Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 21 Dec 2016 20:27:54 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t148234896910r8xnik1j1bm67.htm/, Retrieved Fri, 01 Nov 2024 03:44:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302474, Retrieved Fri, 01 Nov 2024 03:44:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact69
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [PAF ] [2016-12-21 19:27:54] [bb262dce3bb40077245e847c94886178] [Current]
Feedback Forum

Post a new message
Dataseries X:
3710
3480
4024
4154
4142
4122
4228
4122
3938
3976
3952
4072
3756
3378
4250
3888
4116
4216
4214
4320
4056
4104
3976
4258
3892
3628
4056
4022
4294
4282
4250
4418
3966
4184
4094
4074
3950
3700
4148
4192
4394
4216
4366
4512
3996
4292
4074
4228
4044
3634
4330
4282
4428
4346
4632
4634
4156
4512
4142
4442
4064
3818
4334
4404
4644
4542
4718
4568
4338
4544
4302
4506
4164
4096
4556
4472
4548
4710
4660
4702
4460
4524
4440
4566
4196
3996
4616
4312
4592
4684
4542
4810
4360
4540
4428
4606
4130
4034
4564
4286
4578
4530
4666
4852
4164
4494
4356
4338
4130
3840
4362
4296
4626
4490
4708
4686
4266
4528
4216
4488
4268
4052
4438
4354
4558
4494




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302474&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302474&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302474&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.4988075.59910
20.4472135.021e-06
30.3377353.79110.000116
40.1947762.18640.015319
50.2529752.83960.002634
6-0.054403-0.61070.271257
70.2393572.68680.004094
80.2103542.36120.009874
90.332913.73690.000141
100.3870624.34481.4e-05
110.4486075.03561e-06
120.8031649.01550
130.3890184.36671.3e-05
140.3684854.13623.2e-05
150.2172012.43810.00808
160.1083641.21640.113056
170.1622151.82090.035501
18-0.129172-1.44990.074779
190.1457541.63610.052158
200.1233341.38440.084339
210.194992.18880.015229

