Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_bootstrapplot.wasp
Title produced by softwareBlocked Bootstrap Plot - Central Tendency
Date of computationMon, 03 Nov 2008 12:24:18 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Nov/03/t1225740286r1ljk5aux0h8h0u.htm/, Retrieved Sun, 19 May 2024 11:11:34 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=21049, Retrieved Sun, 19 May 2024 11:11:34 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact185
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F     [Blocked Bootstrap Plot - Central Tendency] [workshop 3] [2007-10-26 12:36:24] [e9ffc5de6f8a7be62f22b142b5b6b1a8]
F   PD    [Blocked Bootstrap Plot - Central Tendency] [Task 1 - Q4] [2008-11-03 19:24:18] [3a23ee8a65a3056dd39b310a09ef5fc1] [Current]
F           [Blocked Bootstrap Plot - Central Tendency] [] [2008-11-03 22:42:29] [9e30cf4bac13185bc0d135c1951d949f]
F           [Blocked Bootstrap Plot - Central Tendency] [Taak 1 - Q4] [2008-11-04 07:56:29] [f22202ce8ad01aca0870c459b09fd029]
Feedback Forum
2008-11-09 19:42:32 [Tamara Witters] [reply
Dit is geen juiste oplossing.
Verbetering:
Eerst kijken we de simultation of mean met midrange and median. Daaruit kunnen we afleiden dat midrange een duidelijk patroon heeft en dan de median. Een duidelijk patroon wijst op minder variantie, waardoor er meer nauwkeurigheid is.
Als we kijken naar de bootstrap simulation – central tendency dan zien we dat de median het grootste aantal outliers heeft. Outliers zijn relevant bij onze bevindingen!
We kunnen dus besluiten dat de mean en de midrange beiden goede schatters zijn.
2008-11-11 16:48:15 [Karen Van den Broeck] [reply
Het gegeven antwoord is niet correct.

We bekijken eerst de simulation of mean. Deze is goed verdeeld. In de simulation of median zit patroon in omdat dit niet zoveel zal wijzigen. In de simulation of midrange zit nog een duidelijker patroon. Dit duidelijk patroon wijst om minder variantie en dus meer nauwkeurigheid.
Het density plot is mooi normaal verdeeld.
Wanneer we de bootstrap simulation- dentral tendency bekijken, kan je de midrange als gemiddelde nemen omdat spreiding daar het kleinst is. Wel een probleem hier zijn de vele outliers. Bij de mean hebben we een grotere spreiding maar minder outliers. Hier zijn we dus zekerder van het gemiddelde. Meestal nemen we de maen.

Dus een mogelijk antwoord is: De midrange vertoont de kleinste spreiding van de 3 daarom is dit de beste benadering voor de geschatte waarde. Outliers die voorkomen zijn niet relevant maar absoluut relevant.

Post a new message
Dataseries X:
109.20
88.60
94.30
98.30
86.40
80.60
104.10
108.20
93.40
71.90
94.10
94.90
96.40
91.10
84.40
86.40
88.00
75.10
109.70
103.00
82.10
68.00
96.40
94.30
90.00
88.00
76.10
82.50
81.40
66.50
97.20
94.10
80.70
70.50
87.80
89.50
99.60
84.20
75.10
92.00
80.80
73.10
99.80
90.00
83.10
72.40
78.80
87.30
91.00
80.10
73.60
86.40
74.50
71.20
92.40
81.50
85.30
69.90
84.20
90.70
100.30




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'George Udny Yule' @ 72.249.76.132

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 6 seconds \tabularnewline
R Server & 'George Udny Yule' @ 72.249.76.132 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=21049&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]6 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'George Udny Yule' @ 72.249.76.132[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=21049&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=21049&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R Server'George Udny Yule' @ 72.249.76.132







Estimation Results of Blocked Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean85.818442622950886.893442622950888.1442622950821.720996341470512.32581967213116
median86.487.3881.976379343805551.59999999999999
midrange88.188.188.851.106200682471220.75

\begin{tabular}{lllllllll}
\hline
Estimation Results of Blocked Bootstrap \tabularnewline
statistic & Q1 & Estimate & Q3 & S.D. & IQR \tabularnewline
mean & 85.8184426229508 & 86.8934426229508 & 88.144262295082 & 1.72099634147051 & 2.32581967213116 \tabularnewline
median & 86.4 & 87.3 & 88 & 1.97637934380555 & 1.59999999999999 \tabularnewline
midrange & 88.1 & 88.1 & 88.85 & 1.10620068247122 & 0.75 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=21049&T=1

