Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationFri, 23 Dec 2016 13:59:01 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t14824980049778a9itozkwst7.htm/, Retrieved Fri, 01 Nov 2024 03:43:07 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302921, Retrieved Fri, 01 Nov 2024 03:43:07 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact99
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Univariate Data Series] [Plot & Describe D...] [2016-12-21 13:39:57] [a4b9e35ec68b77b903de481d98cdbf80]
- RMP   [Exponential Smoothing] [Exponentional Smo...] [2016-12-21 16:35:38] [a4b9e35ec68b77b903de481d98cdbf80]
- RMP       [(Partial) Autocorrelation Function] [Autocorrelation F...] [2016-12-23 12:59:01] [dc40abf8f837a2863894b5e0c13dd016] [Current]
Feedback Forum

Post a new message
Dataseries X:
4998
4480
4824
4814
4602
4499
4594
4600
4507
4606
4503
4801
4564
4142
4818
4408
4496
4587
4656
4799
4652
4638
4650
5185
5208
4477
4976
4670
4842
4713
4804
4996
4574
4841
4688
4766
4994
4514
4766
4642
4806
4645
4784
4979
4530
4942
4651
5150
4987
4532
5046
4783
4958
4815
5055
5152
4773
5147
4866
5311
5172
4734
5011
4957
4968
5049
5305
5067
5001
5252
4903
5408
5395
5150
5460
4968
5021
5118
5175
5420
5121
5450
5286
5693
5353
5017
5577
4987
5129
5249
5100
5382
5039
5364
5193
5846
5259
4809
5297
5034
5243
5150
5296
5596
4954
5250
5009
5113
5237
4575
5026
4842
5019
5063
5261
5327
5054
5269
5019
5315
5274
4899
5216
5029
5110
5093




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302921&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302921&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302921&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.4822395.41310
20.5930176.65660
30.5885716.60670
40.4682775.25640
50.6385737.1680
60.3570114.00745.2e-05
70.5937936.66530
80.4284454.80932e-06
90.4877725.47520
100.4506695.05871e-06
110.316173.5490.000272
120.6821937.65760
130.2838963.18670.000907
140.406014.55756e-06
150.3419553.83849.7e-05
160.2759613.09770.001203
170.4420474.9621e-06
180.1649421.85150.033222
190.4145324.65314e-06
200.2729283.06360.001337
210.3158413.54530.000276
220.310423.48450.000339
230.1796042.01610.02296
240.4684465.25830
250.1363021.530.064263
260.2433542.73160.003603
270.2073062.3270.01078
280.1455661.6340.05238
290.2919743.27740.000677
300.0587330.65930.25546
310.2595422.91340.002116
320.1012661.13670.128909
330.1358251.52460.064929
340.135371.51950.065568
350.0188140.21120.416541
360.2641612.96520.00181
37-0.028935-0.32480.372939
380.0337680.3790.352647
390.0098490.11060.456072
40-0.037011-0.41550.339259
410.0522950.5870.279123
42-0.12719-1.42770.077925
430.04190.47030.319466
44-0.111752-1.25440.106007
45-0.066339-0.74470.228934
46-0.086041-0.96580.167995
47-0.167205-1.87690.031424
480.0556540.62470.266644

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.482239 & 5.4131 & 0 \tabularnewline
2 & 0.593017 & 6.6566 & 0 \tabularnewline
3 & 0.588571 & 6.6067 & 0 \tabularnewline
4 & 0.468277 & 5.2564 & 0 \tabularnewline
