Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationFri, 23 Dec 2016 12:27:04 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482492461fa6xsvhr43mc3ok.htm/, Retrieved Fri, 01 Nov 2024 03:39:25 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302872, Retrieved Fri, 01 Nov 2024 03:39:25 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact114
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [(Partial) Autocorrelation Function] [ACF1] [2016-12-22 17:08:50] [267314984f6394bb93cd815224aa34ba]
- RM D    [ARIMA Backward Selection] [ARIMA1] [2016-12-23 11:27:04] [636d0f72197ac5e1dae4a755427db02a] [Current]
Feedback Forum

Post a new message
Dataseries X:
2601.76
2819.1
2368.84
2683.5
2649.22
2760.3
2326
2819.3
2957.02
3460.5
2873.16
3252.48
3628.52
3899.22
3049.36
3751.58
4639.42
4991.02
4076.28
4782.4
5173.8
5177.94
4048.46
4828.98
4727.62
5366.84
4597.38
4838.16
4268.2
4769.34
4223.34
4396.38
4911.6
5368.4
4665
5081.46




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time6 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302872&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]6 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302872&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302872&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ma1sar1sar2sma1
Estimates ( 1 )-0.2551-0.2191-0.0107-0.25560.6226-0.2916
(p-val)(0.6938 )(0.3854 )(0.9867 )(0.9916 )(0.9763 )(0.9925 )
Estimates ( 2 )-0.2544-0.2189-0.0112-0.45830.46080
(p-val)(0.695 )(0.3863 )(0.9861 )(0.9191 )(0.9306 )(NA )
Estimates ( 3 )-0.2655-0.22140-0.53130.37510
(p-val)(0.2558 )(0.2891 )(NA )(0.9016 )(0.9406 )(NA )
Estimates ( 4 )-0.2681-0.22030-0.85200
(p-val)(0.2467 )(0.291 )(NA )(0 )(NA )(NA )
Estimates ( 5 )-0.234700-0.858200
(p-val)(0.2958 )(NA )(NA )(0 )(NA )(NA )
Estimates ( 6 )000-0.824100
(p-val)(NA )(NA )(NA )(0 )(NA )(NA )
Estimates ( 7 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & -0.2551 & -0.2191 & -0.0107 & -0.2556 & 0.6226 & -0.2916 \tabularnewline
(p-val) & (0.6938 ) & (0.3854 ) & (0.9867 ) & (0.9916 ) & (0.9763 ) & (0.9925 ) \tabularnewline
Estimates ( 2 ) & -0.2544 & -0.2189 & -0.0112 & -0.4583 & 0.4608 & 0 \tabularnewline
(p-val) & (0.695 ) & (0.3863 ) & (0.9861 ) & (0.9191 ) & (0.9306 ) & (NA ) \tabularnewline
Estimates ( 3 ) & -0.2655 & -0.2214 & 0 & -0.5313 & 0.3751 & 0 \tabularnewline
(p-val) & (0.2558 ) & (0.2891 ) & (NA ) & (0.9016 ) & (0.9406 ) & (NA ) \tabularnewline
Estimates ( 4 ) & -0.2681 & -0.2203 & 0 & -0.852 & 0 & 0 \tabularnewline
(p-val) & (0.2467 ) & (0.291 ) & (NA ) & (0 ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & -0.2347 & 0 & 0 & -0.8582 & 0 & 0 \tabularnewline
(p-val) & (0.2958 ) & (NA ) & (NA ) & (0 ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & 0 & 0 & 0 & -0.8241 & 0 & 0 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (0 ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302872&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.2551[/C][C]-0.2191[/C][C]-0.0107[/C][C]-0.2556[/C][C]0.6226[/C][C]-0.2916[/C][/ROW]
[ROW][C](p-val)[/C][C](0.6938 )[/C][C](0.3854 )[/C][C](0.9867 )[/C][C](0.9916 )[/C][C](0.9763 )[/C][C](0.9925 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]-0.2544[/C][C]-0.2189[/C][C]-0.0112[/C][C]-0.4583[/C][C]0.4608[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0.695 )[/C][C](0.3863 )[/C][C](0.9861 )[/C][C](0.9191 )[/C][C](0.9306 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]-0.2655[/C][C]-0.2214[/C][C]0[/C][C]-0.5313[/C][C]0.3751[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0.2558 )[/C][C](0.2891 )[/C][C](NA )[/C][C](0.9016 )[/C][C](0.9406 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]-0.2681[/C][C]-0.2203[/C][C]0[/C][C]-0.852[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0.2467 )[/C][C](0.291 )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]-0.2347[/C][C]0[/C][C]0[/C][C]-0.8582[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0.2958 )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.8241[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302872&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302872&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ma1sar1sar2sma1
Estimates ( 1 )-0.2551-0.2191-0.0107-0.25560.6226-0.2916
(p-val)(0.6938 )(0.3854 )(0.9867 )(0.9916 )(0.9763 )(0.9925 )
Estimates ( 2 )-0.2544-0.2189-0.0112-0.45830.46080
(p-val)(0.695 )(0.3863 )(0.9861 )(0.9191 )(0.9306 )(NA )
Estimates ( 3 )-0.2655-0.22140-0.53130.37510
(p-val)(0.2558 )(0.2891 )(NA )(0.9016 )(0.9406 )(NA )
Estimates ( 4 )-0.2681-0.22030-0.85200
(p-val)(0.2467 )(0.291 )(NA )(0 )(NA )(NA )
Estimates ( 5 )-0.234700-0.858200
(p-val)(0.2958 )(NA )(NA )(0 )(NA )(NA )
Estimates ( 6 )000-0.824100
(p-val)(NA )(NA )(NA )(0 )(NA )(NA )
Estimates ( 7 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-5.91150480711671
26.6155295396405
-198.715039790508
150.799293281296
520.071437056276
234.579890595828
-217.666054520929
51.3543964910628
155.845429308268
-225.721897426259
-338.80584081868
142.119235869128
-207.890277911878
374.987421041203
-165.278107564006
-190.466833677477
-696.703920612759
199.515035368603
39.9877804538692
-360.668186538583
259.264774330527
104.302099817084
-33.504184919989
-28.9548434005107