[TABLE]
[ROW][C]Estimation Results of Blocked Bootstrap[/C][/ROW]
[ROW][C]statistic[/C][C]Q1[/C][C]Estimate[/C][C]Q3[/C][C]S.D.[/C][C]IQR[/C][/ROW]
[ROW][C]mean[/C][C]85.8184426229508[/C][C]86.8934426229508[/C][C]88.144262295082[/C][C]1.72099634147051[/C][C]2.32581967213116[/C][/ROW]
[ROW][C]median[/C][C]86.4[/C][C]87.3[/C][C]88[/C][C]1.97637934380555[/C][C]1.59999999999999[/C][/ROW]
[ROW][C]midrange[/C][C]88.1[/C][C]88.1[/C][C]88.85[/C][C]1.10620068247122[/C][C]0.75[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=21049&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=21049&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimation Results of Blocked Bootstrap
statisticQ1EstimateQ3S.D.IQR
mean85.818442622950886.893442622950888.1442622950821.720996341470512.32581967213116
median86.487.3881.976379343805551.59999999999999
midrange88.188.188.851.106200682471220.75



Parameters (Session):
par1 = 500 ; par2 = 36 ;
Parameters (R input):
par1 = 500 ; par2 = 36 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
if (par1 < 10) par1 = 10
if (par1 > 5000) par1 = 5000
if (par2 < 3) par2 = 3
if (par2 > length(x)) par2 = length(x)
library(lattice)
library(boot)
boot.stat <- function(s)
{
s.mean <- mean(s)
s.median <- median(s)
s.midrange <- (max(s) + min(s)) / 2
c(s.mean, s.median, s.midrange)
}
(r <- tsboot(x, boot.stat, R=par1, l=12, sim='fixed'))
bitmap(file='plot1.png')
plot(r$t[,1],type='p',ylab='simulated values',main='Simulation of Mean')
grid()
dev.off()
bitmap(file='plot2.png')
plot(r$t[,2],type='p',ylab='simulated values',main='Simulation of Median')
grid()
dev.off()
bitmap(file='plot3.png')
plot(r$t[,3],type='p',ylab='simulated values',main='Simulation of Midrange')
grid()
dev.off()
bitmap(file='plot4.png')
densityplot(~r$t[,1],col='black',main='Density Plot',xlab='mean')
dev.off()
bitmap(file='plot5.png')
densityplot(~r$t[,2],col='black',main='Density Plot',xlab='median')
dev.off()
bitmap(file='plot6.png')
densityplot(~r$t[,3],col='black',main='Density Plot',xlab='midrange')
dev.off()
z <- data.frame(cbind(r$t[,1],r$t[,2],r$t[,3]))
colnames(z) <- list('mean','median','midrange')
bitmap(file='plot7.png')
boxplot(z,notch=TRUE,ylab='simulated values',main='Bootstrap Simulation - Central Tendency')
grid()
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimation Results of Blocked Bootstrap',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'statistic',header=TRUE)
a<-table.element(a,'Q1',header=TRUE)
a<-table.element(a,'Estimate',header=TRUE)
a<-table.element(a,'Q3',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'IQR',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
q1 <- quantile(r$t[,1],0.25)[[1]]
q3 <- quantile(r$t[,1],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[1])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,1])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'median',header=TRUE)
q1 <- quantile(r$t[,2],0.25)[[1]]
q3 <- quantile(r$t[,2],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[2])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,2])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'midrange',header=TRUE)
q1 <- quantile(r$t[,3],0.25)[[1]]
q3 <- quantile(r$t[,3],0.75)[[1]]
a<-table.element(a,q1)
a<-table.element(a,r$t0[3])
a<-table.element(a,q3)
a<-table.element(a,sqrt(var(r$t[,3])))
a<-table.element(a,q3-q1)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')