5 & 0.638573 & 7.168 & 0 \tabularnewline
6 & 0.357011 & 4.0074 & 5.2e-05 \tabularnewline
7 & 0.593793 & 6.6653 & 0 \tabularnewline
8 & 0.428445 & 4.8093 & 2e-06 \tabularnewline
9 & 0.487772 & 5.4752 & 0 \tabularnewline
10 & 0.450669 & 5.0587 & 1e-06 \tabularnewline
11 & 0.31617 & 3.549 & 0.000272 \tabularnewline
12 & 0.682193 & 7.6576 & 0 \tabularnewline
13 & 0.283896 & 3.1867 & 0.000907 \tabularnewline
14 & 0.40601 & 4.5575 & 6e-06 \tabularnewline
15 & 0.341955 & 3.8384 & 9.7e-05 \tabularnewline
16 & 0.275961 & 3.0977 & 0.001203 \tabularnewline
17 & 0.442047 & 4.962 & 1e-06 \tabularnewline
18 & 0.164942 & 1.8515 & 0.033222 \tabularnewline
19 & 0.414532 & 4.6531 & 4e-06 \tabularnewline
20 & 0.272928 & 3.0636 & 0.001337 \tabularnewline
21 & 0.315841 & 3.5453 & 0.000276 \tabularnewline
22 & 0.31042 & 3.4845 & 0.000339 \tabularnewline
23 & 0.179604 & 2.0161 & 0.02296 \tabularnewline
24 & 0.468446 & 5.2583 & 0 \tabularnewline
25 & 0.136302 & 1.53 & 0.064263 \tabularnewline
26 & 0.243354 & 2.7316 & 0.003603 \tabularnewline
27 & 0.207306 & 2.327 & 0.01078 \tabularnewline
28 & 0.145566 & 1.634 & 0.05238 \tabularnewline
29 & 0.291974 & 3.2774 & 0.000677 \tabularnewline
30 & 0.058733 & 0.6593 & 0.25546 \tabularnewline
31 & 0.259542 & 2.9134 & 0.002116 \tabularnewline
32 & 0.101266 & 1.1367 & 0.128909 \tabularnewline
33 & 0.135825 & 1.5246 & 0.064929 \tabularnewline
34 & 0.13537 & 1.5195 & 0.065568 \tabularnewline
35 & 0.018814 & 0.2112 & 0.416541 \tabularnewline
36 & 0.264161 & 2.9652 & 0.00181 \tabularnewline
37 & -0.028935 & -0.3248 & 0.372939 \tabularnewline
38 & 0.033768 & 0.379 & 0.352647 \tabularnewline
39 & 0.009849 & 0.1106 & 0.456072 \tabularnewline
40 & -0.037011 & -0.4155 & 0.339259 \tabularnewline
41 & 0.052295 & 0.587 & 0.279123 \tabularnewline
42 & -0.12719 & -1.4277 & 0.077925 \tabularnewline
43 & 0.0419 & 0.4703 & 0.319466 \tabularnewline
44 & -0.111752 & -1.2544 & 0.106007 \tabularnewline
45 & -0.066339 & -0.7447 & 0.228934 \tabularnewline
46 & -0.086041 & -0.9658 & 0.167995 \tabularnewline
47 & -0.167205 & -1.8769 & 0.031424 \tabularnewline
48 & 0.055654 & 0.6247 & 0.266644 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302921&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.482239[/C][C]5.4131[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.593017[/C][C]6.6566[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.588571[/C][C]6.6067[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.468277[/C][C]5.2564[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.638573[/C][C]7.168[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.357011[/C][C]4.0074[/C][C]5.2e-05[/C][/ROW]
[ROW][C]7[/C][C]0.593793[/C][C]6.6653[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.428445[/C][C]4.8093[/C][C]2e-06[/C][/ROW]
[ROW][C]9[/C][C]0.487772[/C][C]5.4752[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]0.450669[/C][C]5.0587[/C][C]1e-06[/C][/ROW]
[ROW][C]11[/C][C]0.31617[/C][C]3.549[/C][C]0.000272[/C][/ROW]
