Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationFri, 23 Dec 2016 12:15:15 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/23/t1482492079hgjmrb2yrdkcpm9.htm/, Retrieved Fri, 01 Nov 2024 03:45:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302870, Retrieved Fri, 01 Nov 2024 03:45:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact82
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [] [2016-12-23 11:15:15] [c6ea875f0603e0876d03f43aca979571] [Current]
Feedback Forum

Post a new message
Dataseries X:
1565
1460
1780
1990
2460
2155
2290
2685
2880
3680
3110
3735
3420
2620
3485
2920
3530
3600
3580
3580
4440
5030
4965
4765
4290
2990
5600
4135
5280
4275
3640
4190
4260
5020
6380
4355
5435
4520
4350
4395
5255
4515
4460
5230
6155
6320
5645
5940
6530
4250
4155
4625
4075
5135
4375
4845
6470
6670
6110
5805
4790
4750
3805
3890
3485
3945
3730
3850
5155
5615
6120
5805
5010
4520
4180
3825
4145
3720
3525
4375
5020
4790
5180
4700
4110
3380
3820
3220
2605
2930
2360
2935
3380
4495
3960
3440
3400
2825
2555
2355
2545
2715
2535
2740
3050
3695
4270
3480
3490
3400
3445
3090
3250
3140
3100
3680




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302870&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302870&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302870&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ma1sar1sma1
Estimates ( 1 )1-0.43790.48760.0592
(p-val)(0 )(0.0141 )(0.5467 )(0.9446 )
Estimates ( 2 )0.9998-0.46340.55210
(p-val)(0 )(0 )(0 )(NA )
Estimates ( 3 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 4 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ma1 & sar1 & sma1 \tabularnewline
Estimates ( 1 ) & 1 & -0.4379 & 0.4876 & 0.0592 \tabularnewline
(p-val) & (0 ) & (0.0141 ) & (0.5467 ) & (0.9446 ) \tabularnewline
Estimates ( 2 ) & 0.9998 & -0.4634 & 0.5521 & 0 \tabularnewline
(p-val) & (0 ) & (0 ) & (0 ) & (NA ) \tabularnewline
Estimates ( 3 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 4 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302870&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ma1[/C][C]sar1[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]1[/C][C]-0.4379[/C][C]0.4876[/C][C]0.0592[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0.0141 )[/C][C](0.5467 )[/C][C](0.9446 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0.9998[/C][C]-0.4634[/C][C]0.5521[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0 )[/C][C](0 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302870&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302870&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ma1sar1sma1
Estimates ( 1 )1-0.43790.48760.0592
(p-val)(0 )(0.0141 )(0.5467 )(0.9446 )
Estimates ( 2 )0.9998-0.46340.55210
(p-val)(0 )(0 )(0 )(NA )
Estimates ( 3 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 4 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 5 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANA
(p-val)(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANA
(p-val)(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
0.0106432488925607
-0.0539047939337511
0.144125842773776
0.156229729961541
0.247775778997097
-0.00373583021183675
0.0498609932537174
0.156696629626966
0.12803851975175
0.263810716356181
-0.027095583745812
0.143335225793384
-0.00126131376312384
-0.224891514148574
