Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationThu, 06 Nov 2008 04:58:01 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Nov/06/t1225972915203p3ex8hkepqen.htm/, Retrieved Mon, 27 May 2024 12:11:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=22045, Retrieved Mon, 27 May 2024 12:11:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact146
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F       [Kendall tau Correlation Matrix] [] [2008-11-06 11:58:01] [a1f1fdabaee79c21770ea0f7b7f045f3] [Current]
Feedback Forum
2008-11-10 10:14:13 [c97d2ae59c98cf77a04815c1edffab5a] [reply
De conclusie is wel juist, maar er staat weinig uitleg bij.
eventuele extra info:
Methode: kendall tau correlation matrix
- geeft alle correlaties tussen variabelen in 1keer
- betere maatstaf: veel robuuster en ondervindt minder invloed van outliers.
- Boven variabelen: verband/correlatie tussen 2 variabelen.
- Onder variabelen: waarschijnlijkheid dat verband aan toeval kan toegewezen worden.
in woorden: Kendall correlation: de coëfficiënt ondereen de variabelen is geen coëfficiënt voor de correlatie, MAAR een mate van probebaliteit => waarin correlatie aan toeval kan toegewezen worden. Tabel: tau=correlatiecoëfficiënt, P-value=probebaliteit.
mijn aanvulling van de conclusie:
We kunnen uit bovenstaande figuur besluiten dat de RCF(cashflow/EV) de beste voorspeller is voor RNR, omdat de correlatie hier het hoogst is en dit slechts voor 1% aan toeval kan toegewezen worden. Nochtans was dit niet verwacht.
2008-11-10 12:53:23 [Lana Van Wesemael] [reply
Wat je hebt opgeschreven is correct maar nog lang niet volledig.
De beste schatter voor de RNR is de RCF. Dit is te zien aan (zoals je vermelde) het lineaire verband tussen beide. Maar ook door de getallen die weergegeven staan. Deze geven de kans weer van de betrouwbaarheid van de correlatie. Als dit getal kleiner is dan 0,05 dan kan je stellen dat de correlatie niet aan het toeval te wijten is. De beste schatter is dus de RCF aangezien dit getal onder 0,05 ligt en het is de laagste waarde die er tussen staat.
Je zou ook nog moeten vermelden dat je de gegevens getransponeerd hebt voordat je ze verder gebruikt hebt. Dit maakt heb duidelijker voor derden die je werk willen na kijken of verder gebruiken.
2008-11-12 10:47:44 [76d4ba45ca37c54e4ca3ca97939a2cd4] [reply
Je conclusie is juist, maar elke mogelijke verklaring hiervoor ontbreekt. Je had er nog bij moeten zetten dat je dit kan zien, doordat voor deze twee boekhoudkundige variabelen de gegevens het best op een diagonaal liggen. Er is dus een lineair verband. Dit is het beste verband wat je in de grafiek kan vinden. Ook de waarde 0.01, die staat voor de betrouwbaarheidscoëfficiënt, is bij deze correlatie het laagste. Dat betekent dat hier het verband het meeste betrouwbaar is. Hoe lager dit getal, hoe beter.

Post a new message
Dataseries X:
4,2	4,8	20,8	0,9	39,6
2,6	-4,2	17,1	0,85	36,1
3	1,6	22,3	0,83	34,4
3,8	5,2	25,1	0,84	33,4
4	9,2	27,7	0,85	34,8
3,5	4,6	24,9	0,83	33,7
4,1	10,6	29,5	0,83	36,3




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=22045&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=22045&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=22045&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'George Udny Yule' @ 72.249.76.132







Kendall tau rank correlations for all pairs of data series
pairtaup-value
tau( RNVM , RNR )0.7142857142857140.0301587301587301
tau( RNVM , RCF )0.5238095238095240.136111111111111
tau( RNVM , RLEZ )0.2646280620124820.427262856745706
tau( RNVM , REV )0.3333333333333330.381349206349206
tau( RNR , RCF )0.809523809523810.0107142857142857
tau( RNR , RLEZ )-0.05292561240249630.873844698517373
tau( RNR , REV )0.04761904761904761
tau( RCF , RLEZ )-0.2646280620124820.427262856745706
tau( RCF , REV )-0.1428571428571430.772619047619048
tau( RLEZ , REV )0.3704792868174740.266379923342483

