Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationMon, 23 Jan 2017 10:27:29 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Jan/23/t1485163662i2nbat1f9on4fuk.htm/, Retrieved Thu, 31 Oct 2024 23:01:27 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=304364, Retrieved Thu, 31 Oct 2024 23:01:27 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact86
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [V8] [2017-01-23 09:27:29] [fe6e63930acb843607fc81833855c27b] [Current]
Feedback Forum

Post a new message
Dataseries X:
3035
2552
2704
2554
2014
1655
1721
1524
1596
2074
2199
2512
2933
2889
2938
2497
1870
1726
1607
1545
1396
1787
2076
2837
2787
3891
3179
2011
1636
1580
1489
1300
1356
1653
2013
2823
3102
2294
2385
2444
1748
1554
1498
1361
1346
1564
1640
2293
2815
3137
2679
1969
1870
1633
1529
1366
1357
1570
1535
2491
3084
2605
2573
2143
1693
1504
1461
1354
1333
1492
1781
1915




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304364&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=304364&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304364&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal721073
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 721 & 0 & 73 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304364&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]721[/C][C]0[/C][C]73[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304364&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304364&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal721073
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
130353115.34334306844887.6666149651862066.9900419663780.3433430684418
225522193.61578159688824.0317075421322086.35251086099-358.384218403123
327042628.88873474451673.3962854998762105.71497975561-75.1112652554862
425542781.24658594868204.2147772870362122.53863676428227.246585948685
520142144.77096537567-256.1332591486242139.36229377295130.770965375675
616551604.26952146982-448.9569320227682154.68741055295-50.7304785301835
717211775.10153131766-503.1140586506112170.0125273329554.1015313176586
815241507.31325054479-644.0408125246192184.72756197983-16.6867494552143
915961646.02498241997-653.4675790466842199.4425966267150.0249824199705
1020742300.5835345124-356.7774093879612204.19387487556226.583534512396
1121992357.80872960899-168.7538827334052208.94515312442158.808729608989
1225122377.43417358628441.934440939062204.63138547466-134.565826413723
1329332778.0157672099887.6666149651862200.31761782491-154.984232790096
1428892763.37808581644824.0317075421322190.59020664143-125.62191418356
1529383021.74091904218673.3962854998762180.8627954579583.7409190421777
1624972617.02706178795204.2147772870362172.75816092501120.027061787952
1718701831.47973275655-256.1332591486242164.65352639208-38.5202672434534
1817261729.66266858411-448.9569320227682171.294263438663.66266858410791
1916071539.17905816537-503.1140586506112177.93500048524-67.820941834631
2015451535.9189326875-644.0408125246192198.12187983712-9.08106731250473
2113961227.15881985768-653.4675790466842218.308759189-168.84118014232
2217871707.78063998311-356.7774093879612222.99676940485-79.2193600168875
2320762093.06910311271-168.7538827334052227.6847796206917.0691031127135
2428373013.86886557275441.934440939062218.19669348819176.868865572751
2527872477.62477767913887.6666149651862208.70860735568-309.37522232087
2638914765.2710128477824.0317075421322192.69727961017874.271012847698
2731793507.91776263547673.3962854998762176.68595186466328.917762635469
2820111657.07545851335204.2147772870362160.70976419961-353.924541486647