[ROW][C]12[/C][C]0.682193[/C][C]7.6576[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.283896[/C][C]3.1867[/C][C]0.000907[/C][/ROW]
[ROW][C]14[/C][C]0.40601[/C][C]4.5575[/C][C]6e-06[/C][/ROW]
[ROW][C]15[/C][C]0.341955[/C][C]3.8384[/C][C]9.7e-05[/C][/ROW]
[ROW][C]16[/C][C]0.275961[/C][C]3.0977[/C][C]0.001203[/C][/ROW]
[ROW][C]17[/C][C]0.442047[/C][C]4.962[/C][C]1e-06[/C][/ROW]
[ROW][C]18[/C][C]0.164942[/C][C]1.8515[/C][C]0.033222[/C][/ROW]
[ROW][C]19[/C][C]0.414532[/C][C]4.6531[/C][C]4e-06[/C][/ROW]
[ROW][C]20[/C][C]0.272928[/C][C]3.0636[/C][C]0.001337[/C][/ROW]
[ROW][C]21[/C][C]0.315841[/C][C]3.5453[/C][C]0.000276[/C][/ROW]
[ROW][C]22[/C][C]0.31042[/C][C]3.4845[/C][C]0.000339[/C][/ROW]
[ROW][C]23[/C][C]0.179604[/C][C]2.0161[/C][C]0.02296[/C][/ROW]
[ROW][C]24[/C][C]0.468446[/C][C]5.2583[/C][C]0[/C][/ROW]
[ROW][C]25[/C][C]0.136302[/C][C]1.53[/C][C]0.064263[/C][/ROW]
[ROW][C]26[/C][C]0.243354[/C][C]2.7316[/C][C]0.003603[/C][/ROW]
[ROW][C]27[/C][C]0.207306[/C][C]2.327[/C][C]0.01078[/C][/ROW]
[ROW][C]28[/C][C]0.145566[/C][C]1.634[/C][C]0.05238[/C][/ROW]
[ROW][C]29[/C][C]0.291974[/C][C]3.2774[/C][C]0.000677[/C][/ROW]
[ROW][C]30[/C][C]0.058733[/C][C]0.6593[/C][C]0.25546[/C][/ROW]
[ROW][C]31[/C][C]0.259542[/C][C]2.9134[/C][C]0.002116[/C][/ROW]
[ROW][C]32[/C][C]0.101266[/C][C]1.1367[/C][C]0.128909[/C][/ROW]
[ROW][C]33[/C][C]0.135825[/C][C]1.5246[/C][C]0.064929[/C][/ROW]
[ROW][C]34[/C][C]0.13537[/C][C]1.5195[/C][C]0.065568[/C][/ROW]
[ROW][C]35[/C][C]0.018814[/C][C]0.2112[/C][C]0.416541[/C][/ROW]
[ROW][C]36[/C][C]0.264161[/C][C]2.9652[/C][C]0.00181[/C][/ROW]
[ROW][C]37[/C][C]-0.028935[/C][C]-0.3248[/C][C]0.372939[/C][/ROW]
[ROW][C]38[/C][C]0.033768[/C][C]0.379[/C][C]0.352647[/C][/ROW]
[ROW][C]39[/C][C]0.009849[/C][C]0.1106[/C][C]0.456072[/C][/ROW]
[ROW][C]40[/C][C]-0.037011[/C][C]-0.4155[/C][C]0.339259[/C][/ROW]
[ROW][C]41[/C][C]0.052295[/C][C]0.587[/C][C]0.279123[/C][/ROW]
[ROW][C]42[/C][C]-0.12719[/C][C]-1.4277[/C][C]0.077925[/C][/ROW]
[ROW][C]43[/C][C]0.0419[/C][C]0.4703[/C][C]0.319466[/C][/ROW]
[ROW][C]44[/C][C]-0.111752[/C][C]-1.2544[/C][C]0.106007[/C][/ROW]
[ROW][C]45[/C][C]-0.066339[/C][C]-0.7447[/C][C]0.228934[/C][/ROW]
[ROW][C]46[/C][C]-0.086041[/C][C]-0.9658[/C][C]0.167995[/C][/ROW]
[ROW][C]47[/C][C]-0.167205[/C][C]-1.8769[/C][C]0.031424[/C][/ROW]
[ROW][C]48[/C][C]0.055654[/C][C]0.6247[/C][C]0.266644[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302921&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302921&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.4822395.41310
20.5930176.65660
30.5885716.60670
40.4682775.25640
50.6385737.1680
60.3570114.00745.2e-05
70.5937936.66530
80.4284454.80932e-06
90.4877725.47520
100.4506695.05871e-06
110.316173.5490.000272
120.6821937.65760
130.2838963.18670.000907
140.406014.55756e-06
150.3419553.83849.7e-05
160.2759613.09770.001203
170.4420474.9621e-06
180.1649421.85150.033222
190.4145324.65314e-06
200.2729283.06360.001337
210.3158413.54530.000276
220.310423.48450.000339
230.1796042.01610.02296
240.4684465.25830
250.1363021.530.064263
260.2433542.73160.003603
270.2073062.3270.01078