\begin{tabular}{lllllllll}
\hline
Kendall tau rank correlations for all pairs of data series \tabularnewline
pair & tau & p-value \tabularnewline
tau( RNVM , RNR ) & 0.714285714285714 & 0.0301587301587301 \tabularnewline
tau( RNVM , RCF ) & 0.523809523809524 & 0.136111111111111 \tabularnewline
tau( RNVM , RLEZ ) & 0.264628062012482 & 0.427262856745706 \tabularnewline
tau( RNVM , REV ) & 0.333333333333333 & 0.381349206349206 \tabularnewline
tau( RNR , RCF ) & 0.80952380952381 & 0.0107142857142857 \tabularnewline
tau( RNR , RLEZ ) & -0.0529256124024963 & 0.873844698517373 \tabularnewline
tau( RNR , REV ) & 0.0476190476190476 & 1 \tabularnewline
tau( RCF , RLEZ ) & -0.264628062012482 & 0.427262856745706 \tabularnewline
tau( RCF , REV ) & -0.142857142857143 & 0.772619047619048 \tabularnewline
tau( RLEZ , REV ) & 0.370479286817474 & 0.266379923342483 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=22045&T=1

[TABLE]
[ROW][C]Kendall tau rank correlations for all pairs of data series[/C][/ROW]
[ROW][C]pair[/C][C]tau[/C][C]p-value[/C][/ROW]
[ROW][C]tau( RNVM , RNR )[/C][C]0.714285714285714[/C][C]0.0301587301587301[/C][/ROW]
[ROW][C]tau( RNVM , RCF )[/C][C]0.523809523809524[/C][C]0.136111111111111[/C][/ROW]
[ROW][C]tau( RNVM , RLEZ )[/C][C]0.264628062012482[/C][C]0.427262856745706[/C][/ROW]
[ROW][C]tau( RNVM , REV )[/C][C]0.333333333333333[/C][C]0.381349206349206[/C][/ROW]
[ROW][C]tau( RNR , RCF )[/C][C]0.80952380952381[/C][C]0.0107142857142857[/C][/ROW]
[ROW][C]tau( RNR , RLEZ )[/C][C]-0.0529256124024963[/C][C]0.873844698517373[/C][/ROW]
[ROW][C]tau( RNR , REV )[/C][C]0.0476190476190476[/C][C]1[/C][/ROW]
[ROW][C]tau( RCF , RLEZ )[/C][C]-0.264628062012482[/C][C]0.427262856745706[/C][/ROW]
[ROW][C]tau( RCF , REV )[/C][C]-0.142857142857143[/C][C]0.772619047619048[/C][/ROW]
[ROW][C]tau( RLEZ , REV )[/C][C]0.370479286817474[/C][C]0.266379923342483[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=22045&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=22045&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Kendall tau rank correlations for all pairs of data series
pairtaup-value
tau( RNVM , RNR )0.7142857142857140.0301587301587301
tau( RNVM , RCF )0.5238095238095240.136111111111111
tau( RNVM , RLEZ )0.2646280620124820.427262856745706
tau( RNVM , REV )0.3333333333333330.381349206349206
tau( RNR , RCF )0.809523809523810.0107142857142857
tau( RNR , RLEZ )-0.05292561240249630.873844698517373
tau( RNR , REV )0.04761904761904761
tau( RCF , RLEZ )-0.2646280620124820.427262856745706
tau( RCF , REV )-0.1428571428571430.772619047619048
tau( RLEZ , REV )0.3704792868174740.266379923342483



Parameters (Session):
Parameters (R input):
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method='kendall')
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Kendall tau rank correlations for all pairs of data series',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'tau',1,TRUE)
a<-table.element(a,'p-value',1,TRUE)
a<-table.row.end(a)
n <- length(y[,1])
n
cor.test(y[1,],y[2,],method='kendall')
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste('tau(',dimnames(t(x))[[2]][i])
dum <- paste(dum,',')
dum <- paste(dum,dimnames(t(x))[[2]][j])
dum <- paste(dum,')')
a<-table.element(a,dum,header=TRUE)
r <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,r$estimate)
a<-table.element(a,r$p.value)
a<-table.row.end(a)
}
}
a<-table.end(a)
table.save(a,file='mytable.tab')