Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_smp.wasp
Title produced by softwareStandard Deviation-Mean Plot
Date of computationSun, 30 Nov 2008 15:06:23 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Nov/30/t1228082817a610b8oaqt7es7b.htm/, Retrieved Sun, 19 May 2024 09:25:48 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=26764, Retrieved Sun, 19 May 2024 09:25:48 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact146
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F     [Univariate Data Series] [Airline data] [2007-10-18 09:58:47] [42daae401fd3def69a25014f2252b4c2]
- RM D  [Standard Deviation-Mean Plot] [Q8 Non Stationary...] [2008-11-30 21:14:43] [deb3c14ac9e4607a6d84fc9d0e0e6cc2]
-    D      [Standard Deviation-Mean Plot] [Q8 Non Stationary...] [2008-11-30 22:06:23] [5e9e099b83e50415d7642e10d74756e4] [Current]
Feedback Forum

Post a new message
Dataseries X:
577992
565464
547344
554788
562325
560854
555332
543599
536662
542722
593530
610763
612613
611324
594167
595454
590865
589379
584428
573100
567456
569028
620735
628884
628232
612117
595404
597141
593408
590072
579799
574205
572775
572942
619567
625809
619916
587625
565742
557274
560576
548854
531673
525919
511038
498662
555362
564591
541657
527070
509846
514258
516922
507561
492622
490243
469357
477580
528379
533590
517945




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 3 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ 193.190.124.10:1001 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=26764&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]3 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ 193.190.124.10:1001[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=26764&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=26764&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001







Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1562614.58333333321950.619479592874101
2594786.08333333320137.583760712161428
3596789.2520421.129111891655457
4552269.33333333332983.501978836121254
5509090.41666666722653.835827949772300

\begin{tabular}{lllllllll}
\hline
Standard Deviation-Mean Plot \tabularnewline
Section & Mean & Standard Deviation & Range \tabularnewline
1 & 562614.583333333 & 21950.6194795928 & 74101 \tabularnewline
2 & 594786.083333333 & 20137.5837607121 & 61428 \tabularnewline
3 & 596789.25 & 20421.1291118916 & 55457 \tabularnewline
4 & 552269.333333333 & 32983.501978836 & 121254 \tabularnewline
5 & 509090.416666667 & 22653.8358279497 & 72300 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=26764&T=1

[TABLE]
[ROW][C]Standard Deviation-Mean Plot[/C][/ROW]
[ROW][C]Section[/C][C]Mean[/C][C]Standard Deviation[/C][C]Range[/C][/ROW]
[ROW][C]1[/C][C]562614.583333333[/C][C]21950.6194795928[/C][C]74101[/C][/ROW]
[ROW][C]2[/C][C]594786.083333333[/C][C]20137.5837607121[/C][C]61428[/C][/ROW]
[ROW][C]3[/C][C]596789.25[/C][C]20421.1291118916[/C][C]55457[/C][/ROW]
[ROW][C]4[/C][C]552269.333333333[/C][C]32983.501978836[/C][C]121254[/C][/ROW]
[ROW][C]5[/C][C]509090.416666667[/C][C]22653.8358279497[/C][C]72300[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=26764&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=26764&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Standard Deviation-Mean Plot
SectionMeanStandard DeviationRange
1562614.58333333321950.619479592874101
2594786.08333333320137.583760712161428
3596789.2520421.129111891655457
4552269.33333333332983.501978836121254
5509090.41666666722653.835827949772300







Regression: S.E.(k) = alpha + beta * Mean(k)
alpha52639.8340475164
beta-0.0515183595572398
S.D.0.0802780203301939
T-STAT-0.64174925272619
p-value0.566702873278601

\begin{tabular}{lllllllll}
\hline
Regression: S.E.(k) = alpha + beta * Mean(k) \tabularnewline
alpha & 52639.8340475164 \tabularnewline
beta & -0.0515183595572398 \tabularnewline
S.D. & 0.0802780203301939 \tabularnewline
T-STAT & -0.64174925272619 \tabularnewline
p-value & 0.566702873278601 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=26764&T=2