2916361383.39968261406-256.1332591486242144.73357653457-252.600317385941
3015801485.22175549227-448.9569320227682123.7351765305-94.7782445077323
3114891378.37728212418-503.1140586506112102.73677652644-110.622717875824
3213001171.81715106673-644.0408125246192072.22366145789-128.182848933268
3313561323.75703265735-653.4675790466842041.71054638934-32.2429673426543
3416531635.14503066836-356.7774093879612027.6323787196-17.8549693316422
3520132181.19967168354-168.7538827334052013.55421104987168.199671683538
3628233189.33518396582441.934440939062014.73037509512366.335183965824
3731023300.42684589445887.6666149651862015.90653914036198.42684589445
3822941751.12542567914824.0317075421322012.84286677873-542.874574320862
3923852086.82452008303673.3962854998762009.7791944171-298.175479916972
4024442688.13769213064204.2147772870361995.64753058233244.137692130639
4117481770.61739240107-256.1332591486241981.5158667475522.6173924010691
4215541587.17753990269-448.9569320227681969.7793921200833.1775399026862
4314981541.071141158-503.1140586506111958.0429174926143.071141158003
4413611402.83845051849-644.0408125246191963.2023620061241.8384505184947
4513461377.10577252704-653.4675790466841968.3618065196431.1057725270439
4615641512.40256177327-356.7774093879611972.37484761469-51.5974382267291
4716401472.36599402367-168.7538827334051976.38788870974-167.634005976334
4822932165.99987302472441.934440939061978.06568603622-127.000126975276
4928152762.58990167212887.6666149651861979.74348336269-52.410098327879
5031373464.87956362483824.0317075421321985.08872883304327.879563624831
5126792694.16974019674673.3962854998761990.4339743033815.1697401967424
5219691740.69650193974204.2147772870361993.08872077322-228.303498060255
5318702000.38979190557-256.1332591486241995.74346724306130.389791905567
5416331719.65192084968-448.9569320227681995.3050111730986.6519208496759
5515291566.24750354748-503.1140586506111994.8665551031337.247503547484
5613661388.37673691079-644.0408125246191987.6640756138322.3767369107882
5713571387.00598292215-653.4675790466841980.4615961245330.00598292215
5815701523.99103667077-356.7774093879611972.78637271719-46.0089633292339
5915351273.64273342355-168.7538827334051965.11114930986-261.35726657645
6024912582.22897523143441.934440939061957.8365838295191.228975231425
6130843329.77136668564887.6666149651861950.56201834917245.77136668564
6226052437.29993528299824.0317075421321948.66835717488-167.700064717011
6325732525.82901849954673.3962854998761946.77469600058-47.1709815004599
6421432144.08068291374204.2147772870361937.704539799221.08068291374207
6516931713.49887555076-256.1332591486241928.6343835978620.4988755507643
6615041544.08336722739-448.9569320227681912.8735647953840.0833672273884
6714611528.00131265771-503.1140586506111897.112745992967.0013126577121
6813541471.25141929778-644.0408125246191880.78939322684117.251419297776
6913331455.0015385859-653.4675790466841864.46604046079122.001538585899
7014921493.40475790119-356.7774093879611847.372651486771.40475790119126
7117811900.47462022065-168.7538827334051830.27926251275119.474620220652
7219151576.27842430964441.934440939061811.7871347513-338.721575690357

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 3035 & 3115.34334306844 & 887.666614965186 & 2066.99004196637 & 80.3433430684418 \tabularnewline
2 & 2552 & 2193.61578159688 & 824.031707542132 & 2086.35251086099 & -358.384218403123 \tabularnewline
3 & 2704 & 2628.88873474451 & 673.396285499876 & 2105.71497975561 & -75.1112652554862 \tabularnewline
4 & 2554 & 2781.24658594868 & 204.214777287036 & 2122.53863676428 & 227.246585948685 \tabularnewline