0.083506850725742
-0.199309835181384
-0.00993026978947659
0.0854230618964205
-0.000352640770343408
-0.0844682688778482
0.141052239390061
0.0565907242595623
0.100961469935774
-0.0939130100043686
-0.101295965153709
-0.261808153180921
0.363079515135108
-0.0440658493205629
0.128067976588838
-0.169943453567843
-0.230260749599826
0.0448827626714519
-0.0792886182636293
0.0689164791680849
0.271754371763239
-0.234608260924226
0.1735690076504
0.0805788201491258
-0.337308829209707
0.0224965877333077
0.0606519950698352
-0.00886703924558838
0.0715047232097936
0.11333554437354
0.210272009355253
0.0323557747327357
-0.229980378186074
0.157369726021876
0.0392291851898274
-0.322685640012703
-0.123141919967685
0.0381452067874487
-0.200045229977178
0.219718623701983
-0.0624409519202613
-0.00781165237991028
0.196890864904203
0.107307809889825
0.0288402350213428
-0.0786969747638096
-0.271061053929431
0.102472669008602
-0.167002228929117
-0.10873883762271
-0.0829799428489676
-0.0432926524703082
0.012505979629739
-0.0137649865194359
0.132978045549742
0.127618403696903
0.185845565065881
0.0589246762627225
-0.0137472348818575
-0.117950020313327
-0.00913082960735954
-0.101408481802991
0.0916453636639538
-0.128082410883506
-0.084463287043933
0.164745137711852
0.0591099871326985
-0.0667965723037369
-0.000660593253494213
-0.070429378570644
-0.0908162159432333
-0.17849402979385
0.0798293704957764
-0.0868594683199753
-0.297214180251675
0.0501366663273641
-0.166445294056459
0.0278798779219676
0.0870978396466047
0.351594307633979
-0.0126116715745663
-0.0947190257240962
0.0157911323797766
-0.0747796725362084
-0.20222566602077
-0.0795294479530995
0.161468228531879
0.0673677636572592
0.0775560395517312
-0.000556399176516287
0.0336757523580387
0.0490134688703918
0.237759157191746
-0.0265354128319384
-0.00643395512136991
0.0662378951537974
0.10118208601669
-0.0252282827746217
-0.0100182540850824
-0.0701443059556297
-0.0129291526591082
0.129981644128467

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
 \tabularnewline
0.0106432488925607 \tabularnewline
-0.0539047939337511 \tabularnewline
0.144125842773776 \tabularnewline
0.156229729961541 \tabularnewline
0.247775778997097 \tabularnewline
-0.00373583021183675 \tabularnewline
0.0498609932537174 \tabularnewline
0.156696629626966 \tabularnewline
0.12803851975175 \tabularnewline
0.263810716356181 \tabularnewline
-0.027095583745812 \tabularnewline
0.143335225793384 \tabularnewline
-0.00126131376312384 \tabularnewline
-0.224891514148574 \tabularnewline
0.083506850725742 \tabularnewline
-0.199309835181384 \tabularnewline
-0.00993026978947659 \tabularnewline
0.0854230618964205 \tabularnewline
-0.000352640770343408 \tabularnewline
-0.0844682688778482 \tabularnewline
0.141052239390061 \tabularnewline
0.0565907242595623 \tabularnewline
0.100961469935774 \tabularnewline
-0.0939130100043686 \tabularnewline
-0.101295965153709 \tabularnewline
-0.261808153180921 \tabularnewline
0.363079515135108 \tabularnewline
-0.0440658493205629 \tabularnewline
0.128067976588838 \tabularnewline
-0.169943453567843 \tabularnewline
-0.230260749599826 \tabularnewline
0.0448827626714519 \tabularnewline
-0.0792886182636293 \tabularnewline
0.0689164791680849 \tabularnewline
0.271754371763239 \tabularnewline
-0.234608260924226 \tabularnewline
0.1735690076504 \tabularnewline