[TABLE]
[ROW][C]Regression: S.E.(k) = alpha + beta * Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]52639.8340475164[/C][/ROW]
[ROW][C]beta[/C][C]-0.0515183595572398[/C][/ROW]
[ROW][C]S.D.[/C][C]0.0802780203301939[/C][/ROW]
[ROW][C]T-STAT[/C][C]-0.64174925272619[/C][/ROW]
[ROW][C]p-value[/C][C]0.566702873278601[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=26764&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=26764&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: S.E.(k) = alpha + beta * Mean(k)
alpha52639.8340475164
beta-0.0515183595572398
S.D.0.0802780203301939
T-STAT-0.64174925272619
p-value0.566702873278601







Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha25.3570074237757
beta-1.15595944785092
S.D.1.66837162746504
T-STAT-0.692866882186977
p-value0.538212622448535
Lambda2.15595944785092

\begin{tabular}{lllllllll}
\hline
Regression: ln S.E.(k) = alpha + beta * ln Mean(k) \tabularnewline
alpha & 25.3570074237757 \tabularnewline
beta & -1.15595944785092 \tabularnewline
S.D. & 1.66837162746504 \tabularnewline
T-STAT & -0.692866882186977 \tabularnewline
p-value & 0.538212622448535 \tabularnewline
Lambda & 2.15595944785092 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=26764&T=3

[TABLE]
[ROW][C]Regression: ln S.E.(k) = alpha + beta * ln Mean(k)[/C][/ROW]
[ROW][C]alpha[/C][C]25.3570074237757[/C][/ROW]
[ROW][C]beta[/C][C]-1.15595944785092[/C][/ROW]
[ROW][C]S.D.[/C][C]1.66837162746504[/C][/ROW]
[ROW][C]T-STAT[/C][C]-0.692866882186977[/C][/ROW]
[ROW][C]p-value[/C][C]0.538212622448535[/C][/ROW]
[ROW][C]Lambda[/C][C]2.15595944785092[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=26764&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=26764&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Regression: ln S.E.(k) = alpha + beta * ln Mean(k)
alpha25.3570074237757
beta-1.15595944785092
S.D.1.66837162746504
T-STAT-0.692866882186977
p-value0.538212622448535
Lambda2.15595944785092



Parameters (Session):
par1 = Airline ; par2 = Box-Jenkins ; par3 = Airline Passengers ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
(n <- length(x))
(np <- floor(n / par1))
arr <- array(NA,dim=c(par1,np))
j <- 0
k <- 1
for (i in 1:(np*par1))
{
j = j + 1
arr[j,k] <- x[i]
if (j == par1) {
j = 0
k=k+1
}
}
arr
arr.mean <- array(NA,dim=np)
arr.sd <- array(NA,dim=np)
arr.range <- array(NA,dim=np)
for (j in 1:np)
{
arr.mean[j] <- mean(arr[,j],na.rm=TRUE)
arr.sd[j] <- sd(arr[,j],na.rm=TRUE)
arr.range[j] <- max(arr[,j],na.rm=TRUE) - min(arr[,j],na.rm=TRUE)
}
arr.mean
arr.sd
arr.range
(lm1 <- lm(arr.sd~arr.mean))
(lnlm1 <- lm(log(arr.sd)~log(arr.mean)))
(lm2 <- lm(arr.range~arr.mean))
bitmap(file='test1.png')
plot(arr.mean,arr.sd,main='Standard Deviation-Mean Plot',xlab='mean',ylab='standard deviation')
dev.off()
bitmap(file='test2.png')
plot(arr.mean,arr.range,main='Range-Mean Plot',xlab='mean',ylab='range')
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Standard Deviation-Mean Plot',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Section',header=TRUE)
a<-table.element(a,'Mean',header=TRUE)
a<-table.element(a,'Standard Deviation',header=TRUE)
a<-table.element(a,'Range',header=TRUE)
a<-table.row.end(a)
for (j in 1:np) {
a<-table.row.start(a)
a<-table.element(a,j,header=TRUE)
a<-table.element(a,arr.mean[j])
a<-table.element(a,arr.sd[j] )
a<-table.element(a,arr.range[j] )
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: S.E.(k) = alpha + beta * Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Regression: ln S.E.(k) = alpha + beta * ln Mean(k)',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[1]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,2])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,3])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=TRUE)
a<-table.element(a,summary(lnlm1)$coefficients[2,4])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Lambda',header=TRUE)
a<-table.element(a,1-lnlm1$coefficients[[2]])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')