5 & 2014 & 2144.77096537567 & -256.133259148624 & 2139.36229377295 & 130.770965375675 \tabularnewline
6 & 1655 & 1604.26952146982 & -448.956932022768 & 2154.68741055295 & -50.7304785301835 \tabularnewline
7 & 1721 & 1775.10153131766 & -503.114058650611 & 2170.01252733295 & 54.1015313176586 \tabularnewline
8 & 1524 & 1507.31325054479 & -644.040812524619 & 2184.72756197983 & -16.6867494552143 \tabularnewline
9 & 1596 & 1646.02498241997 & -653.467579046684 & 2199.44259662671 & 50.0249824199705 \tabularnewline
10 & 2074 & 2300.5835345124 & -356.777409387961 & 2204.19387487556 & 226.583534512396 \tabularnewline
11 & 2199 & 2357.80872960899 & -168.753882733405 & 2208.94515312442 & 158.808729608989 \tabularnewline
12 & 2512 & 2377.43417358628 & 441.93444093906 & 2204.63138547466 & -134.565826413723 \tabularnewline
13 & 2933 & 2778.0157672099 & 887.666614965186 & 2200.31761782491 & -154.984232790096 \tabularnewline
14 & 2889 & 2763.37808581644 & 824.031707542132 & 2190.59020664143 & -125.62191418356 \tabularnewline
15 & 2938 & 3021.74091904218 & 673.396285499876 & 2180.86279545795 & 83.7409190421777 \tabularnewline
16 & 2497 & 2617.02706178795 & 204.214777287036 & 2172.75816092501 & 120.027061787952 \tabularnewline
17 & 1870 & 1831.47973275655 & -256.133259148624 & 2164.65352639208 & -38.5202672434534 \tabularnewline
18 & 1726 & 1729.66266858411 & -448.956932022768 & 2171.29426343866 & 3.66266858410791 \tabularnewline
19 & 1607 & 1539.17905816537 & -503.114058650611 & 2177.93500048524 & -67.820941834631 \tabularnewline
20 & 1545 & 1535.9189326875 & -644.040812524619 & 2198.12187983712 & -9.08106731250473 \tabularnewline
21 & 1396 & 1227.15881985768 & -653.467579046684 & 2218.308759189 & -168.84118014232 \tabularnewline
22 & 1787 & 1707.78063998311 & -356.777409387961 & 2222.99676940485 & -79.2193600168875 \tabularnewline
23 & 2076 & 2093.06910311271 & -168.753882733405 & 2227.68477962069 & 17.0691031127135 \tabularnewline
24 & 2837 & 3013.86886557275 & 441.93444093906 & 2218.19669348819 & 176.868865572751 \tabularnewline
25 & 2787 & 2477.62477767913 & 887.666614965186 & 2208.70860735568 & -309.37522232087 \tabularnewline
26 & 3891 & 4765.2710128477 & 824.031707542132 & 2192.69727961017 & 874.271012847698 \tabularnewline
27 & 3179 & 3507.91776263547 & 673.396285499876 & 2176.68595186466 & 328.917762635469 \tabularnewline
28 & 2011 & 1657.07545851335 & 204.214777287036 & 2160.70976419961 & -353.924541486647 \tabularnewline
29 & 1636 & 1383.39968261406 & -256.133259148624 & 2144.73357653457 & -252.600317385941 \tabularnewline
30 & 1580 & 1485.22175549227 & -448.956932022768 & 2123.7351765305 & -94.7782445077323 \tabularnewline
31 & 1489 & 1378.37728212418 & -503.114058650611 & 2102.73677652644 & -110.622717875824 \tabularnewline
32 & 1300 & 1171.81715106673 & -644.040812524619 & 2072.22366145789 & -128.182848933268 \tabularnewline
33 & 1356 & 1323.75703265735 & -653.467579046684 & 2041.71054638934 & -32.2429673426543 \tabularnewline
34 & 1653 & 1635.14503066836 & -356.777409387961 & 2027.6323787196 & -17.8549693316422 \tabularnewline
35 & 2013 & 2181.19967168354 & -168.753882733405 & 2013.55421104987 & 168.199671683538 \tabularnewline
36 & 2823 & 3189.33518396582 & 441.93444093906 & 2014.73037509512 & 366.335183965824 \tabularnewline
37 & 3102 & 3300.42684589445 & 887.666614965186 & 2015.90653914036 & 198.42684589445 \tabularnewline
38 & 2294 & 1751.12542567914 & 824.031707542132 & 2012.84286677873 & -542.874574320862 \tabularnewline