0.0805788201491258 \tabularnewline
-0.337308829209707 \tabularnewline
0.0224965877333077 \tabularnewline
0.0606519950698352 \tabularnewline
-0.00886703924558838 \tabularnewline
0.0715047232097936 \tabularnewline
0.11333554437354 \tabularnewline
0.210272009355253 \tabularnewline
0.0323557747327357 \tabularnewline
-0.229980378186074 \tabularnewline
0.157369726021876 \tabularnewline
0.0392291851898274 \tabularnewline
-0.322685640012703 \tabularnewline
-0.123141919967685 \tabularnewline
0.0381452067874487 \tabularnewline
-0.200045229977178 \tabularnewline
0.219718623701983 \tabularnewline
-0.0624409519202613 \tabularnewline
-0.00781165237991028 \tabularnewline
0.196890864904203 \tabularnewline
0.107307809889825 \tabularnewline
0.0288402350213428 \tabularnewline
-0.0786969747638096 \tabularnewline
-0.271061053929431 \tabularnewline
0.102472669008602 \tabularnewline
-0.167002228929117 \tabularnewline
-0.10873883762271 \tabularnewline
-0.0829799428489676 \tabularnewline
-0.0432926524703082 \tabularnewline
0.012505979629739 \tabularnewline
-0.0137649865194359 \tabularnewline
0.132978045549742 \tabularnewline
0.127618403696903 \tabularnewline
0.185845565065881 \tabularnewline
0.0589246762627225 \tabularnewline
-0.0137472348818575 \tabularnewline
-0.117950020313327 \tabularnewline
-0.00913082960735954 \tabularnewline
-0.101408481802991 \tabularnewline
0.0916453636639538 \tabularnewline
-0.128082410883506 \tabularnewline
-0.084463287043933 \tabularnewline
0.164745137711852 \tabularnewline
0.0591099871326985 \tabularnewline
-0.0667965723037369 \tabularnewline
-0.000660593253494213 \tabularnewline
-0.070429378570644 \tabularnewline
-0.0908162159432333 \tabularnewline
-0.17849402979385 \tabularnewline
0.0798293704957764 \tabularnewline
-0.0868594683199753 \tabularnewline
-0.297214180251675 \tabularnewline
0.0501366663273641 \tabularnewline
-0.166445294056459 \tabularnewline
0.0278798779219676 \tabularnewline
0.0870978396466047 \tabularnewline
0.351594307633979 \tabularnewline
-0.0126116715745663 \tabularnewline
-0.0947190257240962 \tabularnewline
0.0157911323797766 \tabularnewline
-0.0747796725362084 \tabularnewline
-0.20222566602077 \tabularnewline
-0.0795294479530995 \tabularnewline
0.161468228531879 \tabularnewline
0.0673677636572592 \tabularnewline
0.0775560395517312 \tabularnewline
-0.000556399176516287 \tabularnewline
0.0336757523580387 \tabularnewline
0.0490134688703918 \tabularnewline
0.237759157191746 \tabularnewline
-0.0265354128319384 \tabularnewline
-0.00643395512136991 \tabularnewline
0.0662378951537974 \tabularnewline
0.10118208601669 \tabularnewline
-0.0252282827746217 \tabularnewline
-0.0100182540850824 \tabularnewline
-0.0701443059556297 \tabularnewline
-0.0129291526591082 \tabularnewline
0.129981644128467 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302870&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C][/C][/ROW]
[ROW][C]0.0106432488925607[/C][/ROW]
[ROW][C]-0.0539047939337511[/C][/ROW]
[ROW][C]0.144125842773776[/C][/ROW]
[ROW][C]0.156229729961541[/C][/ROW]
[ROW][C]0.247775778997097[/C][/ROW]
[ROW][C]-0.00373583021183675[/C][/ROW]
[ROW][C]0.0498609932537174[/C][/ROW]
[ROW][C]0.156696629626966[/C][/ROW]
[ROW][C]0.12803851975175[/C][/ROW]
[ROW][C]0.263810716356181[/C][/ROW]
[ROW][C]-0.027095583745812[/C][/ROW]
[ROW][C]0.143335225793384[/C][/ROW]
[ROW][C]-0.00126131376312384[/C][/ROW]
