Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_variancereduction.wasp
Title produced by softwareVariance Reduction Matrix
Date of computationSun, 07 Dec 2008 04:19:38 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2008/Dec/07/t12286489644m7gi7bpbzlp7p7.htm/, Retrieved Sun, 19 May 2024 12:41:28 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=29868, Retrieved Sun, 19 May 2024 12:41:28 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact219
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [data set] [2008-12-01 19:54:57] [b98453cac15ba1066b407e146608df68]
F RMP     [Variance Reduction Matrix] [VRM - d en D] [2008-12-07 11:19:38] [98255691c21504803b38711776845ae0] [Current]
Feedback Forum
2008-12-13 14:46:01 [a2386b643d711541400692649981f2dc] [reply
Ik vind je uitleg veel te beknopt. Je kon uitleggen waardoor d (niet seizonaal differentieren) en D (seizonaal differentieren voor stond. Je vertelt niet waarom je deze keuze maakt van d en D gelijk te stellen aan 1: omdat hier de variantie het kleinste is. We moeten steeds op zoek naar de kleinste variantie omdat daar de volatiliteit het kleinste is. Je kon ook nog uitleggen waarom je gebruik maakt van de getrimde variabele: dit doe je wanneer er outliers aanwezig zijn.
2008-12-15 11:47:46 [Sofie Mertens] [reply
Waarom is dit de beste oplossing? Het antwoord is dat voor deze oplossing de variantie het kleinst is. De variantie is het risico in een tijdreeks, het risico wil men beperken en dus gaat men op zoek naar de kleinste variantie. Conclusie: D=1 wil zeggen dat men 1x seizoenaal gaat differentiëren. En d=1 wil zeggen dat men ook 1x niet-seizoenaal gaat differentiëren.
2008-12-16 15:42:27 [Britt Severijns] [reply
De student heeft niet uitgeled waarom ze voor deze waarden heeft gekozen. Je moeten zoeken naar de kleinste variantie. Als je de tijdreeks wil voorspellen is de variantie het risico. Hoe kleiner de variantie, hoe meer je kan verklaren.

Post a new message
Dataseries X:
235.1
280.7
264.6
240.7
201.4
240.8
241.1
223.8
206.1
174.7
203.3
220.5
299.5
347.4
338.3
327.7
351.6
396.6
438.8
395.6
363.5
378.8
357
369
464.8
479.1
431.3
366.5
326.3
355.1
331.6
261.3
249
205.5
235.6
240.9
264.9
253.8
232.3
193.8
177
213.2
207.2
180.6
188.6
175.4
199
179.6
225.8
234
200.2
183.6
178.2
203.2
208.5
191.8
172.8
148
159.4
154.5
213.2
196.4
182.8
176.4
153.6
173.2
171
151.2
161.9
157.2
201.7
236.4
356.1
398.3
403.7
384.6
365.8
368.1
367.9
347
343.3
292.9
311.5
300.9
366.9
356.9
329.7
316.2
269
289.3
266.2
253.6
233.8
228.4
253.6
260.1
306.6
309.2
309.5
271
279.9
317.9
298.4
246.7
227.3
209.1
259.9
266
320.6
308.5
282.2
262.7
263.5
313.1
284.3
252.6
250.3
246.5
312.7
333.2
446.4
511.6
515.5
506.4
483.2
522.3
509.8
460.7
405.8
375
378.5
406.8
467.8
469.8
429.8
355.8
332.7
378
360.5
334.7
319.5
323.1
363.6
352.1
411.9
388.6
416.4
360.7
338
417.2
388.4
371.1
331.5
353.7
396.7
447
533.5
565.4
542.3
488.7
467.1
531.3
496.1
444
403.4
386.3
394.1
404.1
462.1
448.1
432.3
386.3
395.2
421.9
382.9
384.2
345.5
323.4
372.6
376
462.7
487
444.2
399.3
394.9
455.4
414
375.5
347
339.4
385.8
378.8
451.8
446.1
422.5
383.1
352.8
445.3
367.5
355.1
326.2
319.8
331.8
340.9
394.1
417.2
369.9
349.2
321.4
405.7
342.9
316.5
284.2
270.9
288.8
278.8
324.4
310.9
299
273
279.3
359.2
305
282.1
250.3
246.5
257.9
266.5
315.9
318.4
295.4
266.4
245.8
362.8
324.9
294.2
289.5
295.2
290.3
272
307.4
328.7
292.9
249.1
230.4
361.5
321.7
277.2
260.7
251
257.6
241.8
287.5
292.3
274.7
254.2
230
339
318.2
287
295.8
284
271
262.7
340.6
379.4
373.3
355.2
338.4
466.9
451
422
429.2
425.9
460.7
463.6
541.4
544.2
517.5
469.4
439.4
549
533
506.1
484
457
481.5
469.5
544.7
541.2
521.5
469.7
434.4
542.6
517.3
485.7
465.8
447
426.6
411.6
467.5
484.5
451.2
417.4
379.9
484.7
455
420.8
416.5
376.3
405.6
405.8
500.8
514
475.5
430.1
414.4
538
526
488.5
520.2
504.4
568.5
610.6
818
830.9
835.9
782
762.3
856.9
820.9
769.6
752.2
724.4
723.1
719.5
817.4
803.3
752.5
689
630.4
765.5
757.7
732.2
702.6
683.3
709.5
702.2
784.8
810.9
755.6
656.8
615.1
745.3
694.1
675.7
643.7
622.1
634.6
588
689.7
673.9
647.9
568.8
545.7
632.6
643.8
593.1
579.7
546
562.9
572.5




Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 2 seconds \tabularnewline
R Server & 'Sir Ronald Aylmer Fisher' @ 193.190.124.24 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=29868&T=0

[TABLE]
[ROW][C]Summary of computational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]2 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Sir Ronald Aylmer Fisher' @ 193.190.124.24[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=29868&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=29868&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R Server'Sir Ronald Aylmer Fisher' @ 193.190.124.24







Variance Reduction Matrix
V(Y[t],d=0,D=0)24040.7319917109Range708.9Trim Var.14891.1423067379
V(Y[t],d=1,D=0)1855.27831616522Range306.2Trim Var.1019.21726473461
V(Y[t],d=2,D=0)3601.51571083278Range388.2Trim Var.1764.07169175190
V(Y[t],d=3,D=0)10155.4683153647Range595.5Trim Var.5250.86267655406
V(Y[t],d=0,D=1)10061.5318845559Range585.7Trim Var.5798.12009737033
V(Y[t],d=1,D=1)795.483036989776Range221.9Trim Var.451.063415764475
V(Y[t],d=2,D=1)1251.20020977106Range223.4Trim Var.751.938251968809
V(Y[t],d=3,D=1)3933.17493248985Range389.7Trim Var.2351.74535475078
V(Y[t],d=0,D=2)23022.65043915Range819Trim Var.13637.4877562041
V(Y[t],d=1,D=2)2352.87163598807Range333.6Trim Var.1332.90434353283
V(Y[t],d=2,D=2)3506.43060400436Range407Trim Var.2059.39114521349
V(Y[t],d=3,D=2)10920.6579647792Range659.1Trim Var.6490.07402051023

\begin{tabular}{lllllllll}
\hline
Variance Reduction Matrix \tabularnewline
V(Y[t],d=0,D=0) & 24040.7319917109 & Range & 708.9 & Trim Var. & 14891.1423067379 \tabularnewline
V(Y[t],d=1,D=0) & 1855.27831616522 & Range & 306.2 & Trim Var. & 1019.21726473461 \tabularnewline
V(Y[t],d=2,D=0) & 3601.51571083278 & Range & 388.2 & Trim Var. & 1764.07169175190 \tabularnewline
V(Y[t],d=3,D=0) & 10155.4683153647 & Range & 595.5 & Trim Var. & 5250.86267655406 \tabularnewline
V(Y[t],d=0,D=1) & 10061.5318845559 & Range & 585.7 & Trim Var. & 5798.12009737033 \tabularnewline
V(Y[t],d=1,D=1) & 795.483036989776 & Range & 221.9 & Trim Var. & 451.063415764475 \tabularnewline
V(Y[t],d=2,D=1) & 1251.20020977106 & Range & 223.4 & Trim Var. & 751.938251968809 \tabularnewline
V(Y[t],d=3,D=1) & 3933.17493248985 & Range & 389.7 & Trim Var. & 2351.74535475078 \tabularnewline
V(Y[t],d=0,D=2) & 23022.65043915 & Range & 819 & Trim Var. & 13637.4877562041 \tabularnewline
V(Y[t],d=1,D=2) & 2352.87163598807 & Range & 333.6 & Trim Var. & 1332.90434353283 \tabularnewline
V(Y[t],d=2,D=2) & 3506.43060400436 & Range & 407 & Trim Var. & 2059.39114521349 \tabularnewline
V(Y[t],d=3,D=2) & 10920.6579647792 & Range & 659.1 & Trim Var. & 6490.07402051023 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=29868&T=1