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-5.91150480711671 \tabularnewline
26.6155295396405 \tabularnewline
-198.715039790508 \tabularnewline
150.799293281296 \tabularnewline
520.071437056276 \tabularnewline
234.579890595828 \tabularnewline
-217.666054520929 \tabularnewline
51.3543964910628 \tabularnewline
155.845429308268 \tabularnewline
-225.721897426259 \tabularnewline
-338.80584081868 \tabularnewline
142.119235869128 \tabularnewline
-207.890277911878 \tabularnewline
374.987421041203 \tabularnewline
-165.278107564006 \tabularnewline
-190.466833677477 \tabularnewline
-696.703920612759 \tabularnewline
199.515035368603 \tabularnewline
39.9877804538692 \tabularnewline
-360.668186538583 \tabularnewline
259.264774330527 \tabularnewline
104.302099817084 \tabularnewline
-33.504184919989 \tabularnewline
-28.9548434005107 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302872&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-5.91150480711671[/C][/ROW]
[ROW][C]26.6155295396405[/C][/ROW]
[ROW][C]-198.715039790508[/C][/ROW]
[ROW][C]150.799293281296[/C][/ROW]
[ROW][C]520.071437056276[/C][/ROW]
[ROW][C]234.579890595828[/C][/ROW]
[ROW][C]-217.666054520929[/C][/ROW]
[ROW][C]51.3543964910628[/C][/ROW]
[ROW][C]155.845429308268[/C][/ROW]
[ROW][C]-225.721897426259[/C][/ROW]
[ROW][C]-338.80584081868[/C][/ROW]
[ROW][C]142.119235869128[/C][/ROW]
[ROW][C]-207.890277911878[/C][/ROW]
[ROW][C]374.987421041203[/C][/ROW]
[ROW][C]-165.278107564006[/C][/ROW]
[ROW][C]-190.466833677477[/C][/ROW]
[ROW][C]-696.703920612759[/C][/ROW]
[ROW][C]199.515035368603[/C][/ROW]
[ROW][C]39.9877804538692[/C][/ROW]
[ROW][C]-360.668186538583[/C][/ROW]
[ROW][C]259.264774330527[/C][/ROW]
[ROW][C]104.302099817084[/C][/ROW]
[ROW][C]-33.504184919989[/C][/ROW]
[ROW][C]-28.9548434005107[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302872&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302872&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-5.91150480711671
26.6155295396405
-198.715039790508
150.799293281296
520.071437056276
234.579890595828
-217.666054520929
51.3543964910628
155.845429308268
-225.721897426259
-338.80584081868
142.119235869128
-207.890277911878
374.987421041203
-165.278107564006
-190.466833677477
-696.703920612759
199.515035368603
39.9877804538692
-360.668186538583
259.264774330527
104.302099817084
-33.504184919989
-28.9548434005107



Parameters (Session):
par1 = 12 ; par2 = -0.3 ; par3 = 0 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 0 ; par10 = FALSE ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 2 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
par9 <- '1'
par8 <- '1'
par7 <- '1'
par6 <- '2'
par5 <- '12'
par4 <- '1'
par3 <- '1'
par2 <- '1'
par1 <- 'FALSE'
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')