Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_edauni.wasp
Title produced by softwareUnivariate Explorative Data Analysis
Date of computationSat, 25 Oct 2008 06:32:44 -0600
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Oct/25/t1224937997x8gh7be4hgm053v.htm/, Retrieved Sun, 19 May 2024 14:14:53 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=18694, Retrieved Sun, 19 May 2024 14:14:53 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact193
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F       [Univariate Explorative Data Analysis] [Q2] [2008-10-25 12:32:44] [6912578025c824de531bc660dd61b996] [Current]
F    D    [Univariate Explorative Data Analysis] [Q2] [2008-10-27 19:42:47] [b47fceb71c9525e79a89b5fc6d023d0e]
-   P       [Univariate Explorative Data Analysis] [Blog autocorrelat...] [2008-11-01 20:33:10] [ed2ba3b6182103c15c0ab511ae4e6284]
- R P       [Univariate Explorative Data Analysis] [Blog random compo...] [2008-11-01 20:36:48] [ed2ba3b6182103c15c0ab511ae4e6284]
-   PD    [Univariate Explorative Data Analysis] [] [2008-10-31 08:48:31] [a4ee3bef49b119f4bd2e925060c84f5e]
- R PD    [Univariate Explorative Data Analysis] [] [2008-10-31 09:29:28] [a4ee3bef49b119f4bd2e925060c84f5e]
Feedback Forum
2008-11-03 23:21:22 [2b91075c702c6e89854c34747e80ec72] [reply
* assumptie 1: Om na te gaan of de dataset autocorrelatie bevat kan je best naar de lag plot kijken en de autocorrelatiefunctie i.p.v. de run sequence plot. Dit kan je instellen door het aantal lags in te vullen. De lag plot zoekt eigelijk het verband tussen het heden en het verleden. Voor het aantal lags kan je best 12 of 36(maximum) nemen. In de eerste lagplot k=1 liggen de punten gespreid rond de rechte. In de 2de lagplot ligt de puntenwolk veel dichter op de rechte en vormt er zich een positieve helling. Dit wijst op een positieve seizoenale autocorrelatie. Als je naar de autocorrelatiefunctie kijkt dan zie je dat het verticaal lijntje bij 12 en 24 hoog is dus er is sprake van seizoenaliteit.

* assumptie 2: Is correct maar kon misschien iets uitgebreider worden uitgelegd. De normaalverdeling kan je inderdaad op drie wijzen aflezen. Via de histogram, de density plot en de normal QQ plot. De histogram toont aan dat de verdeling min of meer gelijk is. Op de density plot kunnen we zien dat het verloop ook een vrij normale verdeling vertoont , buiten de hobbel die rond de waarde 70 voorkomt al is deze afwijking is niet doorslaggevend. Op de normal QQ plot is te zien dat de punten min of meer op de rechte liggen, wat wil zeggen dat er sprake is van een normaal verdeling.

* assumptie 3: Om na te gaan of de verdeling constant is moet je naar de run sequence plot kijken. Deze daalt lichtjes en is dus niet constant. Maar om een nog naukeuriger resultaat te verkrijgen moet je de central tendency van deze tijdreeksen berekenen. Uit de grafieken van de Trimmed mean en de Winsored mean kunnen we afleiden dat het gemiddelde niet constant blijft maar eerder een dalende trend aanneemt.

*assumptie 4: Om na te gaan of de spreiding vast is moet je naar de Run sequence plot kijken. Je moet kijken naar de spreiding over de tijd heen. Deze grafiek moet je dan in midden delen en vergelijken of de schommelingen aan beide kanten ongeveer gelijk zijn. In het 1ste deel schommelt de reeks harder dan in het 2de deel van de grafiek. De spreiding is niet gelijk aan de linker en rechterkant.