[TABLE]
[ROW][C]Variance Reduction Matrix[/C][/ROW]
[ROW][C]V(Y[t],d=0,D=0)[/C][C]24040.7319917109[/C][C]Range[/C][C]708.9[/C][C]Trim Var.[/C][C]14891.1423067379[/C][/ROW]
[ROW][C]V(Y[t],d=1,D=0)[/C][C]1855.27831616522[/C][C]Range[/C][C]306.2[/C][C]Trim Var.[/C][C]1019.21726473461[/C][/ROW]
[ROW][C]V(Y[t],d=2,D=0)[/C][C]3601.51571083278[/C][C]Range[/C][C]388.2[/C][C]Trim Var.[/C][C]1764.07169175190[/C][/ROW]
[ROW][C]V(Y[t],d=3,D=0)[/C][C]10155.4683153647[/C][C]Range[/C][C]595.5[/C][C]Trim Var.[/C][C]5250.86267655406[/C][/ROW]
[ROW][C]V(Y[t],d=0,D=1)[/C][C]10061.5318845559[/C][C]Range[/C][C]585.7[/C][C]Trim Var.[/C][C]5798.12009737033[/C][/ROW]
[ROW][C]V(Y[t],d=1,D=1)[/C][C]795.483036989776[/C][C]Range[/C][C]221.9[/C][C]Trim Var.[/C][C]451.063415764475[/C][/ROW]
[ROW][C]V(Y[t],d=2,D=1)[/C][C]1251.20020977106[/C][C]Range[/C][C]223.4[/C][C]Trim Var.[/C][C]751.938251968809[/C][/ROW]
[ROW][C]V(Y[t],d=3,D=1)[/C][C]3933.17493248985[/C][C]Range[/C][C]389.7[/C][C]Trim Var.[/C][C]2351.74535475078[/C][/ROW]
[ROW][C]V(Y[t],d=0,D=2)[/C][C]23022.65043915[/C][C]Range[/C][C]819[/C][C]Trim Var.[/C][C]13637.4877562041[/C][/ROW]
[ROW][C]V(Y[t],d=1,D=2)[/C][C]2352.87163598807[/C][C]Range[/C][C]333.6[/C][C]Trim Var.[/C][C]1332.90434353283[/C][/ROW]
[ROW][C]V(Y[t],d=2,D=2)[/C][C]3506.43060400436[/C][C]Range[/C][C]407[/C][C]Trim Var.[/C][C]2059.39114521349[/C][/ROW]
[ROW][C]V(Y[t],d=3,D=2)[/C][C]10920.6579647792[/C][C]Range[/C][C]659.1[/C][C]Trim Var.[/C][C]6490.07402051023[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=29868&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=29868&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Reduction Matrix
V(Y[t],d=0,D=0)24040.7319917109Range708.9Trim Var.14891.1423067379
V(Y[t],d=1,D=0)1855.27831616522Range306.2Trim Var.1019.21726473461
V(Y[t],d=2,D=0)3601.51571083278Range388.2Trim Var.1764.07169175190
V(Y[t],d=3,D=0)10155.4683153647Range595.5Trim Var.5250.86267655406
V(Y[t],d=0,D=1)10061.5318845559Range585.7Trim Var.5798.12009737033
V(Y[t],d=1,D=1)795.483036989776Range221.9Trim Var.451.063415764475
V(Y[t],d=2,D=1)1251.20020977106Range223.4Trim Var.751.938251968809
V(Y[t],d=3,D=1)3933.17493248985Range389.7Trim Var.2351.74535475078
V(Y[t],d=0,D=2)23022.65043915Range819Trim Var.13637.4877562041
V(Y[t],d=1,D=2)2352.87163598807Range333.6Trim Var.1332.90434353283
V(Y[t],d=2,D=2)3506.43060400436Range407Trim Var.2059.39114521349
V(Y[t],d=3,D=2)10920.6579647792Range659.1Trim Var.6490.07402051023



Parameters (Session):
par1 = 12 ;
Parameters (R input):
par1 = 12 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
n <- length(x)
sx <- sort(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Reduction Matrix',6,TRUE)
a<-table.row.end(a)
for (bigd in 0:2) {
for (smalld in 0:3) {
mylabel <- 'V(Y[t],d='
mylabel <- paste(mylabel,as.character(smalld),sep='')
mylabel <- paste(mylabel,',D=',sep='')
mylabel <- paste(mylabel,as.character(bigd),sep='')
mylabel <- paste(mylabel,')',sep='')
a<-table.row.start(a)
a<-table.element(a,mylabel,header=TRUE)
myx <- x
if (smalld > 0) myx <- diff(x,lag=1,differences=smalld)
if (bigd > 0) myx <- diff(myx,lag=par1,differences=bigd)
a<-table.element(a,var(myx))
a<-table.element(a,'Range',header=TRUE)
a<-table.element(a,max(myx)-min(myx))
a<-table.element(a,'Trim Var.',header=TRUE)
smyx <- sort(myx)
sn <- length(smyx)
a<-table.element(a,var(smyx[smyx>quantile(smyx,0.05) & smyxa<-table.row.end(a)
}
}
a<-table.end(a)
table.save(a,file='mytable.tab')