39 & 2385 & 2086.82452008303 & 673.396285499876 & 2009.7791944171 & -298.175479916972 \tabularnewline
40 & 2444 & 2688.13769213064 & 204.214777287036 & 1995.64753058233 & 244.137692130639 \tabularnewline
41 & 1748 & 1770.61739240107 & -256.133259148624 & 1981.51586674755 & 22.6173924010691 \tabularnewline
42 & 1554 & 1587.17753990269 & -448.956932022768 & 1969.77939212008 & 33.1775399026862 \tabularnewline
43 & 1498 & 1541.071141158 & -503.114058650611 & 1958.04291749261 & 43.071141158003 \tabularnewline
44 & 1361 & 1402.83845051849 & -644.040812524619 & 1963.20236200612 & 41.8384505184947 \tabularnewline
45 & 1346 & 1377.10577252704 & -653.467579046684 & 1968.36180651964 & 31.1057725270439 \tabularnewline
46 & 1564 & 1512.40256177327 & -356.777409387961 & 1972.37484761469 & -51.5974382267291 \tabularnewline
47 & 1640 & 1472.36599402367 & -168.753882733405 & 1976.38788870974 & -167.634005976334 \tabularnewline
48 & 2293 & 2165.99987302472 & 441.93444093906 & 1978.06568603622 & -127.000126975276 \tabularnewline
49 & 2815 & 2762.58990167212 & 887.666614965186 & 1979.74348336269 & -52.410098327879 \tabularnewline
50 & 3137 & 3464.87956362483 & 824.031707542132 & 1985.08872883304 & 327.879563624831 \tabularnewline
51 & 2679 & 2694.16974019674 & 673.396285499876 & 1990.43397430338 & 15.1697401967424 \tabularnewline
52 & 1969 & 1740.69650193974 & 204.214777287036 & 1993.08872077322 & -228.303498060255 \tabularnewline
53 & 1870 & 2000.38979190557 & -256.133259148624 & 1995.74346724306 & 130.389791905567 \tabularnewline
54 & 1633 & 1719.65192084968 & -448.956932022768 & 1995.30501117309 & 86.6519208496759 \tabularnewline
55 & 1529 & 1566.24750354748 & -503.114058650611 & 1994.86655510313 & 37.247503547484 \tabularnewline
56 & 1366 & 1388.37673691079 & -644.040812524619 & 1987.66407561383 & 22.3767369107882 \tabularnewline
57 & 1357 & 1387.00598292215 & -653.467579046684 & 1980.46159612453 & 30.00598292215 \tabularnewline
58 & 1570 & 1523.99103667077 & -356.777409387961 & 1972.78637271719 & -46.0089633292339 \tabularnewline
59 & 1535 & 1273.64273342355 & -168.753882733405 & 1965.11114930986 & -261.35726657645 \tabularnewline
60 & 2491 & 2582.22897523143 & 441.93444093906 & 1957.83658382951 & 91.228975231425 \tabularnewline
61 & 3084 & 3329.77136668564 & 887.666614965186 & 1950.56201834917 & 245.77136668564 \tabularnewline
62 & 2605 & 2437.29993528299 & 824.031707542132 & 1948.66835717488 & -167.700064717011 \tabularnewline
63 & 2573 & 2525.82901849954 & 673.396285499876 & 1946.77469600058 & -47.1709815004599 \tabularnewline
64 & 2143 & 2144.08068291374 & 204.214777287036 & 1937.70453979922 & 1.08068291374207 \tabularnewline
65 & 1693 & 1713.49887555076 & -256.133259148624 & 1928.63438359786 & 20.4988755507643 \tabularnewline
66 & 1504 & 1544.08336722739 & -448.956932022768 & 1912.87356479538 & 40.0833672273884 \tabularnewline
67 & 1461 & 1528.00131265771 & -503.114058650611 & 1897.1127459929 & 67.0013126577121 \tabularnewline
68 & 1354 & 1471.25141929778 & -644.040812524619 & 1880.78939322684 & 117.251419297776 \tabularnewline
69 & 1333 & 1455.0015385859 & -653.467579046684 & 1864.46604046079 & 122.001538585899 \tabularnewline
70 & 1492 & 1493.40475790119 & -356.777409387961 & 1847.37265148677 & 1.40475790119126 \tabularnewline
71 & 1781 & 1900.47462022065 & -168.753882733405 & 1830.27926251275 & 119.474620220652 \tabularnewline
72 & 1915 & 1576.27842430964 & 441.93444093906 & 1811.7871347513 & -338.721575690357 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=304364&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]3035[/C][C]3115.34334306844[/C][C]887.666614965186[/C][C]2066.99004196637[/C][C]80.3433430684418[/C][/ROW]
