2636516386081 \tabularnewline
beta & -0.495025131558517 \tabularnewline
S.D. & 0.162589811816292 \tabularnewline
T-STAT & -3.04462577346383 \tabularnewline
p-value & 0.0159507509372291 \tabularnewline
Lambda & 1.49502513155852 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=78097&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]6.2636516386081[/C][/ROW]
[ROW][C]beta[/C][C]-0.495025131558517[/C][/ROW]
[ROW][C]S.D.[/C][C]0.162589811816292[/C][/ROW]
[ROW][C]T-STAT[/C][C]-3.04462577346383[/C][/ROW]
[ROW][C]p-value[/C][C]0.0159507509372291[/C][/ROW]
[ROW][C]Lambda[/C][C]1.49502513155852[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=78097&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=78097&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha6.2636516386081
beta-0.495025131558517
S.D.0.162589811816292
T-STAT-3.04462577346383
p-value0.0159507509372291
Lambda1.49502513155852



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')