Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 13 Dec 2017 20:21:34 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Dec/13/t1513192951d20oz6v8mxwrz8f.htm/, Retrieved Thu, 31 Oct 2024 23:01:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=309392, Retrieved Thu, 31 Oct 2024 23:01:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact96
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2017-12-13 19:21:34] [d2d54f927b4b6a5dbf001a3c29aa1f74] [Current]
Feedback Forum

Post a new message
Dataseries X:
122.2
136.1
145.5
116.7
137.1
125.5
112.4
106.3
145.7
151.5
144.6
116.4
137.7
138.8
149.5
125
133.4
134.4
124.8
110.6
142.4
149.6
134.6
103.3
136.5
137.1
140.7
131.4
126.2
125.3
126.6
107.7
144.5
154.2
131.4
105.7
136.2
133.3
130
129.3
113.1
117.7
116.3
97.3
140.6
141.2
120.8
106.2
121.5
122.6
137.2
118.9
107.2
127.4
111.8
100
138.3
128
121.2
105.9
112.5
123.1
129
115.5
105.7
122.3
106.4
101.1
131.6
119.5
127
106.9
115.9
122.7
137.2
108.5
115.2
129.4
112.3
104.3
140
139.9
134.9
105.1
127
135.5
143.9
115.8
117.5
129.3
117.9
108.1
131.7
143.7
126.2
96.9
125.8
129.6
124.9
136.8
107.5
114.3
110.3
85.5
116.8
115.1
95.2
83.4
95.4
96.3
100.5
90.9
80.6
94.8
93.9
75.9
101.6
103.3
91.8
83.5
92
101.2
109.1
99.8
90.8
110.6
97.8
81.9
114.4
108.8
103.1
90.4
94.4
100.5
115.1
93.9
102.5
97.1
91.2
82.3
107.1
99.2
94.8
81.1
92.5
97.7
98.5
81.2
86.2
92
86.3
74.8
90
101.1
87.8
66.3
88.6
90
92
85.1
85.9
88.5
92.3
68
93.6
97.7
85.1
69.9
96.1
97
95.9
91.3
83.5
91.4
96.8
71
106.9
102.7
84.9
75.8
93.6
100.7
100.5
95.9
85.7
104.1
93.5
81.5
102.1
98.2
88.4
77.8
90.1
101
98.6
91.5
86.4
98.9
85.2
77.3
93
86.8
91.3
74.9
93.9
95
103.1
81.4
93.1
97.2
86.4
75.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309392&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=309392&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309392&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.542537-7.65340
2-0.026325-0.37140.355381
30.2996024.22641.8e-05
4-0.242896-3.42650.000371
5-0.013548-0.19110.424313
60.2846174.0154.2e-05
7-0.322638-4.55145e-06
80.1580512.22960.013447
90.1204351.69890.045447
10-0.251043-3.54140.000248
110.2067262.91620.001975
12-0.087768-1.23810.108566
13-0.130532-1.84140.033527
140.1077231.51960.065097
150.0969371.36750.08651
16-0.248118-3.50010.000287
170.2021522.85170.002404
18-0.065782-0.9280.177275
19-0.065678-0.92650.177655
200.0927481.30840.096127
21-0.044265-0.62440.266528
22-0.144689-2.04110.021281
230.2952164.16452.3e-05