[ROW][C]2[/C][C]2552[/C][C]2193.61578159688[/C][C]824.031707542132[/C][C]2086.35251086099[/C][C]-358.384218403123[/C][/ROW]
[ROW][C]3[/C][C]2704[/C][C]2628.88873474451[/C][C]673.396285499876[/C][C]2105.71497975561[/C][C]-75.1112652554862[/C][/ROW]
[ROW][C]4[/C][C]2554[/C][C]2781.24658594868[/C][C]204.214777287036[/C][C]2122.53863676428[/C][C]227.246585948685[/C][/ROW]
[ROW][C]5[/C][C]2014[/C][C]2144.77096537567[/C][C]-256.133259148624[/C][C]2139.36229377295[/C][C]130.770965375675[/C][/ROW]
[ROW][C]6[/C][C]1655[/C][C]1604.26952146982[/C][C]-448.956932022768[/C][C]2154.68741055295[/C][C]-50.7304785301835[/C][/ROW]
[ROW][C]7[/C][C]1721[/C][C]1775.10153131766[/C][C]-503.114058650611[/C][C]2170.01252733295[/C][C]54.1015313176586[/C][/ROW]
[ROW][C]8[/C][C]1524[/C][C]1507.31325054479[/C][C]-644.040812524619[/C][C]2184.72756197983[/C][C]-16.6867494552143[/C][/ROW]
[ROW][C]9[/C][C]1596[/C][C]1646.02498241997[/C][C]-653.467579046684[/C][C]2199.44259662671[/C][C]50.0249824199705[/C][/ROW]
[ROW][C]10[/C][C]2074[/C][C]2300.5835345124[/C][C]-356.777409387961[/C][C]2204.19387487556[/C][C]226.583534512396[/C][/ROW]
[ROW][C]11[/C][C]2199[/C][C]2357.80872960899[/C][C]-168.753882733405[/C][C]2208.94515312442[/C][C]158.808729608989[/C][/ROW]
[ROW][C]12[/C][C]2512[/C][C]2377.43417358628[/C][C]441.93444093906[/C][C]2204.63138547466[/C][C]-134.565826413723[/C][/ROW]
[ROW][C]13[/C][C]2933[/C][C]2778.0157672099[/C][C]887.666614965186[/C][C]2200.31761782491[/C][C]-154.984232790096[/C][/ROW]
[ROW][C]14[/C][C]2889[/C][C]2763.37808581644[/C][C]824.031707542132[/C][C]2190.59020664143[/C][C]-125.62191418356[/C][/ROW]
[ROW][C]15[/C][C]2938[/C][C]3021.74091904218[/C][C]673.396285499876[/C][C]2180.86279545795[/C][C]83.7409190421777[/C][/ROW]
[ROW][C]16[/C][C]2497[/C][C]2617.02706178795[/C][C]204.214777287036[/C][C]2172.75816092501[/C][C]120.027061787952[/C][/ROW]
[ROW][C]17[/C][C]1870[/C][C]1831.47973275655[/C][C]-256.133259148624[/C][C]2164.65352639208[/C][C]-38.5202672434534[/C][/ROW]
[ROW][C]18[/C][C]1726[/C][C]1729.66266858411[/C][C]-448.956932022768[/C][C]2171.29426343866[/C][C]3.66266858410791[/C][/ROW]
[ROW][C]19[/C][C]1607[/C][C]1539.17905816537[/C][C]-503.114058650611[/C][C]2177.93500048524[/C][C]-67.820941834631[/C][/ROW]
[ROW][C]20[/C][C]1545[/C][C]1535.9189326875[/C][C]-644.040812524619[/C][C]2198.12187983712[/C][C]-9.08106731250473[/C][/ROW]
[ROW][C]21[/C][C]1396[/C][C]1227.15881985768[/C][C]-653.467579046684[/C][C]2218.308759189[/C][C]-168.84118014232[/C][/ROW]
[ROW][C]22[/C][C]1787[/C][C]1707.78063998311[/C][C]-356.777409387961[/C][C]2222.99676940485[/C][C]-79.2193600168875[/C][/ROW]
[ROW][C]23[/C][C]2076[/C][C]2093.06910311271[/C][C]-168.753882733405[/C][C]2227.68477962069[/C][C]17.0691031127135[/C][/ROW]
[ROW][C]24[/C][C]2837[/C][C]3013.86886557275[/C][C]441.93444093906[/C][C]2218.19669348819[/C][C]176.868865572751[/C][/ROW]
[ROW][C]25[/C][C]2787[/C][C]2477.62477767913[/C][C]887.666614965186[/C][C]2208.70860735568[/C][C]-309.37522232087[/C][/ROW]
[ROW][C]26[/C][C]3891[/C][C]4765.2710128477[/C][C]824.031707542132[/C][C]2192.69727961017[/C][C]874.271012847698[/C][/ROW]
[ROW][C]27[/C][C]3179[/C][C]3507.91776263547[/C][C]673.396285499876[/C][C]2176.68595186466[/C][C]328.917762635469[/C][/ROW]
[ROW][C]28[/C][C]2011[/C][C]1657.07545851335[/C][C]204.214777287036[/C][C]2160.70976419961[/C][C]-353.924541486647[/C][/ROW]
[ROW][C]29[/C][C]1636[/C][C]1383.39968261406[/C][C]-256.133259148624[/C][C]2144.73357653457[/C][C]-252.600317385941[/C][/ROW]
