Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationTue, 21 Dec 2010 22:28:48 +0000
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2010/Dec/21/t1292970385zrs2z3ev7686c9n.htm/, Retrieved Sun, 19 May 2024 18:22:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=114013, Retrieved Sun, 19 May 2024 18:22:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact114
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2010-12-21 22:28:48] [4afc4ea409ad669ec2851bc39795365d] [Current]
Feedback Forum

Post a new message
Dataseries X:
African elephant         6654.000 5712.000  -999.0  -999.0     3.3    38.6   645.0       3       5       3
African giant pouched rat   1.000    6.600     6.3     2.0     8.3     4.5    42.0       3       1       3
Arctic Fox                  3.385   44.500  -999.0  -999.0    12.5    14.0    60.0       1       1       1
Arctic ground squirrel       .920    5.700  -999.0  -999.0    16.5  -999.0    25.0       5       2       3
Asian elephant           2547.000 4603.000     2.1     1.8     3.9    69.0   624.0       3       5       4
Baboon                     10.550  179.500     9.1      .7     9.8    27.0   180.0       4       4       4
Big brown bat                .023     .300    15.8     3.9    19.7    19.0    35.0       1       1       1
Brazilian tapir           160.000  169.000     5.2     1.0     6.2    30.4   392.0       4       5       4
Cat                         3.300   25.600    10.9     3.6    14.5    28.0    63.0       1       2       1
Chimpanzee                 52.160  440.000     8.3     1.4     9.7    50.0   230.0       1       1       1
Chinchilla                   .425    6.400    11.0     1.5    12.5     7.0   112.0       5       4       4
Cow                       465.000  423.000     3.2      .7     3.9    30.0   281.0       5       5       5
Desert hedgehog              .550    2.400     7.6     2.7    10.3  -999.0  -999.0       2       1       2
Donkey                    187.100  419.000  -999.0  -999.0     3.1    40.0   365.0       5       5       5
Eastern American mole        .075    1.200     6.3     2.1     8.4     3.5    42.0       1       1       1
Echidna                     3.000   25.000     8.6      .0     8.6    50.0    28.0       2       2       2
European hedgehog            .785    3.500     6.6     4.1    10.7     6.0    42.0       2       2       2
Galago                       .200    5.000     9.5     1.2    10.7    10.4   120.0       2       2       2
Genet                       1.410   17.500     4.8     1.3     6.1    34.0  -999.0       1       2       1
Giant armadillo            60.000   81.000    12.0     6.1    18.1     7.0  -999.0       1       1       1
Giraffe                   529.000  680.000  -999.0      .3  -999.0    28.0   400.0       5       5       5
Goat                       27.660  115.000     3.3      .5     3.8    20.0   148.0       5       5       5
Golden hamster               .120    1.000    11.0     3.4    14.4     3.9    16.0       3       1       2
Gorilla                   207.000  406.000  -999.0  -999.0    12.0    39.3   252.0       1       4       1
Gray seal                  85.000  325.000     4.7     1.5     6.2    41.0   310.0       1       3       1
Gray wolf                  36.330  119.500  -999.0  -999.0    13.0    16.2    63.0       1       1       1
Ground squirrel              .101    4.000    10.4     3.4    13.8     9.0    28.0       5       1       3
Guinea pig                  1.040    5.500     7.4      .8     8.2     7.6    68.0       5       3       4
Horse                     521.000  655.000     2.1      .8     2.9    46.0   336.0       5       5       5
Jaguar                    100.000  157.000  -999.0  -999.0    10.8    22.4   100.0       1       1       1
Kangaroo                   35.000   56.000  -999.0  -999.0  -999.0    16.3    33.0       3       5       4
Lesser short-tailed shrew    .005     .140     7.7     1.4     9.1     2.6    21.5       5       2       4
Little brown bat             .010     .250    17.9     2.0    19.9    24.0    50.0       1       1       1
Man                        62.000 1320.000     6.1     1.9     8.0   100.0   267.0       1       1       1
Mole rat                     .122    3.000     8.2     2.4    10.6  -999.0    30.0       2       1       1
Mountain beaver             1.350    8.100     8.4     2.8    11.2  -999.0    45.0       3       1       3
Mouse                        .023     .400    11.9     1.3    13.2     3.2    19.0       4       1       3
Musk shrew                   .048     .330    10.8     2.0    12.8     2.0    30.0       4       1       3
N. American opossum         1.700    6.300    13.8     5.6    19.4     5.0    12.0       2       1       1
Nine-banded armadillo       3.500   10.800    14.3     3.1    17.4     6.5   120.0       2       1       1