[ROW][C]-0.224891514148574[/C][/ROW]
[ROW][C]0.083506850725742[/C][/ROW]
[ROW][C]-0.199309835181384[/C][/ROW]
[ROW][C]-0.00993026978947659[/C][/ROW]
[ROW][C]0.0854230618964205[/C][/ROW]
[ROW][C]-0.000352640770343408[/C][/ROW]
[ROW][C]-0.0844682688778482[/C][/ROW]
[ROW][C]0.141052239390061[/C][/ROW]
[ROW][C]0.0565907242595623[/C][/ROW]
[ROW][C]0.100961469935774[/C][/ROW]
[ROW][C]-0.0939130100043686[/C][/ROW]
[ROW][C]-0.101295965153709[/C][/ROW]
[ROW][C]-0.261808153180921[/C][/ROW]
[ROW][C]0.363079515135108[/C][/ROW]
[ROW][C]-0.0440658493205629[/C][/ROW]
[ROW][C]0.128067976588838[/C][/ROW]
[ROW][C]-0.169943453567843[/C][/ROW]
[ROW][C]-0.230260749599826[/C][/ROW]
[ROW][C]0.0448827626714519[/C][/ROW]
[ROW][C]-0.0792886182636293[/C][/ROW]
[ROW][C]0.0689164791680849[/C][/ROW]
[ROW][C]0.271754371763239[/C][/ROW]
[ROW][C]-0.234608260924226[/C][/ROW]
[ROW][C]0.1735690076504[/C][/ROW]
[ROW][C]0.0805788201491258[/C][/ROW]
[ROW][C]-0.337308829209707[/C][/ROW]
[ROW][C]0.0224965877333077[/C][/ROW]
[ROW][C]0.0606519950698352[/C][/ROW]
[ROW][C]-0.00886703924558838[/C][/ROW]
[ROW][C]0.0715047232097936[/C][/ROW]
[ROW][C]0.11333554437354[/C][/ROW]
[ROW][C]0.210272009355253[/C][/ROW]
[ROW][C]0.0323557747327357[/C][/ROW]
[ROW][C]-0.229980378186074[/C][/ROW]
[ROW][C]0.157369726021876[/C][/ROW]
[ROW][C]0.0392291851898274[/C][/ROW]
[ROW][C]-0.322685640012703[/C][/ROW]
[ROW][C]-0.123141919967685[/C][/ROW]
[ROW][C]0.0381452067874487[/C][/ROW]
[ROW][C]-0.200045229977178[/C][/ROW]
[ROW][C]0.219718623701983[/C][/ROW]
[ROW][C]-0.0624409519202613[/C][/ROW]
[ROW][C]-0.00781165237991028[/C][/ROW]
[ROW][C]0.196890864904203[/C][/ROW]
[ROW][C]0.107307809889825[/C][/ROW]
[ROW][C]0.0288402350213428[/C][/ROW]
[ROW][C]-0.0786969747638096[/C][/ROW]
[ROW][C]-0.271061053929431[/C][/ROW]
[ROW][C]0.102472669008602[/C][/ROW]
[ROW][C]-0.167002228929117[/C][/ROW]
[ROW][C]-0.10873883762271[/C][/ROW]
[ROW][C]-0.0829799428489676[/C][/ROW]
[ROW][C]-0.0432926524703082[/C][/ROW]
[ROW][C]0.012505979629739[/C][/ROW]
[ROW][C]-0.0137649865194359[/C][/ROW]
[ROW][C]0.132978045549742[/C][/ROW]
[ROW][C]0.127618403696903[/C][/ROW]
[ROW][C]0.185845565065881[/C][/ROW]
[ROW][C]0.0589246762627225[/C][/ROW]
[ROW][C]-0.0137472348818575[/C][/ROW]
[ROW][C]-0.117950020313327[/C][/ROW]
[ROW][C]-0.00913082960735954[/C][/ROW]
[ROW][C]-0.101408481802991[/C][/ROW]
[ROW][C]0.0916453636639538[/C][/ROW]
[ROW][C]-0.128082410883506[/C][/ROW]
[ROW][C]-0.084463287043933[/C][/ROW]
[ROW][C]0.164745137711852[/C][/ROW]
[ROW][C]0.0591099871326985[/C][/ROW]
[ROW][C]-0.0667965723037369[/C][/ROW]
[ROW][C]-0.000660593253494213[/C][/ROW]
[ROW][C]-0.070429378570644[/C][/ROW]
[ROW][C]-0.0908162159432333[/C][/ROW]
[ROW][C]-0.17849402979385[/C][/ROW]
[ROW][C]0.0798293704957764[/C][/ROW]
[ROW][C]-0.0868594683199753[/C][/ROW]
[ROW][C]-0.297214180251675[/C][/ROW]
[ROW][C]0.0501366663273641[/C][/ROW]
[ROW][C]-0.166445294056459[/C][/ROW]
[ROW][C]0.0278798779219676[/C][/ROW]
[ROW][C]0.0870978396466047[/C][/ROW]
[ROW][C]0.351594307633979[/C][/ROW]
[ROW][C]-0.0126116715745663[/C][/ROW]
[ROW][C]-0.0947190257240962[/C][/ROW]
[ROW][C]0.0157911323797766[/C][/ROW]
[ROW][C]-0.0747796725362084[/C][/ROW]
[ROW][C]-0.20222566602077[/C][/ROW]
[ROW][C]-0.0795294479530995[/C][/ROW]
[ROW][C]0.161468228531879[/C][/ROW]
[ROW][C]0.0673677636572592[/C][/ROW]