[ROW][C]30[/C][C]1580[/C][C]1485.22175549227[/C][C]-448.956932022768[/C][C]2123.7351765305[/C][C]-94.7782445077323[/C][/ROW]
[ROW][C]31[/C][C]1489[/C][C]1378.37728212418[/C][C]-503.114058650611[/C][C]2102.73677652644[/C][C]-110.622717875824[/C][/ROW]
[ROW][C]32[/C][C]1300[/C][C]1171.81715106673[/C][C]-644.040812524619[/C][C]2072.22366145789[/C][C]-128.182848933268[/C][/ROW]
[ROW][C]33[/C][C]1356[/C][C]1323.75703265735[/C][C]-653.467579046684[/C][C]2041.71054638934[/C][C]-32.2429673426543[/C][/ROW]
[ROW][C]34[/C][C]1653[/C][C]1635.14503066836[/C][C]-356.777409387961[/C][C]2027.6323787196[/C][C]-17.8549693316422[/C][/ROW]
[ROW][C]35[/C][C]2013[/C][C]2181.19967168354[/C][C]-168.753882733405[/C][C]2013.55421104987[/C][C]168.199671683538[/C][/ROW]
[ROW][C]36[/C][C]2823[/C][C]3189.33518396582[/C][C]441.93444093906[/C][C]2014.73037509512[/C][C]366.335183965824[/C][/ROW]
[ROW][C]37[/C][C]3102[/C][C]3300.42684589445[/C][C]887.666614965186[/C][C]2015.90653914036[/C][C]198.42684589445[/C][/ROW]
[ROW][C]38[/C][C]2294[/C][C]1751.12542567914[/C][C]824.031707542132[/C][C]2012.84286677873[/C][C]-542.874574320862[/C][/ROW]
[ROW][C]39[/C][C]2385[/C][C]2086.82452008303[/C][C]673.396285499876[/C][C]2009.7791944171[/C][C]-298.175479916972[/C][/ROW]
[ROW][C]40[/C][C]2444[/C][C]2688.13769213064[/C][C]204.214777287036[/C][C]1995.64753058233[/C][C]244.137692130639[/C][/ROW]
[ROW][C]41[/C][C]1748[/C][C]1770.61739240107[/C][C]-256.133259148624[/C][C]1981.51586674755[/C][C]22.6173924010691[/C][/ROW]
[ROW][C]42[/C][C]1554[/C][C]1587.17753990269[/C][C]-448.956932022768[/C][C]1969.77939212008[/C][C]33.1775399026862[/C][/ROW]
[ROW][C]43[/C][C]1498[/C][C]1541.071141158[/C][C]-503.114058650611[/C][C]1958.04291749261[/C][C]43.071141158003[/C][/ROW]
[ROW][C]44[/C][C]1361[/C][C]1402.83845051849[/C][C]-644.040812524619[/C][C]1963.20236200612[/C][C]41.8384505184947[/C][/ROW]
[ROW][C]45[/C][C]1346[/C][C]1377.10577252704[/C][C]-653.467579046684[/C][C]1968.36180651964[/C][C]31.1057725270439[/C][/ROW]
[ROW][C]46[/C][C]1564[/C][C]1512.40256177327[/C][C]-356.777409387961[/C][C]1972.37484761469[/C][C]-51.5974382267291[/C][/ROW]
[ROW][C]47[/C][C]1640[/C][C]1472.36599402367[/C][C]-168.753882733405[/C][C]1976.38788870974[/C][C]-167.634005976334[/C][/ROW]
[ROW][C]48[/C][C]2293[/C][C]2165.99987302472[/C][C]441.93444093906[/C][C]1978.06568603622[/C][C]-127.000126975276[/C][/ROW]
[ROW][C]49[/C][C]2815[/C][C]2762.58990167212[/C][C]887.666614965186[/C][C]1979.74348336269[/C][C]-52.410098327879[/C][/ROW]
[ROW][C]50[/C][C]3137[/C][C]3464.87956362483[/C][C]824.031707542132[/C][C]1985.08872883304[/C][C]327.879563624831[/C][/ROW]
[ROW][C]51[/C][C]2679[/C][C]2694.16974019674[/C][C]673.396285499876[/C][C]1990.43397430338[/C][C]15.1697401967424[/C][/ROW]
[ROW][C]52[/C][C]1969[/C][C]1740.69650193974[/C][C]204.214777287036[/C][C]1993.08872077322[/C][C]-228.303498060255[/C][/ROW]
[ROW][C]53[/C][C]1870[/C][C]2000.38979190557[/C][C]-256.133259148624[/C][C]1995.74346724306[/C][C]130.389791905567[/C][/ROW]
[ROW][C]54[/C][C]1633[/C][C]1719.65192084968[/C][C]-448.956932022768[/C][C]1995.30501117309[/C][C]86.6519208496759[/C][/ROW]
[ROW][C]55[/C][C]1529[/C][C]1566.24750354748[/C][C]-503.114058650611[/C][C]1994.86655510313[/C][C]37.247503547484[/C][/ROW]
[ROW][C]56[/C][C]1366[/C][C]1388.37673691079[/C][C]-644.040812524619[/C][C]1987.66407561383[/C][C]22.3767369107882[/C][/ROW]
[ROW][C]57[/C][C]1357[/C][C]1387.00598292215[/C][C]-653.467579046684[/C][C]1980.46159612453[/C][C]30.00598292215[/C][/ROW]
[ROW][C]58[/C][C]1570[/C][C]1523.99103667077[/C][C]-356.777409387961[/C][C]1972.78637271719[/C][C]-46.0089633292339[/C][/ROW]