280.1455661.6340.05238
290.2919743.27740.000677
300.0587330.65930.25546
310.2595422.91340.002116
320.1012661.13670.128909
330.1358251.52460.064929
340.135371.51950.065568
350.0188140.21120.416541
360.2641612.96520.00181
37-0.028935-0.32480.372939
380.0337680.3790.352647
390.0098490.11060.456072
40-0.037011-0.41550.339259
410.0522950.5870.279123
42-0.12719-1.42770.077925
430.04190.47030.319466
44-0.111752-1.25440.106007
45-0.066339-0.74470.228934
46-0.086041-0.96580.167995
47-0.167205-1.87690.031424
480.0556540.62470.266644







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.4822395.41310
20.469695.27230
30.3517773.94876.5e-05
40.0385010.43220.333178
50.3105593.4860.000338
6-0.21465-2.40940.008712
70.2596262.91430.00211
8-0.102478-1.15030.126096
90.2205842.4760.007306
10-0.22551-2.53130.006296
110.0355740.39930.345169
120.4137444.64434e-06
13-0.268702-3.01620.001549
14-0.13459-1.51080.066676
15-0.201778-2.2650.012612
160.0735660.82580.205247
170.0211090.23690.406542
180.0134370.15080.440176
190.0765150.85890.19602
200.0670220.75230.22663
21-0.015054-0.1690.433043
220.052550.58990.278168
230.0126540.1420.443636
240.0142440.15990.436613
25-0.152015-1.70640.045202
26-0.123348-1.38460.084315
270.0941511.05680.146304
28-0.026423-0.29660.383631
29-0.008692-0.09760.461216
300.0258450.29010.386104
31-0.041755-0.46870.320049
32-0.151673-1.70250.045562
33-0.050076-0.56210.287522
340.0187940.2110.416627
350.0760380.85350.197495
360.0035920.04030.483953
37-0.025519-0.28650.387502
38-0.173068-1.94270.027143
39-0.049306-0.55350.290466
400.0222530.24980.401579
41-0.107738-1.20940.114396
420.0185650.20840.41763
43-0.044557-0.50020.308919
44-0.030719-0.34480.365401
450.0563130.63210.264229
46-0.005557-0.06240.47518
470.0294170.33020.370897
480.0254490.28570.387801

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.482239 & 5.4131 & 0 \tabularnewline
2 & 0.46969 & 5.2723 & 0 \tabularnewline
3 & 0.351777 & 3.9487 & 6.5e-05 \tabularnewline
4 & 0.038501 & 0.4322 & 0.333178 \tabularnewline
5 & 0.310559 & 3.486 & 0.000338 \tabularnewline
6 & -0.21465 & -2.4094 & 0.008712 \tabularnewline
7 & 0.259626 & 2.9143 & 0.00211 \tabularnewline
8 & -0.102478 & -1.1503 & 0.126096 \tabularnewline
9 & 0.220584 & 2.476 & 0.007306 \tabularnewline
10 & -0.22551 & -2.5313 & 0.006296 \tabularnewline
11 & 0.035574 & 0.3993 & 0.345169 \tabularnewline
12 & 0.413744 & 4.6443 & 4e-06 \tabularnewline
13 & -0.268702 & -3.0162 & 0.001549 \tabularnewline
14 & -0.13459 & -1.5108 & 0.066676 \tabularnewline
15 & -0.201778 & -2.265 & 0.012612 \tabularnewline
16 & 0.073566 & 0.8258 & 0.205247 \tabularnewline
17 & 0.021109 & 0.2369 & 0.406542 \tabularnewline
18 & 0.013437 & 0.1508 & 0.440176 \tabularnewline
19 & 0.076515 & 0.8589 & 0.19602 \tabularnewline
20 & 0.067022 & 0.7523 & 0.22663 \tabularnewline
21 & -0.015054 & -0.169 & 0.433043 \tabularnewline
22 & 0.05255 & 0.5899 & 0.278168 \tabularnewline
23 & 0.012654 & 0.142 & 0.443636 \tabularnewline
24 & 0.014244 & 0.1599 & 0.436613 \tabularnewline