Okapi                     250.000  490.000  -999.0     1.0  -999.0    23.6   440.0       5       5       5
Owl monkey                   .480   15.500    15.2     1.8    17.0    12.0   140.0       2       2       2
Patas monkey               10.000  115.000    10.0      .9    10.9    20.2   170.0       4       4       4
Phanlanger                  1.620   11.400    11.9     1.8    13.7    13.0    17.0       2       1       2
Pig                       192.000  180.000     6.5     1.9     8.4    27.0   115.0       4       4       4
Rabbit                      2.500   12.100     7.5      .9     8.4    18.0    31.0       5       5       5
Raccoon                     4.288   39.200  -999.0  -999.0    12.5    13.7    63.0       2       2       2
Rat                          .280    1.900    10.6     2.6    13.2     4.7    21.0       3       1       3
Red fox                     4.235   50.400     7.4     2.4     9.8     9.8    52.0       1       1       1
Rhesus monkey               6.800  179.000     8.4     1.2     9.6    29.0   164.0       2       3       2
Rock hyrax (Hetero. b)       .750   12.300     5.7      .9     6.6     7.0   225.0       2       2       2
Rock hyrax (Procavia hab)   3.600   21.000     4.9      .5     5.4     6.0   225.0       3       2       3
Roe deer                   14.830   98.200  -999.0  -999.0     2.6    17.0   150.0       5       5       5
Sheep                      55.500  175.000     3.2      .6     3.8    20.0   151.0       5       5       5
Slow loris                  1.400   12.500  -999.0  -999.0    11.0    12.7    90.0       2       2       2
Star nosed mole              .060    1.000     8.1     2.2    10.3     3.5  -999.0       3       1       2
Tenrec                       .900    2.600    11.0     2.3    13.3     4.5    60.0       2       1       2
Tree hyrax                  2.000   12.300     4.9      .5     5.4     7.5   200.0       3       1       3
Tree shrew                   .104    2.500    13.2     2.6    15.8     2.3    46.0       3       2       2
Vervet                      4.190   58.000     9.7      .6    10.3    24.0   210.0       4       3       4
Water opossum               3.500    3.900    12.8     6.6    19.4     3.0    14.0       2       1       1
Yellow-bellied marmot       4.050   17.000  -999.0  -999.0  -999.0    13.0    38.0       3       1       1




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=114013&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=114013&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=114013&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
par1 <- as.numeric(par1)
x <- t(y)
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
x2 <- array(0, dim=c(n-1,k), dimnames=list(1:(n-1), paste('(1-B)',colnames(x),sep='')))
for (i in 1:n-1) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
k <- length(x[1,])
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
x
k <- length(x[1,])
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
hist(mysum$resid, main='Residual Histogram', xlab='values of Residuals')
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqnorm(mysum$resid, main='Residual Normal Q-Q Plot')
qqline(mysum$resid)
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, mysum$coefficients[i,1], sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ols1.htm','Multiple Linear Regression - Ordinary Least Squares',''), 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,mysum$coefficients[i,1])
a<-table.element(a, round(mysum$coefficients[i,2],6))
a<-table.element(a, round(mysum$coefficients[i,3],4))
a<-table.element(a, round(mysum$coefficients[i,4],6))
a<-table.element(a, round(mysum$coefficients[i,4]/2,6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a, sqrt(mysum$r.squared))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a, mysum$r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a, mysum$adj.r.squared)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a, mysum$fstatistic[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, mysum$fstatistic[3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a, 1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a, mysum$sigma)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a, sum(myerror*myerror))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]-mysum$resid[i])
a<-table.element(a,mysum$resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,gqarr[mypoint-kp3+1,1])
a<-table.element(a,gqarr[mypoint-kp3+1,2])
a<-table.element(a,gqarr[mypoint-kp3+1,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,numsignificant1)
a<-table.element(a,numsignificant1/numgqtests)
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,numsignificant5)
a<-table.element(a,numsignificant5/numgqtests)
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,numsignificant10)
a<-table.element(a,numsignificant10/numgqtests)
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}