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.542537 & -7.6534 & 0 \tabularnewline
2 & -0.026325 & -0.3714 & 0.355381 \tabularnewline
3 & 0.299602 & 4.2264 & 1.8e-05 \tabularnewline
4 & -0.242896 & -3.4265 & 0.000371 \tabularnewline
5 & -0.013548 & -0.1911 & 0.424313 \tabularnewline
6 & 0.284617 & 4.015 & 4.2e-05 \tabularnewline
7 & -0.322638 & -4.5514 & 5e-06 \tabularnewline
8 & 0.158051 & 2.2296 & 0.013447 \tabularnewline
9 & 0.120435 & 1.6989 & 0.045447 \tabularnewline
10 & -0.251043 & -3.5414 & 0.000248 \tabularnewline
11 & 0.206726 & 2.9162 & 0.001975 \tabularnewline
12 & -0.087768 & -1.2381 & 0.108566 \tabularnewline
13 & -0.130532 & -1.8414 & 0.033527 \tabularnewline
14 & 0.107723 & 1.5196 & 0.065097 \tabularnewline
15 & 0.096937 & 1.3675 & 0.08651 \tabularnewline
16 & -0.248118 & -3.5001 & 0.000287 \tabularnewline
17 & 0.202152 & 2.8517 & 0.002404 \tabularnewline
18 & -0.065782 & -0.928 & 0.177275 \tabularnewline
19 & -0.065678 & -0.9265 & 0.177655 \tabularnewline
20 & 0.092748 & 1.3084 & 0.096127 \tabularnewline
21 & -0.044265 & -0.6244 & 0.266528 \tabularnewline
22 & -0.144689 & -2.0411 & 0.021281 \tabularnewline
23 & 0.295216 & 4.1645 & 2.3e-05 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309392&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.542537[/C][C]-7.6534[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.026325[/C][C]-0.3714[/C][C]0.355381[/C][/ROW]
[ROW][C]3[/C][C]0.299602[/C][C]4.2264[/C][C]1.8e-05[/C][/ROW]
[ROW][C]4[/C][C]-0.242896[/C][C]-3.4265[/C][C]0.000371[/C][/ROW]
[ROW][C]5[/C][C]-0.013548[/C][C]-0.1911[/C][C]0.424313[/C][/ROW]
[ROW][C]6[/C][C]0.284617[/C][C]4.015[/C][C]4.2e-05[/C][/ROW]
[ROW][C]7[/C][C]-0.322638[/C][C]-4.5514[/C][C]5e-06[/C][/ROW]
[ROW][C]8[/C][C]0.158051[/C][C]2.2296[/C][C]0.013447[/C][/ROW]
[ROW][C]9[/C][C]0.120435[/C][C]1.6989[/C][C]0.045447[/C][/ROW]
[ROW][C]10[/C][C]-0.251043[/C][C]-3.5414[/C][C]0.000248[/C][/ROW]
[ROW][C]11[/C][C]0.206726[/C][C]2.9162[/C][C]0.001975[/C][/ROW]
[ROW][C]12[/C][C]-0.087768[/C][C]-1.2381[/C][C]0.108566[/C][/ROW]
[ROW][C]13[/C][C]-0.130532[/C][C]-1.8414[/C][C]0.033527[/C][/ROW]
[ROW][C]14[/C][C]0.107723[/C][C]1.5196[/C][C]0.065097[/C][/ROW]
[ROW][C]15[/C][C]0.096937[/C][C]1.3675[/C][C]0.08651[/C][/ROW]
[ROW][C]16[/C][C]-0.248118[/C][C]-3.5001[/C][C]0.000287[/C][/ROW]
[ROW][C]17[/C][C]0.202152[/C][C]2.8517[/C][C]0.002404[/C][/ROW]
[ROW][C]18[/C][C]-0.065782[/C][C]-0.928[/C][C]0.177275[/C][/ROW]
[ROW][C]19[/C][C]-0.065678[/C][C]-0.9265[/C][C]0.177655[/C][/ROW]
[ROW][C]20[/C][C]0.092748[/C][C]1.3084[/C][C]0.096127[/C][/ROW]
[ROW][C]21[/C][C]-0.044265[/C][C]-0.6244[/C][C]0.266528[/C][/ROW]
[ROW][C]22[/C][C]-0.144689[/C][C]-2.0411[/C][C]0.021281[/C][/ROW]
[ROW][C]23[/C][C]0.295216[/C][C]4.1645[/C][C]2.3e-05[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309392&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309392&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.542537-7.65340
2-0.026325-0.37140.355381
30.2996024.22641.8e-05
4-0.242896-3.42650.000371
5-0.013548-0.19110.424313
60.2846174.0154.2e-05
7-0.322638-4.55145e-06
80.1580512.22960.013447
90.1204351.69890.045447
10-0.251043-3.54140.000248
110.2067262.91620.001975
12-0.087768-1.23810.108566
13-0.130532-1.84140.033527
140.1077231.51960.065097
150.0969371.36750.08651
16-0.248118-3.50010.000287
170.2021522.85170.002404
18-0.065782-0.9280.177275
19-0.065678-0.92650.177655
200.0927481.30840.096127
21-0.044265-0.62440.266528
22-0.144689-2.04110.021281
230.2952164.16452.3e-05







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.542537-7.65340
2-0.454433-6.41060
30.0576540.81330.208506
40.0110740.15620.43801
5-0.125617-1.7720.038959
60.1877462.64850.004367
7-0.017197-0.24260.404283
80.0351270.49550.31039
90.1396771.97040.025091
100.0076930.10850.456842
110.0887011.25130.106149
12-0.100818-1.42220.078266
13-0.170516-2.40540.008534
14-0.273132-3.8537.9e-05
150.0525720.74160.229596
16-0.063223-0.89190.186771
17-0.054697-0.77160.220633
18-0.01071-0.15110.44003
190.0367620.51860.302311
200.0435370.61420.269904
210.0242710.34240.366209
22-0.139368-1.9660.025343
230.1326671.87150.031372

