Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_linear_regression.wasp
Title produced by softwareLinear Regression Graphical Model Validation
Date of computationThu, 13 Nov 2008 11:18:47 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Nov/13/t12266004097aol3w46ejh3kp6.htm/, Retrieved Sun, 19 May 2024 09:16:27 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=24749, Retrieved Sun, 19 May 2024 09:16:27 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact168
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F     [Testing Sample Mean with known Variance - Confidence Interval] [Case: The Pork Qu...] [2008-11-12 11:09:16] [8094ad203a218aaca2d1cea2c78c2d6e]
F RMPD  [Linear Regression Graphical Model Validation] [Various EDA Topic...] [2008-11-12 22:15:36] [8094ad203a218aaca2d1cea2c78c2d6e]
F    D      [Linear Regression Graphical Model Validation] [Blok 8 opdracht 3 Q4] [2008-11-13 18:18:47] [1237f4df7e9be807e4c0a07b90c45721] [Current]
Feedback Forum
2008-11-22 14:59:46 [Peter Van Doninck] [reply
Bij deze vraag is er echter ook geen duidelijke conclusie gegeven, enkel de theorie. Uit de link is er ook niet echt iets uit af te leiden. Er is geen box cox normality plot getekend. In de praktijk zal de normality plot ook dezelfde conclusie geven als bij de linearity plot. De trasformatie zal hier ook niet doeltreffend zijn.

Post a new message
Dataseries X:
92.3
95.5
92.5
89.6
84.3
76.3
80.7
96.3
81
82.9
90.3
74.8
70.1
86.7
86.4
89.9
88.1
78.8
81.1
85.4
82.6
80.3
81.2
68
67.4
91.3
94.9
82.8
88.6
73.1
76.7
93.2
84.9
83.8
93.5
91.9
69.6
87
90.2
82.7
91.4
74.6
76.1
87.1
78.4
81.3
99.3
71
73.2
95.6
84
90.8
93.6
80.9
84.4
97.3
83.5
88.8
100.7
69.4
74.6
96.6
96.6
93.1
91.8
85.7
79.1
91.3
84.2
85.8
94.6
77.1
76.5
Dataseries Y:
95.5
98.7
115.9
110.4
109.5
92.3
102.1
112.8
110.2
98.9
119
104.3
98.8
109.4
170.3
118
116.9
111.7
116.8
116.1
114.8
110.8
122.8
104.7
86
127.2
126.1
114.6
127.8
105.2
113.1
161
126.9
117.7
144.9
119.4
107.1
142.8
126.2
126.9
179.2
105.3
114.8
125.4
113.2
134.4
150
100.9
101.8
137.7
138.7
135.4
153.8
119.5
123.3
166.4
137.5
142.2
167
112.3
120.6
154.9
153.4
156.2
175.8
131.7
130.1
161.1
128.2
140.3
174.9
111.8
136.6




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 5 seconds \tabularnewline
R Server & 'Herman Ole Andreas Wold' @ 193.190.124.10:1001 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=24749&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]5 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Herman Ole Andreas Wold' @ 193.190.124.10:1001[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=24749&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=24749&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R Server'Herman Ole Andreas Wold' @ 193.190.124.10:1001







Simple Linear Regression
StatisticsEstimateS.D.T-STAT (H0: coeff=0)P-value (two-sided)
constant term-16.007573764015820.7429696996494-0.7717108010954840.442846703119291
slope1.671732963918770.2432901592495376.871354637094522.01960359547115e-09

\begin{tabular}{lllllllll}
\hline
Simple Linear Regression \tabularnewline
Statistics & Estimate & S.D. & T-STAT (H0: coeff=0) & P-value (two-sided) \tabularnewline
constant term & -16.0075737640158 & 20.7429696996494 & -0.771710801095484 & 0.442846703119291 \tabularnewline
slope & 1.67173296391877 & 0.243290159249537 & 6.87135463709452 & 2.01960359547115e-09 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=24749&T=1