Post a new message
Dataseries X:
109,20
88,60
94,30
98,30
86,40
80,60
104,10
108,20
93,40
71,90
94,10
94,90
96,40
91,10
84,40
86,40
88,00
75,10
109,70
103,00
82,10
68,00
96,40
94,30
90,00
88,00
76,10
82,50
81,40
66,50
97,20
94,10
80,70
70,50
87,80
89,50
99,60
84,20
75,10
92,00
80,80
73,10
99,80
90,00
83,10
72,40
78,80
87,30
91,00
80,10
73,60
86,40
74,50
71,20
92,40
81,50
85,30
69,90
84,20
90,70
100,30




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=18694&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=18694&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=18694&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Descriptive Statistics
# observations61
minimum66.5
Q180.6
median87.3
mean86.8934426229508
Q394.1
maximum109.7

\begin{tabular}{lllllllll}
\hline
Descriptive Statistics \tabularnewline
# observations & 61 \tabularnewline
minimum & 66.5 \tabularnewline
Q1 & 80.6 \tabularnewline
median & 87.3 \tabularnewline
mean & 86.8934426229508 \tabularnewline
Q3 & 94.1 \tabularnewline
maximum & 109.7 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=18694&T=1

[TABLE]
[ROW][C]Descriptive Statistics[/C][/ROW]
[ROW][C]# observations[/C][C]61[/C][/ROW]
[ROW][C]minimum[/C][C]66.5[/C][/ROW]
[ROW][C]Q1[/C][C]80.6[/C][/ROW]
[ROW][C]median[/C][C]87.3[/C][/ROW]
[ROW][C]mean[/C][C]86.8934426229508[/C][/ROW]
[ROW][C]Q3[/C][C]94.1[/C][/ROW]
[ROW][C]maximum[/C][C]109.7[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=18694&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=18694&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Descriptive Statistics
# observations61
minimum66.5
Q180.6
median87.3
mean86.8934426229508
Q394.1
maximum109.7



Parameters (Session):
par1 = 0 ; par2 = 0 ;
Parameters (R input):
par1 = 0 ; par2 = 0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
x <- as.ts(x)
library(lattice)
bitmap(file='pic1.png')
plot(x,type='l',main='Run Sequence Plot',xlab='time or index',ylab='value')
grid()
dev.off()
bitmap(file='pic2.png')
hist(x)
grid()
dev.off()
bitmap(file='pic3.png')
if (par1 > 0)
{
densityplot(~x,col='black',main=paste('Density Plot bw = ',par1),bw=par1)
} else {
densityplot(~x,col='black',main='Density Plot')
}
dev.off()
bitmap(file='pic4.png')
qqnorm(x)
qqline(x)
grid()
dev.off()
if (par2 > 0)
{
bitmap(file='lagplot1.png')
dum <- cbind(lag(x,k=1),x)
dum
dum1 <- dum[2:length(x),]
dum1
z <- as.data.frame(dum1)
z
plot(z,main='Lag plot (k=1), lowess, and regression line')
lines(lowess(z))
abline(lm(z))
dev.off()
if (par2 > 1) {
bitmap(file='lagplotpar2.png')
dum <- cbind(lag(x,k=par2),x)
dum
dum1 <- dum[(par2+1):length(x),]
dum1
z <- as.data.frame(dum1)
z
mylagtitle <- 'Lag plot (k='
mylagtitle <- paste(mylagtitle,par2,sep='')
mylagtitle <- paste(mylagtitle,'), and lowess',sep='')
plot(z,main=mylagtitle)
lines(lowess(z))
dev.off()
}
bitmap(file='pic5.png')
acf(x,lag.max=par2,main='Autocorrelation Function')
grid()
dev.off()
}
summary(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Descriptive Statistics',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'# observations',header=TRUE)
a<-table.element(a,length(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'minimum',header=TRUE)
a<-table.element(a,min(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,quantile(x,0.25))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
a<-table.element(a,median(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,mean(x))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,quantile(x,0.75))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'maximum',header=TRUE)
a<-table.element(a,max(x))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')