Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationWed, 21 Dec 2016 21:48:24 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482353371entxvmlgcbwu6k2.htm/, Retrieved Fri, 01 Nov 2024 03:30:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302500, Retrieved Fri, 01 Nov 2024 03:30:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact106
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [ARIMA Backward Se...] [2016-12-21 20:48:24] [e7c866b75ad2fc21ab540ba3a0a42299] [Current]
Feedback Forum

Post a new message
Dataseries X:
5396.86
4963.38
5445.73
5038.03
5412.13
4965.15
5706.96
5176.7
5426.78
5083.14
5852.19
5144.63
5454.9
4958.98
5538.78
5044.74
5252.57
4945.69
6064.6
5335.02
5830.26
5391.33
6111.81
5472.44
5869.92
5423.01
6173.75
5592.14
5896.64
5505.83
6383.46
5761.51
5960.74
5772.04
6743.55
5878.49
6385.87
5900.06
7065.42
6147.75
6487.65
6119.33
7087.73
6422.35
6573.97
6301.82
7366.24
6444.26
6619.34
6528.77
7530.53




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302500&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302500&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302500&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sma1
Estimates ( 1 )-1.3586-0.5962-0.06081-0.2971-0.0213
(p-val)(0 )(0.0289 )(0.7461 )(0 )(0.7064 )(0.9795 )
Estimates ( 2 )-1.3592-0.5956-0.06021-0.31660
(p-val)(0 )(0.0283 )(0.7465 )(0 )(0.0812 )(NA )
Estimates ( 3 )-1.3315-0.525401-0.30710
(p-val)(0 )(0.0011 )(NA )(0 )(0.0886 )(NA )
Estimates ( 4 )-1.3632-0.54420100
(p-val)(0 )(4e-04 )(NA )(0 )(NA )(NA )
Estimates ( 5 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sma1 \tabularnewline
Estimates ( 1 ) & -1.3586 & -0.5962 & -0.0608 & 1 & -0.2971 & -0.0213 \tabularnewline
(p-val) & (0 ) & (0.0289 ) & (0.7461 ) & (0 ) & (0.7064 ) & (0.9795 ) \tabularnewline
Estimates ( 2 ) & -1.3592 & -0.5956 & -0.0602 & 1 & -0.3166 & 0 \tabularnewline
(p-val) & (0 ) & (0.0283 ) & (0.7465 ) & (0 ) & (0.0812 ) & (NA ) \tabularnewline
Estimates ( 3 ) & -1.3315 & -0.5254 & 0 & 1 & -0.3071 & 0 \tabularnewline
(p-val) & (0 ) & (0.0011 ) & (NA ) & (0 ) & (0.0886 ) & (NA ) \tabularnewline
Estimates ( 4 ) & -1.3632 & -0.5442 & 0 & 1 & 0 & 0 \tabularnewline
(p-val) & (0 ) & (4e-04 ) & (NA ) & (0 ) & (NA ) & (NA ) \tabularnewline
Estimates ( 5 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 6 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302500&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-1.3586[/C][C]-0.5962[/C][C]-0.0608[/C][C]1[/C][C]-0.2971[/C][C]-0.0213[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0.0289 )[/C][C](0.7461 )[/C][C](0 )[/C][C](0.7064 )[/C][C](0.9795 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]-1.3592[/C][C]-0.5956[/C][C]-0.0602[/C][C]1[/C][C]-0.3166[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0.0283 )[/C][C](0.7465 )[/C][C](0 )[/C][C](0.0812 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]-1.3315[/C][C]-0.5254[/C][C]0[/C][C]1[/C][C]-0.3071[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](0.0011 )[/C][C](NA )[/C][C](0 )[/C][C](0.0886 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]-1.3632[/C][C]-0.5442[/C][C]0[/C][C]1[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](0 )[/C][C](4e-04 )[/C][C](NA )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302500&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302500&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sma1
Estimates ( 1 )-1.3586-0.5962-0.06081-0.2971-0.0213
(p-val)(0 )(0.0289 )(0.7461 )(0 )(0.7064 )(0.9795 )
Estimates ( 2 )-1.3592-0.5956-0.06021-0.31660
(p-val)(0 )(0.0283 )(0.7465 )(0 )(0.0812 )(NA )
Estimates ( 3 )-1.3315-0.525401-0.30710
(p-val)(0 )(0.0011 )(NA )(0 )(0.0886 )(NA )
Estimates ( 4 )-1.3632-0.54420100
(p-val)(0 )(4e-04 )(NA )(0 )(NA )(NA )
Estimates ( 5 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 6 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 7 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-0.0299523586416037
-0.00918954598702328
0.0112381074775823
-0.0077276134815008
-0.0314093738643171
0.00645151434972
0.0687631079200891
0.00110013291180466
0.0298457419468721
-0.00232781925436027
-0.00822347719399973
-0.000623165044187085
0.0268900127578315
0.010235151518005
0.034771127964888
-0.00416722523688293
0.00600785541704237
-0.0072888370028758
-0.0271674544146265
-0.00563061179844473
-0.0329641356042739
0.0261124608338815
0.0331631365805214
0.00240365757002648
-0.000924931930666883
0.0160495427183054
0.0547903824488427
-0.0173672652714845
-0.00430976690507512
-0.00391727115178044
-0.00180952882919262
-0.00656479697101856
-0.0146223722146146
-0.0117669531793813
0.0120971245169269
-0.00141982195494522
-0.051003118053291
0.0431914307308642
-0.0048055608871641