25 & -0.152015 & -1.7064 & 0.045202 \tabularnewline
26 & -0.123348 & -1.3846 & 0.084315 \tabularnewline
27 & 0.094151 & 1.0568 & 0.146304 \tabularnewline
28 & -0.026423 & -0.2966 & 0.383631 \tabularnewline
29 & -0.008692 & -0.0976 & 0.461216 \tabularnewline
30 & 0.025845 & 0.2901 & 0.386104 \tabularnewline
31 & -0.041755 & -0.4687 & 0.320049 \tabularnewline
32 & -0.151673 & -1.7025 & 0.045562 \tabularnewline
33 & -0.050076 & -0.5621 & 0.287522 \tabularnewline
34 & 0.018794 & 0.211 & 0.416627 \tabularnewline
35 & 0.076038 & 0.8535 & 0.197495 \tabularnewline
36 & 0.003592 & 0.0403 & 0.483953 \tabularnewline
37 & -0.025519 & -0.2865 & 0.387502 \tabularnewline
38 & -0.173068 & -1.9427 & 0.027143 \tabularnewline
39 & -0.049306 & -0.5535 & 0.290466 \tabularnewline
40 & 0.022253 & 0.2498 & 0.401579 \tabularnewline
41 & -0.107738 & -1.2094 & 0.114396 \tabularnewline
42 & 0.018565 & 0.2084 & 0.41763 \tabularnewline
43 & -0.044557 & -0.5002 & 0.308919 \tabularnewline
44 & -0.030719 & -0.3448 & 0.365401 \tabularnewline
45 & 0.056313 & 0.6321 & 0.264229 \tabularnewline
46 & -0.005557 & -0.0624 & 0.47518 \tabularnewline
47 & 0.029417 & 0.3302 & 0.370897 \tabularnewline
48 & 0.025449 & 0.2857 & 0.387801 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302921&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.482239[/C][C]5.4131[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.46969[/C][C]5.2723[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.351777[/C][C]3.9487[/C][C]6.5e-05[/C][/ROW]
[ROW][C]4[/C][C]0.038501[/C][C]0.4322[/C][C]0.333178[/C][/ROW]
[ROW][C]5[/C][C]0.310559[/C][C]3.486[/C][C]0.000338[/C][/ROW]
[ROW][C]6[/C][C]-0.21465[/C][C]-2.4094[/C][C]0.008712[/C][/ROW]
[ROW][C]7[/C][C]0.259626[/C][C]2.9143[/C][C]0.00211[/C][/ROW]
[ROW][C]8[/C][C]-0.102478[/C][C]-1.1503[/C][C]0.126096[/C][/ROW]
[ROW][C]9[/C][C]0.220584[/C][C]2.476[/C][C]0.007306[/C][/ROW]
[ROW][C]10[/C][C]-0.22551[/C][C]-2.5313[/C][C]0.006296[/C][/ROW]
[ROW][C]11[/C][C]0.035574[/C][C]0.3993[/C][C]0.345169[/C][/ROW]
[ROW][C]12[/C][C]0.413744[/C][C]4.6443[/C][C]4e-06[/C][/ROW]
[ROW][C]13[/C][C]-0.268702[/C][C]-3.0162[/C][C]0.001549[/C][/ROW]
[ROW][C]14[/C][C]-0.13459[/C][C]-1.5108[/C][C]0.066676[/C][/ROW]
[ROW][C]15[/C][C]-0.201778[/C][C]-2.265[/C][C]0.012612[/C][/ROW]
[ROW][C]16[/C][C]0.073566[/C][C]0.8258[/C][C]0.205247[/C][/ROW]
[ROW][C]17[/C][C]0.021109[/C][C]0.2369[/C][C]0.406542[/C][/ROW]
[ROW][C]18[/C][C]0.013437[/C][C]0.1508[/C][C]0.440176[/C][/ROW]
[ROW][C]19[/C][C]0.076515[/C][C]0.8589[/C][C]0.19602[/C][/ROW]
[ROW][C]20[/C][C]0.067022[/C][C]0.7523[/C][C]0.22663[/C][/ROW]
[ROW][C]21[/C][C]-0.015054[/C][C]-0.169[/C][C]0.433043[/C][/ROW]
[ROW][C]22[/C][C]0.05255[/C][C]0.5899[/C][C]0.278168[/C][/ROW]
[ROW][C]23[/C][C]0.012654[/C][C]0.142[/C][C]0.443636[/C][/ROW]
[ROW][C]24[/C][C]0.014244[/C][C]0.1599[/C][C]0.436613[/C][/ROW]
[ROW][C]25[/C][C]-0.152015[/C][C]-1.7064[/C][C]0.045202[/C][/ROW]
[ROW][C]26[/C][C]-0.123348[/C][C]-1.3846[/C][C]0.084315[/C][/ROW]
[ROW][C]27[/C][C]0.094151[/C][C]1.0568[/C][C]0.146304[/C][/ROW]