[ROW][C]0.0775560395517312[/C][/ROW]
[ROW][C]-0.000556399176516287[/C][/ROW]
[ROW][C]0.0336757523580387[/C][/ROW]
[ROW][C]0.0490134688703918[/C][/ROW]
[ROW][C]0.237759157191746[/C][/ROW]
[ROW][C]-0.0265354128319384[/C][/ROW]
[ROW][C]-0.00643395512136991[/C][/ROW]
[ROW][C]0.0662378951537974[/C][/ROW]
[ROW][C]0.10118208601669[/C][/ROW]
[ROW][C]-0.0252282827746217[/C][/ROW]
[ROW][C]-0.0100182540850824[/C][/ROW]
[ROW][C]-0.0701443059556297[/C][/ROW]
[ROW][C]-0.0129291526591082[/C][/ROW]
[ROW][C]0.129981644128467[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302870&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302870&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
0.0106432488925607
-0.0539047939337511
0.144125842773776
0.156229729961541
0.247775778997097
-0.00373583021183675
0.0498609932537174
0.156696629626966
0.12803851975175
0.263810716356181
-0.027095583745812
0.143335225793384
-0.00126131376312384
-0.224891514148574
0.083506850725742
-0.199309835181384
-0.00993026978947659
0.0854230618964205
-0.000352640770343408
-0.0844682688778482
0.141052239390061
0.0565907242595623
0.100961469935774
-0.0939130100043686
-0.101295965153709
-0.261808153180921
0.363079515135108
-0.0440658493205629
0.128067976588838
-0.169943453567843
-0.230260749599826
0.0448827626714519
-0.0792886182636293
0.0689164791680849
0.271754371763239
-0.234608260924226
0.1735690076504
0.0805788201491258
-0.337308829209707
0.0224965877333077
0.0606519950698352
-0.00886703924558838
0.0715047232097936
0.11333554437354
0.210272009355253
0.0323557747327357
-0.229980378186074
0.157369726021876
0.0392291851898274
-0.322685640012703
-0.123141919967685
0.0381452067874487
-0.200045229977178
0.219718623701983
-0.0624409519202613
-0.00781165237991028
0.196890864904203
0.107307809889825
0.0288402350213428
-0.0786969747638096
-0.271061053929431
0.102472669008602
-0.167002228929117
-0.10873883762271
-0.0829799428489676
-0.0432926524703082
0.012505979629739
-0.0137649865194359
0.132978045549742
0.127618403696903
0.185845565065881
0.0589246762627225
-0.0137472348818575
-0.117950020313327
-0.00913082960735954
-0.101408481802991
0.0916453636639538
-0.128082410883506
-0.084463287043933
0.164745137711852
0.0591099871326985
-0.0667965723037369
-0.000660593253494213
-0.070429378570644
-0.0908162159432333
-0.17849402979385
0.0798293704957764
-0.0868594683199753
-0.297214180251675
0.0501366663273641
-0.166445294056459
0.0278798779219676
0.0870978396466047
0.351594307633979
-0.0126116715745663
-0.0947190257240962
0.0157911323797766
-0.0747796725362084
-0.20222566602077
-0.0795294479530995
0.161468228531879
0.0673677636572592
0.0775560395517312
-0.000556399176516287
0.0336757523580387
0.0490134688703918
0.237759157191746
-0.0265354128319384
-0.00643395512136991
0.0662378951537974
0.10118208601669
-0.0252282827746217
-0.0100182540850824
-0.0701443059556297
-0.0129291526591082
0.129981644128467



Parameters (Session):
par2 = grey ; par3 = FALSE ; par4 = 5-point Likert ;
Parameters (R input):
par1 = FALSE ; par2 = 0.0 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = 1 ; par7 = 1 ; par8 = 1 ; par9 = 1 ;
R code (references can be found in the software module):
par9 <- '0'
par8 <- '1'
par7 <- '1'
par6 <- '1'
par5 <- '12'
par4 <- '1'
par3 <- '1'
par2 <- '0.0'
par1 <- 'FALSE'
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')