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.542537 & -7.6534 & 0 \tabularnewline
2 & -0.454433 & -6.4106 & 0 \tabularnewline
3 & 0.057654 & 0.8133 & 0.208506 \tabularnewline
4 & 0.011074 & 0.1562 & 0.43801 \tabularnewline
5 & -0.125617 & -1.772 & 0.038959 \tabularnewline
6 & 0.187746 & 2.6485 & 0.004367 \tabularnewline
7 & -0.017197 & -0.2426 & 0.404283 \tabularnewline
8 & 0.035127 & 0.4955 & 0.31039 \tabularnewline
9 & 0.139677 & 1.9704 & 0.025091 \tabularnewline
10 & 0.007693 & 0.1085 & 0.456842 \tabularnewline
11 & 0.088701 & 1.2513 & 0.106149 \tabularnewline
12 & -0.100818 & -1.4222 & 0.078266 \tabularnewline
13 & -0.170516 & -2.4054 & 0.008534 \tabularnewline
14 & -0.273132 & -3.853 & 7.9e-05 \tabularnewline
15 & 0.052572 & 0.7416 & 0.229596 \tabularnewline
16 & -0.063223 & -0.8919 & 0.186771 \tabularnewline
17 & -0.054697 & -0.7716 & 0.220633 \tabularnewline
18 & -0.01071 & -0.1511 & 0.44003 \tabularnewline
19 & 0.036762 & 0.5186 & 0.302311 \tabularnewline
20 & 0.043537 & 0.6142 & 0.269904 \tabularnewline
21 & 0.024271 & 0.3424 & 0.366209 \tabularnewline
22 & -0.139368 & -1.966 & 0.025343 \tabularnewline
23 & 0.132667 & 1.8715 & 0.031372 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=309392&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.542537[/C][C]-7.6534[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]-0.454433[/C][C]-6.4106[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.057654[/C][C]0.8133[/C][C]0.208506[/C][/ROW]
[ROW][C]4[/C][C]0.011074[/C][C]0.1562[/C][C]0.43801[/C][/ROW]
[ROW][C]5[/C][C]-0.125617[/C][C]-1.772[/C][C]0.038959[/C][/ROW]
[ROW][C]6[/C][C]0.187746[/C][C]2.6485[/C][C]0.004367[/C][/ROW]
[ROW][C]7[/C][C]-0.017197[/C][C]-0.2426[/C][C]0.404283[/C][/ROW]
[ROW][C]8[/C][C]0.035127[/C][C]0.4955[/C][C]0.31039[/C][/ROW]
[ROW][C]9[/C][C]0.139677[/C][C]1.9704[/C][C]0.025091[/C][/ROW]
[ROW][C]10[/C][C]0.007693[/C][C]0.1085[/C][C]0.456842[/C][/ROW]
[ROW][C]11[/C][C]0.088701[/C][C]1.2513[/C][C]0.106149[/C][/ROW]
[ROW][C]12[/C][C]-0.100818[/C][C]-1.4222[/C][C]0.078266[/C][/ROW]
[ROW][C]13[/C][C]-0.170516[/C][C]-2.4054[/C][C]0.008534[/C][/ROW]
[ROW][C]14[/C][C]-0.273132[/C][C]-3.853[/C][C]7.9e-05[/C][/ROW]
[ROW][C]15[/C][C]0.052572[/C][C]0.7416[/C][C]0.229596[/C][/ROW]
[ROW][C]16[/C][C]-0.063223[/C][C]-0.8919[/C][C]0.186771[/C][/ROW]
[ROW][C]17[/C][C]-0.054697[/C][C]-0.7716[/C][C]0.220633[/C][/ROW]
[ROW][C]18[/C][C]-0.01071[/C][C]-0.1511[/C][C]0.44003[/C][/ROW]
[ROW][C]19[/C][C]0.036762[/C][C]0.5186[/C][C]0.302311[/C][/ROW]
[ROW][C]20[/C][C]0.043537[/C][C]0.6142[/C][C]0.269904[/C][/ROW]
[ROW][C]21[/C][C]0.024271[/C][C]0.3424[/C][C]0.366209[/C][/ROW]
[ROW][C]22[/C][C]-0.139368[/C][C]-1.966[/C][C]0.025343[/C][/ROW]
[ROW][C]23[/C][C]0.132667[/C][C]1.8715[/C][C]0.031372[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=309392&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=309392&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.542537-7.65340
2-0.454433-6.41060
30.0576540.81330.208506
40.0110740.15620.43801
5-0.125617-1.7720.038959
60.1877462.64850.004367
7-0.017197-0.24260.404283
80.0351270.49550.31039
90.1396771.97040.025091
100.0076930.10850.456842
110.0887011.25130.106149
12-0.100818-1.42220.078266
13-0.170516-2.40540.008534
14-0.273132-3.8537.9e-05
150.0525720.74160.229596
16-0.063223-0.89190.186771
17-0.054697-0.77160.220633
18-0.01071-0.15110.44003
190.0367620.51860.302311
200.0435370.61420.269904
210.0242710.34240.366209
22-0.139368-1.9660.025343
230.1326671.87150.031372



Parameters (Session):
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')