[ROW][C]28[/C][C]-0.026423[/C][C]-0.2966[/C][C]0.383631[/C][/ROW]
[ROW][C]29[/C][C]-0.008692[/C][C]-0.0976[/C][C]0.461216[/C][/ROW]
[ROW][C]30[/C][C]0.025845[/C][C]0.2901[/C][C]0.386104[/C][/ROW]
[ROW][C]31[/C][C]-0.041755[/C][C]-0.4687[/C][C]0.320049[/C][/ROW]
[ROW][C]32[/C][C]-0.151673[/C][C]-1.7025[/C][C]0.045562[/C][/ROW]
[ROW][C]33[/C][C]-0.050076[/C][C]-0.5621[/C][C]0.287522[/C][/ROW]
[ROW][C]34[/C][C]0.018794[/C][C]0.211[/C][C]0.416627[/C][/ROW]
[ROW][C]35[/C][C]0.076038[/C][C]0.8535[/C][C]0.197495[/C][/ROW]
[ROW][C]36[/C][C]0.003592[/C][C]0.0403[/C][C]0.483953[/C][/ROW]
[ROW][C]37[/C][C]-0.025519[/C][C]-0.2865[/C][C]0.387502[/C][/ROW]
[ROW][C]38[/C][C]-0.173068[/C][C]-1.9427[/C][C]0.027143[/C][/ROW]
[ROW][C]39[/C][C]-0.049306[/C][C]-0.5535[/C][C]0.290466[/C][/ROW]
[ROW][C]40[/C][C]0.022253[/C][C]0.2498[/C][C]0.401579[/C][/ROW]
[ROW][C]41[/C][C]-0.107738[/C][C]-1.2094[/C][C]0.114396[/C][/ROW]
[ROW][C]42[/C][C]0.018565[/C][C]0.2084[/C][C]0.41763[/C][/ROW]
[ROW][C]43[/C][C]-0.044557[/C][C]-0.5002[/C][C]0.308919[/C][/ROW]
[ROW][C]44[/C][C]-0.030719[/C][C]-0.3448[/C][C]0.365401[/C][/ROW]
[ROW][C]45[/C][C]0.056313[/C][C]0.6321[/C][C]0.264229[/C][/ROW]
[ROW][C]46[/C][C]-0.005557[/C][C]-0.0624[/C][C]0.47518[/C][/ROW]
[ROW][C]47[/C][C]0.029417[/C][C]0.3302[/C][C]0.370897[/C][/ROW]
[ROW][C]48[/C][C]0.025449[/C][C]0.2857[/C][C]0.387801[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302921&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302921&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.4822395.41310
20.469695.27230
30.3517773.94876.5e-05
40.0385010.43220.333178
50.3105593.4860.000338
6-0.21465-2.40940.008712
70.2596262.91430.00211
8-0.102478-1.15030.126096
90.2205842.4760.007306
10-0.22551-2.53130.006296
110.0355740.39930.345169
120.4137444.64434e-06
13-0.268702-3.01620.001549
14-0.13459-1.51080.066676
15-0.201778-2.2650.012612
160.0735660.82580.205247
170.0211090.23690.406542
180.0134370.15080.440176
190.0765150.85890.19602
200.0670220.75230.22663
21-0.015054-0.1690.433043
220.052550.58990.278168
230.0126540.1420.443636
240.0142440.15990.436613
25-0.152015-1.70640.045202
26-0.123348-1.38460.084315
270.0941511.05680.146304
28-0.026423-0.29660.383631
29-0.008692-0.09760.461216
300.0258450.29010.386104
31-0.041755-0.46870.320049
32-0.151673-1.70250.045562
33-0.050076-0.56210.287522
340.0187940.2110.416627
350.0760380.85350.197495
360.0035920.04030.483953
37-0.025519-0.28650.387502
38-0.173068-1.94270.027143
39-0.049306-0.55350.290466
400.0222530.24980.401579
41-0.107738-1.20940.114396
420.0185650.20840.41763
43-0.044557-0.50020.308919
44-0.030719-0.34480.365401
450.0563130.63210.264229
46-0.005557-0.06240.47518
470.0294170.33020.370897
480.0254490.28570.387801



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = 48 ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
par8 <- ''
par7 <- '0.95'
par6 <- 'White Noise'
par5 <- '12'
par4 <- '1'
par3 <- '1'
par2 <- '1'
par1 <- '48'
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')