Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationSat, 02 Dec 2017 19:23:41 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2017/Dec/02/t1512239056imorywueeosdgqp.htm/, Retrieved Thu, 31 Oct 2024 23:41:41 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=308444, Retrieved Thu, 31 Oct 2024 23:41:41 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact185
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [1 way anova b vs ...] [2017-12-02 18:23:41] [590d161356c203bfab730abba48e0199] [Current]
Feedback Forum

Post a new message
Dataseries X:
'B' 7
'B' 8
'B' 8
'B' 10
'B' 8
'S' 9
'B' 8
'B' 10
'B' 7
'B' 10
'S' 8
'S' 8
'S' 6
'B' 7
'B' 9
'S' 9
'B' 8
'S' 8
'S' 10
'B' 7
'B' 7
'B' 7
'B' 6
'B' 9
'S' 7
'S' 8
'B' 10
'B' 9
'B' 8
'B' 8
'S' 10
'B' 8
'B' 4
'B' 6
'B' 7
'S' 7
'S' 3
'S' 8
'S' 8
'S' 6
'S' 10
'B' 8
'S' 4
'B' 8
'B' 7
'B' 6
'B' 9
'B' 10
'B' 9
'B' 7
'B' 10
'S' 7
'B' 10
'S' 9
'S' 7
'S' 10
'B' 8
'S' 8
'B' 6
'B' 9
'B' 7
'B' 8
'B' 8
'B' 9
'S' 5
'B' 9
'B' 6
'B' 8
'B' 10
'B' 7
'S' 5
'B' 4
'S' 9
'B' 10
'B' 8
'B' 6
'B' 6
'B' 9
'B' 3
'B' 7
'B' 9
'B' 7
'B' 8
'S' 9
'B' 9
'S' 8
'B' 9
'B' 6
'B' 7
'B' 8
'B' 7
'B' 9
'B' 9
'S' 5
'B' 6
'B' 8
'S' 10
'S' 5
'B' 8
'B' 8
'B' 10
'B' 7
'B' 9
'B' 8
'B' 8
'B' 10
'B' 9
'B' 9
'B' 6
'B' 8
'S' 5
'S' 3
'S' 6
'S' 6
'B' 10
'S' 9
'B' 9
'B' 5
'B' 6
'B' 7
'B' 8
'B' 9
'S' 3
'S' 5
'S' 5
'B' 9
'S' 10
'S' 7
'B' 8
'B' 6
'S' 5
'S' 8
'S' 7
'S' 5
'S' 6
'S' 10
'S' 10
'S' 6
'S' 4
'S' 8
'S' 5
'S' 7
'S' 10
'S' 8
'B' 7
'B' 2
'B' 7
'B' 9
'S' 8
'B' 5
'S' 8
'B' 6
'S' 7
'S' 10
'B' 8
'S' 10
'S' 9
'S' 8
'S' 10
'B' 4
'B' 6
'B' 9
'S' 4
'S' 6
'B' 7
'B' 9
'S' 8
'B' 6
'S' 4
'S' 8
'B' 8
'B' 9
'B' 6
'S' 5
'B' 5
'S' 8
'S' 8
'S' 9
'S' 7
'S' 9
'S' 8
'B' 6
'B' 7
'B' 8
'S' 8
'S' 7
'B' 7
'B' 8
'S' 8
'S' 9
'S' 9
'B' 9
'S' 8
'S' 2
'B' 8
'B' 8
'S' 8
'B' 7
'S' 10
'S' 8
'S' 10
'B' 5
'S' 4
'S' 10
'S' 8
'S' 7
'S' 5
'S' 7
'S' 9
'S' 8
'S' 8
'S' 2
'S' 9
'S' 8
'S' 5
'S' 7
'S' 8
'S' 7
'B' 5
'S' 10
'S' 6
'S' 6
'S' 5
'S' 7
'S' 8
'S' 8
'S' 4
'B' 9
'S' 4
'S' 10
'S' 6
'S' 6
'S' 8
'S' 8
'S' 8
'S' 8
'S' 8
'S' 8
'S' 7
'S' 7
'S' 8
'B' 10
'S' 10
'S' 3
'B' 8
'B' 2
'B' 4
'B' 4
'S' 9
'S' 10
'S' 6
'S' 10
'B' 10
'S' 3
'S' 9
'S' 9
'S' 6
'S' 5
'B' 4
'S' 4
'S' 6
'S' 6
'B' 8
'S' 8
'S' 5
'B' 7
'S' 6
'S' 10
'S' 8
'S' 8
'S' 9
'S' 5
'S' 10
'S' 8
'S' 9
'S' 8
'S' 7
'S' 10
'S' 10
'S' 9
'S' 4
'S' 4
'S' 8
'S' 9
'S' 10
'S' 8
'S' 5
'S' 10
'S' 8
'S' 7
'S' 8
'S' 8
'S' 9
'S' 8
'S' 6
'S' 8
'S' 8
'B' 5
'S' 9
'S' 8
'S' 8
'S' 8
'S' 6
'S' 6
'S' 9
'S' 8
'S' 9
'S' 10
'B' 8
'S' 8
'S' 7
'S' 7
'S' 10
'S' 8
'S' 7
'S' 10
'S' 7
'S' 7
'S' 9
'S' 9
'S' 8
'S' 6
'S' 8
'S' 9
'B' 2
'S' 6
'S' 8
'B' 8
'B' 7
'S' 8
'S' 6
'S' 10
'S' 10
'S' 10
'S' 8
'S' 8
'S' 7
'S' 10
'B' 5
'B' 3
'B' 2
'B' 3
'B' 4
'B' 2
'B' 6
'S' 8
'S' 8
'B' 5
'S' 10
'S' 9
'S' 8
'S' 9
'S' 8
'S' 5
'S' 7
'S' 9
'S' 8
'S' 4
'S' 7
'S' 8
'S' 7
'S' 7
'S' 9
'S' 6
'S' 7
'S' 4
'S' 6
'S' 10
'S' 9
'S' 10
'S' 8
'B' 4
'S' 8
'S' 5
'B' 8
'B' 9
'S' 8
'S' 4
'S' 8
'S' 10
'S' 6
'S' 7
'S' 10
'S' 9
'S' 8
'B' 3
'S' 8
'S' 7
'S' 7
'S' 8
'S' 8
'S' 7
'B' 7
'S' 9
'B' 9
'S' 9
'B' 4
'S' 6
'S' 6
'B' 6
'S' 8
'B' 3
'B' 8
'B' 8
'B' 6
'S' 10
'B' 2
'B' 9
'B' 6
'B' 6
'B' 5
'B' 4
'S' 7
'B' 5
'B' 8
'B' 6
'B' 9
'S' 6
'B' 4
'B' 7
'B' 2
'S' 8
'S' 9
'S' 6
'B' 5
'B' 7
'S' 8
'S' 4
'B' 9
'S' 9
'B' 9
'B' 7
'S' 5
'B' 7
'S' 9
'S' 8
'B' 6
'B' 9
'S' 8
'S' 7
'S' 7
'B' 7
'S' 8
'S' 10
'B' 6
'B' 6




