Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_hypothesismean3.wasp
Title produced by softwareTesting Mean with known Variance - Type II Error
Date of computationTue, 11 Nov 2008 04:48:24 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Nov/11/t1226404172ztuawrt00lh4bl8.htm/, Retrieved Tue, 28 May 2024 10:15:39 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=23341, Retrieved Tue, 28 May 2024 10:15:39 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact129
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F       [Testing Mean with known Variance - Type II Error] [Q3: The Pork Qual...] [2008-11-11 11:48:24] [ee6d9573aeb8a2216fa3549ce57cd52f] [Current]
Feedback Forum
2008-11-19 17:31:11 [Bob Leysen] [reply
De link is correct.

We moeten ervoor zorgen dat de waarschijnlijkheidsverdeling er anders gaat uitzien, de variantie moet dus kleiner worden door de spreiding van de steekproef te verkleinen -> meer metingen nemen want zo verbeter je de kansen.

=> type 1 fout en type 2 fout kleiner maken door steekproef te vergroten.
2008-11-20 18:16:03 [Steffi Van Isveldt] [reply
De type II error geeft aan dat er 94% kans is dat de fraude van de leverancier niet kan worden gedetecteerd, met als gevolg dat er slechts een pakkans van 6% is. De verleiding voor de leverancier om te frauderen is dus zeer groot.
2008-11-24 20:44:07 [df2ed12c9b09685cd516719b004050c5] [reply
De student zijn resultaat is correct.
De kans dat de leverancier wegkomt met fraude is 93.94%, en is dus zeer hoog! er is slechts een kleine kans ( 6.06%) dat hij tegengehouden wordt. Dit grote percentage heeft waarschijnlijk ook te maken met het feit dat er slechts een klein verschil zit tussen 15% en 15.2%, wil men dit verschil opmerken, moet men al grondige tests gaan doen want dit zal je niet met het blote oog opmerken.

Om dit hoge percentage te doen zakken, kan je de meettechnieken verbeteren en de steekproef vergroten (dit zal zorgen voor een kleinere spreiding).


Post a new message




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=23341&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=23341&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=23341&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132







Testing Mean with known Variance
sample size27
population variance0.012
sample mean0.1546
null hypothesis about mean0.15
type I error0.05
alternative hypothesis about mean0.152
Type II Error0.93942747750307

\begin{tabular}{lllllllll}
\hline
Testing Mean with known Variance \tabularnewline
sample size & 27 \tabularnewline
population variance & 0.012 \tabularnewline
sample mean & 0.1546 \tabularnewline
null hypothesis about mean & 0.15 \tabularnewline
type I error & 0.05 \tabularnewline
alternative hypothesis about mean & 0.152 \tabularnewline
Type II Error & 0.93942747750307 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=23341&T=1

[TABLE]
[ROW][C]Testing Mean with known Variance[/C][/ROW]
[ROW][C]sample size[/C][C]27[/C][/ROW]
[ROW][C]population variance[/C][C]0.012[/C][/ROW]
[ROW][C]sample mean[/C][C]0.1546[/C][/ROW]
[ROW][C]null hypothesis about mean[/C][C]0.15[/C][/ROW]
[ROW][C]type I error[/C][C]0.05[/C][/ROW]
[ROW][C]alternative hypothesis about mean[/C][C]0.152[/C][/ROW]
[ROW][C]Type II Error[/C][C]0.93942747750307[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=23341&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=23341&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Testing Mean with known Variance
sample size27
population variance0.012
sample mean0.1546
null hypothesis about mean0.15
type I error0.05
alternative hypothesis about mean0.152
Type II Error0.93942747750307



Parameters (Session):
par1 = 27 ; par2 = 0.012 ; par3 = 0.1546 ; par4 = 0.15 ; par5 = 0.05 ; par6 = 0.152 ;
Parameters (R input):
par1 = 27 ; par2 = 0.012 ; par3 = 0.1546 ; par4 = 0.15 ; par5 = 0.05 ; par6 = 0.152 ;
R code (references can be found in the software module):
par1<-as.numeric(par1)
par2<-as.numeric(par2)
par3<-as.numeric(par3)
par4<-as.numeric(par4)
par5<-as.numeric(par5)
par6<-as.numeric(par6)
c <- 'NA'
csn <- abs(qnorm(par5))
if (par3 == par4)
{
conclusion <- 'Error: the null hypothesis and sample mean must not be equal.'
}
if (par3 > par4)
{
c <- par4 + csn * sqrt(par2) / sqrt(par1)
}
if (par3 < par4)
{
c <- par4 - csn * sqrt(par2) / sqrt(par1)
}
p <- pnorm((c - par6) / (sqrt(par2/par1)))
p
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,hyperlink('ht_mean_knownvar.htm','Testing Mean with known Variance','learn more about Statistical Hypothesis Testing about the Mean when the Variance is known'),2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'sample size',header=TRUE)
a<-table.element(a,par1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'population variance',header=TRUE)
a<-table.element(a,par2)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'sample mean',header=TRUE)
a<-table.element(a,par3)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'null hypothesis about mean',header=TRUE)
a<-table.element(a,par4)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'type I error',header=TRUE)
a<-table.element(a,par5)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alternative hypothesis about mean',header=TRUE)
a<-table.element(a,par6)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,hyperlink('ht_mean_knownvar.htm#ex3','Type II Error','example'),header=TRUE)
a<-table.element(a,p)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')