Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_rwalk.wasp
Title produced by softwareLaw of Averages
Date of computationWed, 26 Nov 2008 08:06:40 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Nov/26/t1227712225hghvl3s84k5bssw.htm/, Retrieved Sun, 19 May 2024 05:54:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=25625, Retrieved Sun, 19 May 2024 05:54:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact215
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F     [Law of Averages] [Random Walk Simul...] [2008-11-25 18:05:16] [b98453cac15ba1066b407e146608df68]
F         [Law of Averages] [Herproducering ACF] [2008-11-26 15:06:40] [286e96bd53289970f8e5f25a93fb50b3] [Current]
-           [Law of Averages] [] [2008-12-08 18:36:18] [888addc516c3b812dd7be4bd54caa358]
-   P       [Law of Averages] [] [2008-12-08 18:41:20] [888addc516c3b812dd7be4bd54caa358]
-           [Law of Averages] [] [2008-12-09 08:03:19] [888addc516c3b812dd7be4bd54caa358]
Feedback Forum
2008-12-07 11:46:07 [Kevin Neelen] [reply
Uit deze grafiek valt een hoge positieve aflopende correlatie op te maken. Dit is niet te wijten aan het toeval, maar te wijten aan een lange termijntrend. Deze laatste zorgt voor het patroon in de grafiek.
2008-12-09 00:32:40 [Michael Van Spaandonck] [reply
De initieel hoge autocorrelatiewaarden nemen lineair af doorheen de tijd. Dit is typerend voor de aanwezigheid van een lange termijntrend: namelijk een constante toe- of afname naarmate de tijdreeks vordert.

Post a new message




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=25625&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=25625&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=25625&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135



Parameters (Session):
par1 = 500 ; par2 = 0.5 ;
Parameters (R input):
par1 = 500 ; par2 = 0.5 ; par3 = ; par4 = ; par5 = ; par6 = ; par7 = ; par8 = ; par9 = ; par10 = ; par11 = ; par12 = ; par13 = ; par14 = ; par15 = ; par16 = ; par17 = ; par18 = ; par19 = ; par20 = ;
R code (references can be found in the software module):
n <- as.numeric(par1)
p <- as.numeric(par2)
heads=rbinom(n-1,1,p)
a=2*(heads)-1
b=diffinv(a,xi=0)
c=1:n
pheads=(diffinv(heads,xi=.5))/c
bitmap(file='test1.png')
op=par(mfrow=c(2,1))
plot(c,b,type='n',main='Law of Averages',xlab='Toss Number',ylab='Excess of Heads',lwd=2,cex.lab=1.5,cex.main=2)
lines(c,b,col='red')
lines(c,rep(0,n),col='black')
plot(c,pheads,type='n',xlab='Toss Number',ylab='Proportion of Heads',lwd=2,cex.lab=1.5)
lines(c,pheads,col='blue')
lines(c,rep(.5,n),col='black')
par(op)
dev.off()
b
bitmap(file='pic1.png')
racf <- acf(b,n/10,main='Autocorrelation',xlab='lags',ylab='ACF')
dev.off()
racf