Multiple Linear Regression - Estimated Regression Equation
NonDreaming[t] = + 12.9287686106582 + 0.106606074538538Dreaming[t] + 0.000246988712017791Lifespan[t] + 0.00318595520151942BodyWt[t] -0.00132557005859305BrainWt[t] -0.0132700427644034Gestation[t] + 1.31878955543532Predation[t] + 0.186037336578465Exposure[t] -2.61378468965366Danger[t] + e[t]


Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STAT
H0: parameter = 0
2-tail p-value1-tail p-value
(Intercept)12.92876861065822.3700195.45515e-062e-06
Dreaming0.1066060745385380.528930.20160.8415050.420753
Lifespan0.0002469887120177910.0447020.00550.9956250.497812
BodyWt0.003185955201519420.0056940.55950.5795970.289798
BrainWt-0.001325570058593050.003393-0.39060.6985750.349287
Gestation-0.01327004276440340.007165-1.85220.0729650.036482
Predation1.318789555435321.1458131.1510.2580190.129009
Exposure0.1860373365784650.6801240.27350.7861470.393074
Danger-2.613784689653661.587451-1.64650.1091470.054573


Multiple Linear Regression - Regression Statistics
Multiple R0.735505789285703
R-squared0.540968766072785
Adjusted R-squared0.429688466938915
F-TEST (value)4.86131660575427
F-TEST (DF numerator)8
F-TEST (DF denominator)33
p-value0.000508434878703889
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation2.89799308463584
Sum Squared Residuals277.146009313706


Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolation
Forecast
Residuals
Prediction Error
16.38.88123953957267-2.58123953957267
22.11.301640590118870.798359409881135
39.15.981294671766143.11870532823386
415.811.77549139844494.0245086015551
55.23.876964016755811.32303598324419
610.911.5371120663796-0.637112066379644
78.38.5122275146907-0.212227514690697
8118.479990601298442.52000939870156
93.24.65788455312067-1.45788455312067
106.311.4858544965062-5.18585449650618
118.610.3280598677158-1.72805986771579
126.610.5899395367817-3.98993953678174
139.59.242953196448620.25704680355138
143.35.4139390689726-2.1139390689726
151111.9937652039783-0.993765203978348
164.78.08820380129715-3.38820380129715
1710.411.8555415111292-1.45554151112918
187.48.80651146290563-1.40651146290563
192.13.81352586561612-1.71352586561612
207.79.30406740791544-1.60406740791544
2117.911.3751490200016.52485097999897
226.16.951736552899-0.851736552898996
2311.910.43540059721811.46459940278193
2410.810.36393043131630.436069568683673
2513.813.57465384873020.225346151269846
2614.311.87511418099532.42488581900466
2715.29.02888474966416.1711152503359
28106.217383784494583.78261621550542
2911.910.48437648798921.41562351201077
306.57.54920352718501-1.04920352718501
317.57.064925050958170.435074949041827
3210.69.227859771620971.37214022837903
337.411.334727446865-3.93472744686496
348.48.6400807555717-0.240080755571703
355.77.80885273613695-2.10885273613695
364.96.46851569620575-1.56851569620575
373.25.39395233742796-2.19395233742796
38119.974339411107531.02566058889247
394.96.62103484299273-1.72103484299272
4013.211.69398188568351.50601811431646
419.75.526548565703064.17345143429694
4212.813.6631419478192-0.86314194781921


Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
120.8898139921747530.2203720156504950.110186007825247
130.8676323100151050.264735379969790.132367689984895
140.8212059546673940.3575880906652120.178794045332606
150.7478501571058090.5042996857883820.252149842894191
160.8220350946879420.3559298106241160.177964905312058
170.8364838593861220.3270322812277560.163516140613878
180.7756936725912270.4486126548175450.224306327408773
190.7585907318328480.4828185363343030.241409268167152
200.6931283845910820.6137432308178350.306871615408918
210.870733315599070.2585333688018620.129266684400931
220.8174937453845810.3650125092308380.182506254615419
230.7454429843417890.5091140313164220.254557015658211
240.6423458797472880.7153082405054240.357654120252712
250.5278718621270480.9442562757459040.472128137872952
260.4260660798410840.8521321596821670.573933920158917
270.7901211601822760.4197576796354480.209878839817724
280.8779815844375630.2440368311248740.122018415562437
290.7692777388167620.4614445223664760.230722261183238
300.6151825105085010.7696349789829980.384817489491499


Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level00OK
5% type I error level00OK
10% type I error level00OK