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.498807 & 5.5991 & 0 \tabularnewline
2 & 0.447213 & 5.02 & 1e-06 \tabularnewline
3 & 0.337735 & 3.7911 & 0.000116 \tabularnewline
4 & 0.194776 & 2.1864 & 0.015319 \tabularnewline
5 & 0.252975 & 2.8396 & 0.002634 \tabularnewline
6 & -0.054403 & -0.6107 & 0.271257 \tabularnewline
7 & 0.239357 & 2.6868 & 0.004094 \tabularnewline
8 & 0.210354 & 2.3612 & 0.009874 \tabularnewline
9 & 0.33291 & 3.7369 & 0.000141 \tabularnewline
10 & 0.387062 & 4.3448 & 1.4e-05 \tabularnewline
11 & 0.448607 & 5.0356 & 1e-06 \tabularnewline
12 & 0.803164 & 9.0155 & 0 \tabularnewline
13 & 0.389018 & 4.3667 & 1.3e-05 \tabularnewline
14 & 0.368485 & 4.1362 & 3.2e-05 \tabularnewline
15 & 0.217201 & 2.4381 & 0.00808 \tabularnewline
16 & 0.108364 & 1.2164 & 0.113056 \tabularnewline
17 & 0.162215 & 1.8209 & 0.035501 \tabularnewline
18 & -0.129172 & -1.4499 & 0.074779 \tabularnewline
19 & 0.145754 & 1.6361 & 0.052158 \tabularnewline
20 & 0.123334 & 1.3844 & 0.084339 \tabularnewline
21 & 0.19499 & 2.1888 & 0.015229 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302474&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.498807[/C][C]5.5991[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.447213[/C][C]5.02[/C][C]1e-06[/C][/ROW]
[ROW][C]3[/C][C]0.337735[/C][C]3.7911[/C][C]0.000116[/C][/ROW]
[ROW][C]4[/C][C]0.194776[/C][C]2.1864[/C][C]0.015319[/C][/ROW]
[ROW][C]5[/C][C]0.252975[/C][C]2.8396[/C][C]0.002634[/C][/ROW]
[ROW][C]6[/C][C]-0.054403[/C][C]-0.6107[/C][C]0.271257[/C][/ROW]
[ROW][C]7[/C][C]0.239357[/C][C]2.6868[/C][C]0.004094[/C][/ROW]
[ROW][C]8[/C][C]0.210354[/C][C]2.3612[/C][C]0.009874[/C][/ROW]
[ROW][C]9[/C][C]0.33291[/C][C]3.7369[/C][C]0.000141[/C][/ROW]
[ROW][C]10[/C][C]0.387062[/C][C]4.3448[/C][C]1.4e-05[/C][/ROW]
[ROW][C]11[/C][C]0.448607[/C][C]5.0356[/C][C]1e-06[/C][/ROW]
[ROW][C]12[/C][C]0.803164[/C][C]9.0155[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.389018[/C][C]4.3667[/C][C]1.3e-05[/C][/ROW]
[ROW][C]14[/C][C]0.368485[/C][C]4.1362[/C][C]3.2e-05[/C][/ROW]
[ROW][C]15[/C][C]0.217201[/C][C]2.4381[/C][C]0.00808[/C][/ROW]
[ROW][C]16[/C][C]0.108364[/C][C]1.2164[/C][C]0.113056[/C][/ROW]
[ROW][C]17[/C][C]0.162215[/C][C]1.8209[/C][C]0.035501[/C][/ROW]
[ROW][C]18[/C][C]-0.129172[/C][C]-1.4499[/C][C]0.074779[/C][/ROW]
[ROW][C]19[/C][C]0.145754[/C][C]1.6361[/C][C]0.052158[/C][/ROW]
[ROW][C]20[/C][C]0.123334[/C][C]1.3844[/C][C]0.084339[/C][/ROW]
[ROW][C]21[/C][C]0.19499[/C][C]2.1888[/C][C]0.015229[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302474&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302474&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.4988075.59910
20.4472135.021e-06
30.3377353.79110.000116
40.1947762.18640.015319
50.2529752.83960.002634
6-0.054403-0.61070.271257
70.2393572.68680.004094
80.2103542.36120.009874
90.332913.73690.000141
100.3870624.34481.4e-05
110.4486075.03561e-06
120.8031649.01550
130.3890184.36671.3e-05
140.3684854.13623.2e-05
150.2172012.43810.00808
160.1083641.21640.113056
170.1622151.82090.035501
18-0.129172-1.44990.074779
190.1457541.63610.052158
200.1233341.38440.084339
210.194992.18880.015229







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.4988075.59910
20.264122.96470.001812
30.0598680.6720.251401
4-0.089053-0.99960.159705
50.142041.59440.056677
6-0.329714-3.7010.00016
70.4344134.87632e-06
80.0546490.61340.270348
90.3093323.47220.000354
10-0.052006-0.58380.280212
110.4966225.57460
120.4464895.01181e-06
13-0.29033-3.25890.000719
14-0.178235-2.00070.023788
15-0.083378-0.93590.175554
16-0.123168-1.38260.084622
17-0.012472-0.140.444442
18-0.115148-1.29250.099269
19-0.042281-0.47460.317947
20-0.110153-1.23650.109292
21-0.160332-1.79970.037149