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=308444&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=308444&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=308444&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ANOVA Model
Intention_to_Use ~ groupC
means7.0620.443

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
Intention_to_Use  ~  groupC \tabularnewline
means & 7.062 & 0.443 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=308444&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]Intention_to_Use  ~  groupC[/C][/ROW]
[ROW][C]means[/C][C]7.062[/C][C]0.443[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=308444&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=308444&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
Intention_to_Use ~ groupC
means7.0620.443







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
groupC120.99120.9915.7690.017
Residuals4441615.5583.639

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
groupC & 1 & 20.991 & 20.991 & 5.769 & 0.017 \tabularnewline
Residuals & 444 & 1615.558 & 3.639 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=308444&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]groupC[/C][C]1[/C][C]20.991[/C][C]20.991[/C][C]5.769[/C][C]0.017[/C][/ROW]
[ROW][C]Residuals[/C][C]444[/C][C]1615.558[/C][C]3.639[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=308444&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=308444&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
groupC120.99120.9915.7690.017
Residuals4441615.5583.639







Tukey Honest Significant Difference Comparisons
difflwruprp adj
S-B0.4430.0810.8060.017

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
S-B & 0.443 & 0.081 & 0.806 & 0.017 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=308444&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]S-B[/C][C]0.443[/C][C]0.081[/C][C]0.806[/C][C]0.017[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=308444&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=308444&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
S-B0.4430.0810.8060.017







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group13.380.067
444

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 1 & 3.38 & 0.067 \tabularnewline
  & 444 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=308444&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]1[/C][C]3.38[/C][C]0.067[/C][/ROW]
[ROW][C] [/C][C]444[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=308444&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=308444&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group13.380.067
444



Parameters (Session):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
Parameters (R input):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
R code (references can be found in the software module):
par3 <- 'TRUE'
par2 <- '1'
par1 <- '2'
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
'Tukey Plot'
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-leveneTest(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')