Free Statistics

of Irreproducible Research!

Author's title

Author*Unverified author*
R Software Modulerwasp_fitdistrnorm.wasp
Title produced by softwareMaximum-likelihood Fitting - Normal Distribution
Date of computationSun, 04 Nov 2007 03:14:44 -0700
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2007/Nov/04/c07qggwk2qqfga31194171202.htm/, Retrieved Sun, 05 May 2024 12:18:24 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=296, Retrieved Sun, 05 May 2024 12:18:24 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsMaximum likelihood normal distribution
Estimated Impact223
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
F       [Maximum-likelihood Fitting - Normal Distribution] [Workshop 4 Q5] [2007-11-04 10:14:44] [d41d8cd98f00b204e9800998ecf8427e] [Current]
Feedback Forum
2008-11-15 15:49:03 [Philip Van Herck] [reply
Er is, zoals u stelt, wel degelijk een overeenkomst tussen de histogram en de normaalverdeling maar toch is deze nog niet geheel perfect. De perfecte voorstelling zou zijn dat de klassenmiddens van het histogram net gelijk komen met de fitted normal density lijn. Dan zouden we kunnen spreken van een perfecte normaalverdeling.
2008-11-19 20:19:16 [Toon Wouters] [reply
Goede berekening maar ik zou hier niet spreken van een perfecte normaal verdeling omdat er hier en daar het histogram boven de lijn uitsteken. Bij normaal verdeling volgen de histogram en de lijn elkaar perfect

Post a new message
Dataseries X:
98,1
101,1
111,1
93,3
100
108
70,4
75,4
105,5
112,3
102,5
93,5
86,7
95,2
103,8
97
95,5
101
67,5
64
106,7
100,6
101,2
93,1
84,2
85,8
91,8
92,4
80,3
79,7
62,5
57,1
100,8
100,7
86,2
83,2
71,7
77,5
89,8
80,3
78,7
93,8
57,6
60,6
91
85,3
77,4
77,3
68,3
69,9
81,7
75,1
69,9
84
54,3
60
89,9
77
85,3
77,6
69,2
75,5
85,7
72,2
79,9
85,3
52,2
61,2
82,4
85,4
78,2
70,2
70,2
69,3
77,5
66,1
69
75,3
58,2
59,7




Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135

\begin{tabular}{lllllllll}
\hline
Summary of compuational transaction \tabularnewline
Raw Input & view raw input (R code)  \tabularnewline
Raw Output & view raw output of R engine  \tabularnewline
Computing time & 1 seconds \tabularnewline
R Server & 'Gwilym Jenkins' @ 72.249.127.135 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=296&T=0

[TABLE]
[ROW][C]Summary of compuational transaction[/C][/ROW]
[ROW][C]Raw Input[/C][C]view raw input (R code) [/C][/ROW]
[ROW][C]Raw Output[/C][C]view raw output of R engine [/C][/ROW]
[ROW][C]Computing time[/C][C]1 seconds[/C][/ROW]
[ROW][C]R Server[/C][C]'Gwilym Jenkins' @ 72.249.127.135[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=296&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=296&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of compuational transaction
Raw Inputview raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R Server'Gwilym Jenkins' @ 72.249.127.135







ParameterEstimated ValueStandard Deviation
mean82.061251.64285906820054
standard deviation14.69417821579351.16167678765842

\begin{tabular}{lllllllll}
\hline
Parameter & Estimated Value & Standard Deviation \tabularnewline
mean & 82.06125 & 1.64285906820054 \tabularnewline
standard deviation & 14.6941782157935 & 1.16167678765842 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=296&T=1

[TABLE]
[ROW][C]Parameter[/C][C]Estimated Value[/C][C]Standard Deviation[/C][/ROW]
[ROW][C]mean[/C][C]82.06125[/C][C]1.64285906820054[/C][/ROW]
[ROW][C]standard deviation[/C][C]14.6941782157935[/C][C]1.16167678765842[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=296&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=296&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ParameterEstimated ValueStandard Deviation
mean82.061251.64285906820054
standard deviation14.69417821579351.16167678765842



Parameters (Session):
par1 = 8 ; par2 = 0 ;
Parameters (R input):
par1 = 8 ; par2 = 0 ;
R code (references can be found in the software module):
library(MASS)
par1 <- as.numeric(par1)
if (par2 == '0') par2 = 'Sturges' else par2 <- as.numeric(par2)
x <- as.ts(x) #otherwise the fitdistr function does not work properly
r <- fitdistr(x,'normal')
r
bitmap(file='test1.png')
myhist<-hist(x,col=par1,breaks=par2,main=main,ylab=ylab,xlab=xlab,freq=F)
curve(1/(r$estimate[2]*sqrt(2*pi))*exp(-1/2*((x-r$estimate[1])/r$estimate[2])^2),min(x),max(x),add=T)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Parameter',1,TRUE)
a<-table.element(a,'Estimated Value',1,TRUE)
a<-table.element(a,'Standard Deviation',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'mean',header=TRUE)
a<-table.element(a,r$estimate[1])
a<-table.element(a,r$sd[1])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'standard deviation',header=TRUE)
a<-table.element(a,r$estimate[2])
a<-table.element(a,r$sd[2])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')