[ROW][C]59[/C][C]1535[/C][C]1273.64273342355[/C][C]-168.753882733405[/C][C]1965.11114930986[/C][C]-261.35726657645[/C][/ROW]
[ROW][C]60[/C][C]2491[/C][C]2582.22897523143[/C][C]441.93444093906[/C][C]1957.83658382951[/C][C]91.228975231425[/C][/ROW]
[ROW][C]61[/C][C]3084[/C][C]3329.77136668564[/C][C]887.666614965186[/C][C]1950.56201834917[/C][C]245.77136668564[/C][/ROW]
[ROW][C]62[/C][C]2605[/C][C]2437.29993528299[/C][C]824.031707542132[/C][C]1948.66835717488[/C][C]-167.700064717011[/C][/ROW]
[ROW][C]63[/C][C]2573[/C][C]2525.82901849954[/C][C]673.396285499876[/C][C]1946.77469600058[/C][C]-47.1709815004599[/C][/ROW]
[ROW][C]64[/C][C]2143[/C][C]2144.08068291374[/C][C]204.214777287036[/C][C]1937.70453979922[/C][C]1.08068291374207[/C][/ROW]
[ROW][C]65[/C][C]1693[/C][C]1713.49887555076[/C][C]-256.133259148624[/C][C]1928.63438359786[/C][C]20.4988755507643[/C][/ROW]
[ROW][C]66[/C][C]1504[/C][C]1544.08336722739[/C][C]-448.956932022768[/C][C]1912.87356479538[/C][C]40.0833672273884[/C][/ROW]
[ROW][C]67[/C][C]1461[/C][C]1528.00131265771[/C][C]-503.114058650611[/C][C]1897.1127459929[/C][C]67.0013126577121[/C][/ROW]
[ROW][C]68[/C][C]1354[/C][C]1471.25141929778[/C][C]-644.040812524619[/C][C]1880.78939322684[/C][C]117.251419297776[/C][/ROW]
[ROW][C]69[/C][C]1333[/C][C]1455.0015385859[/C][C]-653.467579046684[/C][C]1864.46604046079[/C][C]122.001538585899[/C][/ROW]
[ROW][C]70[/C][C]1492[/C][C]1493.40475790119[/C][C]-356.777409387961[/C][C]1847.37265148677[/C][C]1.40475790119126[/C][/ROW]
[ROW][C]71[/C][C]1781[/C][C]1900.47462022065[/C][C]-168.753882733405[/C][C]1830.27926251275[/C][C]119.474620220652[/C][/ROW]
[ROW][C]72[/C][C]1915[/C][C]1576.27842430964[/C][C]441.93444093906[/C][C]1811.7871347513[/C][C]-338.721575690357[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=304364&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=304364&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
130353115.34334306844887.6666149651862066.9900419663780.3433430684418
225522193.61578159688824.0317075421322086.35251086099-358.384218403123
327042628.88873474451673.3962854998762105.71497975561-75.1112652554862
425542781.24658594868204.2147772870362122.53863676428227.246585948685
520142144.77096537567-256.1332591486242139.36229377295130.770965375675
616551604.26952146982-448.9569320227682154.68741055295-50.7304785301835
717211775.10153131766-503.1140586506112170.0125273329554.1015313176586
815241507.31325054479-644.0408125246192184.72756197983-16.6867494552143
915961646.02498241997-653.4675790466842199.4425966267150.0249824199705
1020742300.5835345124-356.7774093879612204.19387487556226.583534512396
1121992357.80872960899-168.7538827334052208.94515312442158.808729608989
1225122377.43417358628441.934440939062204.63138547466-134.565826413723
1329332778.0157672099887.6666149651862200.31761782491-154.984232790096
1428892763.37808581644824.0317075421322190.59020664143-125.62191418356
1529383021.74091904218673.3962854998762180.8627954579583.7409190421777
1624972617.02706178795204.2147772870362172.75816092501120.027061787952
1718701831.47973275655-256.1332591486242164.65352639208-38.5202672434534
1817261729.66266858411-448.9569320227682171.294263438663.66266858410791
1916071539.17905816537-503.1140586506112177.93500048524-67.820941834631
2015451535.9189326875-644.0408125246192198.12187983712-9.08106731250473
2113961227.15881985768-653.4675790466842218.308759189-168.84118014232
2217871707.78063998311-356.7774093879612222.99676940485-79.2193600168875
2320762093.06910311271-168.7538827334052227.6847796206917.0691031127135