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.498807 & 5.5991 & 0 \tabularnewline
2 & 0.26412 & 2.9647 & 0.001812 \tabularnewline
3 & 0.059868 & 0.672 & 0.251401 \tabularnewline
4 & -0.089053 & -0.9996 & 0.159705 \tabularnewline
5 & 0.14204 & 1.5944 & 0.056677 \tabularnewline
6 & -0.329714 & -3.701 & 0.00016 \tabularnewline
7 & 0.434413 & 4.8763 & 2e-06 \tabularnewline
8 & 0.054649 & 0.6134 & 0.270348 \tabularnewline
9 & 0.309332 & 3.4722 & 0.000354 \tabularnewline
10 & -0.052006 & -0.5838 & 0.280212 \tabularnewline
11 & 0.496622 & 5.5746 & 0 \tabularnewline
12 & 0.446489 & 5.0118 & 1e-06 \tabularnewline
13 & -0.29033 & -3.2589 & 0.000719 \tabularnewline
14 & -0.178235 & -2.0007 & 0.023788 \tabularnewline
15 & -0.083378 & -0.9359 & 0.175554 \tabularnewline
16 & -0.123168 & -1.3826 & 0.084622 \tabularnewline
17 & -0.012472 & -0.14 & 0.444442 \tabularnewline
18 & -0.115148 & -1.2925 & 0.099269 \tabularnewline
19 & -0.042281 & -0.4746 & 0.317947 \tabularnewline
20 & -0.110153 & -1.2365 & 0.109292 \tabularnewline
21 & -0.160332 & -1.7997 & 0.037149 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302474&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.498807[/C][C]5.5991[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.26412[/C][C]2.9647[/C][C]0.001812[/C][/ROW]
[ROW][C]3[/C][C]0.059868[/C][C]0.672[/C][C]0.251401[/C][/ROW]
[ROW][C]4[/C][C]-0.089053[/C][C]-0.9996[/C][C]0.159705[/C][/ROW]
[ROW][C]5[/C][C]0.14204[/C][C]1.5944[/C][C]0.056677[/C][/ROW]
[ROW][C]6[/C][C]-0.329714[/C][C]-3.701[/C][C]0.00016[/C][/ROW]
[ROW][C]7[/C][C]0.434413[/C][C]4.8763[/C][C]2e-06[/C][/ROW]
[ROW][C]8[/C][C]0.054649[/C][C]0.6134[/C][C]0.270348[/C][/ROW]
[ROW][C]9[/C][C]0.309332[/C][C]3.4722[/C][C]0.000354[/C][/ROW]
[ROW][C]10[/C][C]-0.052006[/C][C]-0.5838[/C][C]0.280212[/C][/ROW]
[ROW][C]11[/C][C]0.496622[/C][C]5.5746[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]0.446489[/C][C]5.0118[/C][C]1e-06[/C][/ROW]
[ROW][C]13[/C][C]-0.29033[/C][C]-3.2589[/C][C]0.000719[/C][/ROW]
[ROW][C]14[/C][C]-0.178235[/C][C]-2.0007[/C][C]0.023788[/C][/ROW]
[ROW][C]15[/C][C]-0.083378[/C][C]-0.9359[/C][C]0.175554[/C][/ROW]
[ROW][C]16[/C][C]-0.123168[/C][C]-1.3826[/C][C]0.084622[/C][/ROW]
[ROW][C]17[/C][C]-0.012472[/C][C]-0.14[/C][C]0.444442[/C][/ROW]
[ROW][C]18[/C][C]-0.115148[/C][C]-1.2925[/C][C]0.099269[/C][/ROW]
[ROW][C]19[/C][C]-0.042281[/C][C]-0.4746[/C][C]0.317947[/C][/ROW]
[ROW][C]20[/C][C]-0.110153[/C][C]-1.2365[/C][C]0.109292[/C][/ROW]
[ROW][C]21[/C][C]-0.160332[/C][C]-1.7997[/C][C]0.037149[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302474&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302474&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.4988075.59910
20.264122.96470.001812
30.0598680.6720.251401
4-0.089053-0.99960.159705
50.142041.59440.056677
6-0.329714-3.7010.00016
70.4344134.87632e-06
80.0546490.61340.270348
90.3093323.47220.000354
10-0.052006-0.58380.280212
110.4966225.57460
120.4464895.01181e-06
13-0.29033-3.25890.000719
14-0.178235-2.00070.023788
15-0.083378-0.93590.175554
16-0.123168-1.38260.084622
17-0.012472-0.140.444442
18-0.115148-1.29250.099269
19-0.042281-0.47460.317947
20-0.110153-1.23650.109292
21-0.160332-1.79970.037149



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')