Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_hypothesismean1.wasp
Title produced by softwareTesting Mean with known Variance - Critical Value
Date of computationWed, 12 Nov 2008 11:31:40 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Nov/12/t12265147600mc83jgf9s2pj47.htm/, Retrieved Sun, 19 May 2024 10:45:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=24358, Retrieved Sun, 19 May 2024 10:45:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact148
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F       [Testing Mean with known Variance - Critical Value] [CASE pork quality Q1] [2008-11-12 18:31:40] [20dfa2578b2b18ce36fdb36ac12aedd7] [Current]
Feedback Forum
2008-11-15 16:41:42 [Philip Van Herck] [reply
De conclusie is wel zeer juist. Alleen kunnen we ook nog stellen dat de conclusie van de 2-sided test gebruikt moet worden omdat beide grenzen een betekenis hebben. Zo heeft het vlees een minder goede smaak als er te weinig vet in zit en geen goede kwaliteit als er te veel vet in zit.
2008-11-20 12:46:19 [Steven Vercammen] [reply
Er wordt geen verklaring gegeven over waarom we de one-sided test gebruiken. Een mogelijke verklaring zou kunnen zijn dat enkel economisch voordeel kan halen wanneer men teveel vet in het vlees mengt. Normaal gezien moeten we hier een two-sided test gebruiken omdat het vetgehalte te hoog of te laag kan uitvallen. Wanneer we dit doen zien we dat de kritische waarde perfect binnen het confidence interval valt. We dienen dus geen klacht in, omdat de contractueel afgesproken waardes niet overschreden worden. De leverancier produceert naar alle waarschijnlijkheid aan een vetgehalte van 15%. De hogere sample mean waarde is te wijten aan het toeval.
2008-11-22 17:33:40 [Marlies Polfliet] [reply
De student heeft correct geconcludeerd, maar geeft geen argumentatie voor het gebruik van de one-tailed test, men kan bijvoorbeeld zeggen dat hoe minder vet de leverancier in zijn geleverd vlees verwerkt, hoe beter (minder vet kan geen kwaad).
Ik zou er zeker nog willen aan toevoegen dat een 2-tailed test hier ook zou mogen gebruikt worden aangezien er zowel te veel (kwaliteit daalt) als te weinig vet (smaakloos) in het vlees kan zitten. Men mag echter geen klacht indienen omdat de sample mean/ gemiddelde van de steekproef (15,46%) binnen het interval ligt en de grenzen (11,33% en 19,59%) niet overschrijdt
2008-11-23 23:00:38 [Peter Van Doninck] [reply
De student zegt dat de kritische waarde hoger is dan 15%. De kritische waarde moet echter vergeleken worden met het steekproefgemiddelde van 15,46%! Het dient ook opgemerkt te worden dat er daardoor sprake is van een toevallige afwijking. De argumentatie over de one side tail is correct. We kunnen ook een analyse doen via de two side tail. Hierbij kijken we of er een teveel of een tekort aan vet is in de producten (dus een afwijking in 2 richtingen). 15,46% ligt tussen 11% en 19,5%, zijnde het 95% betrouwbaarheidsinterval.
2008-11-24 14:54:23 [Julian De Ruyter] [reply
Juist om de one-sided te gebruiken als je je keuze argumenteert door te zeggen dat de leverancier alleen maar een economisch voordeel heeft als we de one-sided test gebruiken.
Het is belangrijk om toe te voegen dat een two sided test ook uitgevoerd kan worden. Er kan immers een afwijking bestaan in de 2 richtingen. De producent kan te weinig vet ofwel te veel vet in de producten verwerken. De gevonden waarde van 15,46% ligt tussen 11% en 19,5%, zijnde het 95% betrouwbaarheidsinterval.

Post a new message




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=24358&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=24358&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=24358&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132







Testing Mean with known Variance
sample size27
population variance0.012
sample mean0.1546
null hypothesis about mean0.15
type I error0.05
critical value (one-tailed)0.184676559191704
confidence interval (two-tailed)(sample mean)[ 0.113280331179696 , 0.195919668820304 ]
conclusion for one-tailed test
Do not reject the null hypothesis.
conclusion for two-tailed test
Do not reject the null hypothesis

\begin{tabular}{lllllllll}
\hline
Testing Mean with known Variance \tabularnewline
sample size & 27 \tabularnewline
population variance & 0.012 \tabularnewline
sample mean & 0.1546 \tabularnewline
null hypothesis about mean & 0.15 \tabularnewline
type I error & 0.05 \tabularnewline
critical value (one-tailed) & 0.184676559191704 \tabularnewline
confidence interval (two-tailed)(sample mean) & [ 0.113280331179696 ,  0.195919668820304 ] \tabularnewline
conclusion for one-tailed test \tabularnewline
Do not reject the null hypothesis. \tabularnewline
conclusion for two-tailed test \tabularnewline
Do not reject the null hypothesis \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=24358&T=1