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-0.0299523586416037 \tabularnewline
-0.00918954598702328 \tabularnewline
0.0112381074775823 \tabularnewline
-0.0077276134815008 \tabularnewline
-0.0314093738643171 \tabularnewline
0.00645151434972 \tabularnewline
0.0687631079200891 \tabularnewline
0.00110013291180466 \tabularnewline
0.0298457419468721 \tabularnewline
-0.00232781925436027 \tabularnewline
-0.00822347719399973 \tabularnewline
-0.000623165044187085 \tabularnewline
0.0268900127578315 \tabularnewline
0.010235151518005 \tabularnewline
0.034771127964888 \tabularnewline
-0.00416722523688293 \tabularnewline
0.00600785541704237 \tabularnewline
-0.0072888370028758 \tabularnewline
-0.0271674544146265 \tabularnewline
-0.00563061179844473 \tabularnewline
-0.0329641356042739 \tabularnewline
0.0261124608338815 \tabularnewline
0.0331631365805214 \tabularnewline
0.00240365757002648 \tabularnewline
-0.000924931930666883 \tabularnewline
0.0160495427183054 \tabularnewline
0.0547903824488427 \tabularnewline
-0.0173672652714845 \tabularnewline
-0.00430976690507512 \tabularnewline
-0.00391727115178044 \tabularnewline
-0.00180952882919262 \tabularnewline
-0.00656479697101856 \tabularnewline
-0.0146223722146146 \tabularnewline
-0.0117669531793813 \tabularnewline
0.0120971245169269 \tabularnewline
-0.00141982195494522 \tabularnewline
-0.051003118053291 \tabularnewline
0.0431914307308642 \tabularnewline
-0.0048055608871641 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302500&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-0.0299523586416037[/C][/ROW]
[ROW][C]-0.00918954598702328[/C][/ROW]
[ROW][C]0.0112381074775823[/C][/ROW]
[ROW][C]-0.0077276134815008[/C][/ROW]
[ROW][C]-0.0314093738643171[/C][/ROW]
[ROW][C]0.00645151434972[/C][/ROW]
[ROW][C]0.0687631079200891[/C][/ROW]
[ROW][C]0.00110013291180466[/C][/ROW]
[ROW][C]0.0298457419468721[/C][/ROW]
[ROW][C]-0.00232781925436027[/C][/ROW]
[ROW][C]-0.00822347719399973[/C][/ROW]
[ROW][C]-0.000623165044187085[/C][/ROW]
[ROW][C]0.0268900127578315[/C][/ROW]
[ROW][C]0.010235151518005[/C][/ROW]
[ROW][C]0.034771127964888[/C][/ROW]
[ROW][C]-0.00416722523688293[/C][/ROW]
[ROW][C]0.00600785541704237[/C][/ROW]
[ROW][C]-0.0072888370028758[/C][/ROW]
[ROW][C]-0.0271674544146265[/C][/ROW]
[ROW][C]-0.00563061179844473[/C][/ROW]
[ROW][C]-0.0329641356042739[/C][/ROW]
[ROW][C]0.0261124608338815[/C][/ROW]
[ROW][C]0.0331631365805214[/C][/ROW]
[ROW][C]0.00240365757002648[/C][/ROW]
[ROW][C]-0.000924931930666883[/C][/ROW]
[ROW][C]0.0160495427183054[/C][/ROW]
[ROW][C]0.0547903824488427[/C][/ROW]
[ROW][C]-0.0173672652714845[/C][/ROW]
[ROW][C]-0.00430976690507512[/C][/ROW]
[ROW][C]-0.00391727115178044[/C][/ROW]
[ROW][C]-0.00180952882919262[/C][/ROW]
[ROW][C]-0.00656479697101856[/C][/ROW]
[ROW][C]-0.0146223722146146[/C][/ROW]
[ROW][C]-0.0117669531793813[/C][/ROW]
[ROW][C]0.0120971245169269[/C][/ROW]
[ROW][C]-0.00141982195494522[/C][/ROW]
[ROW][C]-0.051003118053291[/C][/ROW]
[ROW][C]0.0431914307308642[/C][/ROW]
[ROW][C]-0.0048055608871641[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302500&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302500&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-0.0299523586416037
-0.00918954598702328
0.0112381074775823
-0.0077276134815008
-0.0314093738643171
0.00645151434972
0.0687631079200891
0.00110013291180466
0.0298457419468721
-0.00232781925436027
-0.00822347719399973
-0.000623165044187085
0.0268900127578315
0.010235151518005
0.034771127964888
-0.00416722523688293
0.00600785541704237
-0.0072888370028758
-0.0271674544146265
-0.00563061179844473
-0.0329641356042739
0.0261124608338815
0.0331631365805214
0.00240365757002648
-0.000924931930666883
0.0160495427183054
0.0547903824488427
-0.0173672652714845
-0.00430976690507512
-0.00391727115178044
-0.00180952882919262
-0.00656479697101856
-0.0146223722146146
-0.0117669531793813
0.0120971245169269
-0.00141982195494522
-0.051003118053291
0.0431914307308642
-0.0048055608871641



Parameters (Session):
par1 = TRUE ;
Parameters (R input):
par1 = TRUE ; par2 = 0.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 1 ; par9 = 1 ;
R code (references can be found in the software module):
par9 <- '1'
par8 <- '2'
par7 <- '1'
par6 <- '3'
par5 <- '12'
par4 <- '1'
par3 <- '1'
par2 <- '0.0'
par1 <- 'TRUE'
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')