2428373013.86886557275441.934440939062218.19669348819176.868865572751
2527872477.62477767913887.6666149651862208.70860735568-309.37522232087
2638914765.2710128477824.0317075421322192.69727961017874.271012847698
2731793507.91776263547673.3962854998762176.68595186466328.917762635469
2820111657.07545851335204.2147772870362160.70976419961-353.924541486647
2916361383.39968261406-256.1332591486242144.73357653457-252.600317385941
3015801485.22175549227-448.9569320227682123.7351765305-94.7782445077323
3114891378.37728212418-503.1140586506112102.73677652644-110.622717875824
3213001171.81715106673-644.0408125246192072.22366145789-128.182848933268
3313561323.75703265735-653.4675790466842041.71054638934-32.2429673426543
3416531635.14503066836-356.7774093879612027.6323787196-17.8549693316422
3520132181.19967168354-168.7538827334052013.55421104987168.199671683538
3628233189.33518396582441.934440939062014.73037509512366.335183965824
3731023300.42684589445887.6666149651862015.90653914036198.42684589445
3822941751.12542567914824.0317075421322012.84286677873-542.874574320862
3923852086.82452008303673.3962854998762009.7791944171-298.175479916972
4024442688.13769213064204.2147772870361995.64753058233244.137692130639
4117481770.61739240107-256.1332591486241981.5158667475522.6173924010691
4215541587.17753990269-448.9569320227681969.7793921200833.1775399026862
4314981541.071141158-503.1140586506111958.0429174926143.071141158003
4413611402.83845051849-644.0408125246191963.2023620061241.8384505184947
4513461377.10577252704-653.4675790466841968.3618065196431.1057725270439
4615641512.40256177327-356.7774093879611972.37484761469-51.5974382267291
4716401472.36599402367-168.7538827334051976.38788870974-167.634005976334
4822932165.99987302472441.934440939061978.06568603622-127.000126975276
4928152762.58990167212887.6666149651861979.74348336269-52.410098327879
5031373464.87956362483824.0317075421321985.08872883304327.879563624831
5126792694.16974019674673.3962854998761990.4339743033815.1697401967424
5219691740.69650193974204.2147772870361993.08872077322-228.303498060255
5318702000.38979190557-256.1332591486241995.74346724306130.389791905567
5416331719.65192084968-448.9569320227681995.3050111730986.6519208496759
5515291566.24750354748-503.1140586506111994.8665551031337.247503547484
5613661388.37673691079-644.0408125246191987.6640756138322.3767369107882
5713571387.00598292215-653.4675790466841980.4615961245330.00598292215
5815701523.99103667077-356.7774093879611972.78637271719-46.0089633292339
5915351273.64273342355-168.7538827334051965.11114930986-261.35726657645
6024912582.22897523143441.934440939061957.8365838295191.228975231425
6130843329.77136668564887.6666149651861950.56201834917245.77136668564
6226052437.29993528299824.0317075421321948.66835717488-167.700064717011
6325732525.82901849954673.3962854998761946.77469600058-47.1709815004599
6421432144.08068291374204.2147772870361937.704539799221.08068291374207
6516931713.49887555076-256.1332591486241928.6343835978620.4988755507643
6615041544.08336722739-448.9569320227681912.8735647953840.0833672273884
6714611528.00131265771-503.1140586506111897.112745992967.0013126577121
6813541471.25141929778-644.0408125246191880.78939322684117.251419297776
6913331455.0015385859-653.4675790466841864.46604046079122.001538585899
7014921493.40475790119-356.7774093879611847.372651486771.40475790119126
7117811900.47462022065-168.7538827334051830.27926251275119.474620220652
7219151576.27842430964441.934440939061811.7871347513-338.721575690357



Parameters (Session):
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')