[TABLE]
[ROW][C]Testing Mean with known Variance[/C][/ROW]
[ROW][C]sample size[/C][C]27[/C][/ROW]
[ROW][C]population variance[/C][C]0.012[/C][/ROW]
[ROW][C]sample mean[/C][C]0.1546[/C][/ROW]
[ROW][C]null hypothesis about mean[/C][C]0.15[/C][/ROW]
[ROW][C]type I error[/C][C]0.05[/C][/ROW]
[ROW][C]critical value (one-tailed)[/C][C]0.184676559191704[/C][/ROW]
[ROW][C]confidence interval (two-tailed)(sample mean)[/C][C][ 0.113280331179696 ,  0.195919668820304 ][/C][/ROW]
[ROW][C]conclusion for one-tailed test[/C][/ROW]
[ROW][C]Do not reject the null hypothesis.[/C][/ROW]
[ROW][C]conclusion for two-tailed test[/C][/ROW]
[ROW][C]Do not reject the null hypothesis[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=24358&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=24358&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Testing Mean with known Variance
sample size27
population variance0.012
sample mean0.1546
null hypothesis about mean0.15
type I error0.05
critical value (one-tailed)0.184676559191704
confidence interval (two-tailed)(sample mean)[ 0.113280331179696 , 0.195919668820304 ]
conclusion for one-tailed test
Do not reject the null hypothesis.
conclusion for two-tailed test
Do not reject the null hypothesis



Parameters (Session):
par1 = 27 ; par2 = 0.012 ; par3 = 0.1546 ; par4 = 0.15 ; par5 = 0.05 ;
Parameters (R input):
par1 = 27 ; par2 = 0.012 ; par3 = 0.1546 ; par4 = 0.15 ; par5 = 0.05 ;
R code (references can be found in the software module):
par1<-as.numeric(par1)
par2<-as.numeric(par2)
par3<-as.numeric(par3)
par4<-as.numeric(par4)
par5<-as.numeric(par5)
c <- 'NA'
csn <- abs(qnorm(par5))
csn2 <- abs(qnorm(par5/2))
if (par3 == par4)
{
conclusion <- 'Error: the null hypothesis and sample mean must not be equal.'
conclusion2 <- conclusion
} else {
cleft <- par3 - csn2 * sqrt(par2) / sqrt(par1)
cright <- par3 + csn2 * sqrt(par2) / sqrt(par1)
c2 <- paste('[',cleft)
c2 <- paste(c2,', ')
c2 <- paste(c2,cright)
c2 <- paste(c2,']')
if ((par4 < cleft) | (par4 > cright))
{
conclusion2 <- 'Reject the null hypothesis'
} else {
conclusion2 <- 'Do not reject the null hypothesis'
}
}
if (par3 > par4)
{
c <- par4 + csn * sqrt(par2) / sqrt(par1)
if (par3 < c)
{
conclusion <- 'Do not reject the null hypothesis.'
} else {
conclusion <- 'Reject the null hypothesis.'
}
}
if (par3 < par4)
{
c <- par4 - csn * sqrt(par2) / sqrt(par1)
if (par3 > c)
{
conclusion <- 'Do not reject the null hypothesis.'
} else {
conclusion <- 'Reject the null hypothesis.'
}
}
c
conclusion
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ht_mean_knownvar.htm','Testing Mean with known Variance','learn more about Statistical Hypothesis Testing about the Mean when the Variance is known'),2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'sample size',header=TRUE)
a<-table.element(a,par1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'population variance',header=TRUE)
a<-table.element(a,par2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'sample mean',header=TRUE)
a<-table.element(a,par3)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'null hypothesis about mean',header=TRUE)
a<-table.element(a,par4)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'type I error',header=TRUE)
a<-table.element(a,par5)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('ht_mean_knownvar.htm#overview','critical value (one-tailed)','about the critical value'),header=TRUE)
a<-table.element(a,c)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'confidence interval (two-tailed)
(sample mean)',header=TRUE)
a<-table.element(a,c2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'conclusion for one-tailed test',2,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,conclusion,2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'conclusion for two-tailed test',2,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,conclusion2,2)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')