[TABLE]
[ROW][C]Simple Linear Regression[/C][/ROW]
[ROW][C]Statistics[/C][C]Estimate[/C][C]S.D.[/C][C]T-STAT (H0: coeff=0)[/C][C]P-value (two-sided)[/C][/ROW]
[ROW][C]constant term[/C][C]-16.0075737640158[/C][C]20.7429696996494[/C][C]-0.771710801095484[/C][C]0.442846703119291[/C][/ROW]
[ROW][C]slope[/C][C]1.67173296391877[/C][C]0.243290159249537[/C][C]6.87135463709452[/C][C]2.01960359547115e-09[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=24749&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=24749&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Simple Linear Regression
StatisticsEstimateS.D.T-STAT (H0: coeff=0)P-value (two-sided)
constant term-16.007573764015820.7429696996494-0.7717108010954840.442846703119291
slope1.671732963918770.2432901592495376.871354637094522.01960359547115e-09



Parameters (Session):
par1 = 0 ;
Parameters (R input):
par1 = 0 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
library(lattice)
z <- as.data.frame(cbind(x,y))
m <- lm(y~x)
summary(m)
bitmap(file='test1.png')
plot(z,main='Scatterplot, lowess, and regression line')
lines(lowess(z),col='red')
abline(m)
grid()
dev.off()
bitmap(file='test2.png')
m2 <- lm(m$fitted.values ~ x)
summary(m2)
z2 <- as.data.frame(cbind(x,m$fitted.values))
names(z2) <- list('x','Fitted')
plot(z2,main='Scatterplot, lowess, and regression line')
lines(lowess(z2),col='red')
abline(m2)
grid()
dev.off()
bitmap(file='test3.png')
m3 <- lm(m$residuals ~ x)
summary(m3)
z3 <- as.data.frame(cbind(x,m$residuals))
names(z3) <- list('x','Residuals')
plot(z3,main='Scatterplot, lowess, and regression line')
lines(lowess(z3),col='red')
abline(m3)
grid()
dev.off()
bitmap(file='test4.png')
m4 <- lm(m$fitted.values ~ m$residuals)
summary(m4)
z4 <- as.data.frame(cbind(m$residuals,m$fitted.values))
names(z4) <- list('Residuals','Fitted')
plot(z4,main='Scatterplot, lowess, and regression line')
lines(lowess(z4),col='red')
abline(m4)
grid()
dev.off()
bitmap(file='test5.png')
myr <- as.ts(m$residuals)
z5 <- as.data.frame(cbind(lag(myr,1),myr))
names(z5) <- list('Lagged Residuals','Residuals')
plot(z5,main='Lag plot')
m5 <- lm(z5)
summary(m5)
abline(m5)
grid()
dev.off()
bitmap(file='test6.png')
hist(m$residuals,main='Residual Histogram',xlab='Residuals')
dev.off()
bitmap(file='test7.png')
if (par1 > 0)
{
densityplot(~m$residuals,col='black',main=paste('Density Plot bw = ',par1),bw=par1)
} else {
densityplot(~m$residuals,col='black',main='Density Plot')
}
dev.off()
bitmap(file='test8.png')
acf(m$residuals,main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test9.png')
qqnorm(x)
qqline(x)
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Simple Linear Regression',5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Statistics',1,TRUE)
a<-table.element(a,'Estimate',1,TRUE)
a<-table.element(a,'S.D.',1,TRUE)
a<-table.element(a,'T-STAT (H0: coeff=0)',1,TRUE)
a<-table.element(a,'P-value (two-sided)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'constant term',header=TRUE)
a<-table.element(a,m$coefficients[[1]])
sd <- sqrt(vcov(m)[1,1])
a<-table.element(a,sd)
tstat <- m$coefficients[[1]]/sd
a<-table.element(a,tstat)
pval <- 2*(1-pt(abs(tstat),length(x)-2))
a<-table.element(a,pval)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'slope',header=TRUE)
a<-table.element(a,m$coefficients[[2]])
sd <- sqrt(vcov(m)[2,2])
a<-table.element(a,sd)
tstat <- m$coefficients[[2]]/sd
a<-table.element(a,tstat)
pval <- 2*(1-pt(abs(tstat),length(x)-2))
a<-table.element(a,pval)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')