Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 21 Dec 2016 17:08:47 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/21/t1482336607i3px2igty34597f.htm/, Retrieved Fri, 01 Nov 2024 03:33:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=302409, Retrieved Fri, 01 Nov 2024 03:33:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact92
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-21 16:08:47] [2802fcbee976b89d2ab84425d3d65dcf] [Current]
Feedback Forum

Post a new message
Dataseries X:
2312
1089
2742
3145
2966
2055
2450
2742
1697
2409
2233
2100
3434
1867
2365
3578
2845
2778
2056
2757
3325
3671
2147
3225
3556
4661
3344
5375
3907
3356
2184
3510
2834
3271
2834
2408
3261
1526
2938
2352
3915
3145
1566
2746
3572
2651
2805
3354
2523
1480
3278
5081
3332
2789
4111
2508
1833
2371
4268
2194
2935
3347
3034
5448
3427
3036
4196
3009
3369
4168
3403
1779
2761
2582
3153
3011
3419
4042
4379
4602
3249
4372
4328
3695
3614
2114
2839
2490
2610
2372
2833
4018
2734
3027
3862
3281
2746
2538
1805
2500
2601
3178
4193
2606
2491
4090
2786
2280
2403
2934
1601
1946
2554
2006
2830
3173
1960
3052
2151
2493
2752
2542
2027
1940
1877




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302409&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=302409&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302409&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.410852-4.57516e-06
2-0.169911-1.89210.030408
30.1459421.62510.053336
40.0296140.32980.371064
5-0.093891-1.04550.148906
6-0.033914-0.37770.353166
70.0891040.99220.161511
8-0.044051-0.49050.312312
9-0.036929-0.41120.340811
10-0.044054-0.49060.312301
11-0.002796-0.03110.487606
120.124541.38680.083992
130.0192470.21430.415322
14-0.120079-1.33710.091812
150.1146961.27720.101959
16-0.015085-0.1680.433435
17-0.126567-1.40940.080612
180.124511.38650.084043
190.0091120.10150.459672
20-0.044453-0.4950.310736

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.410852 & -4.5751 & 6e-06 \tabularnewline
2 & -0.169911 & -1.8921 & 0.030408 \tabularnewline
3 & 0.145942 & 1.6251 & 0.053336 \tabularnewline
4 & 0.029614 & 0.3298 & 0.371064 \tabularnewline
5 & -0.093891 & -1.0455 & 0.148906 \tabularnewline
6 & -0.033914 & -0.3777 & 0.353166 \tabularnewline
7 & 0.089104 & 0.9922 & 0.161511 \tabularnewline
8 & -0.044051 & -0.4905 & 0.312312 \tabularnewline
9 & -0.036929 & -0.4112 & 0.340811 \tabularnewline
10 & -0.044054 & -0.4906 & 0.312301 \tabularnewline
11 & -0.002796 & -0.0311 & 0.487606 \tabularnewline
12 & 0.12454 & 1.3868 & 0.083992 \tabularnewline
13 & 0.019247 & 0.2143 & 0.415322 \tabularnewline
14 & -0.120079 & -1.3371 & 0.091812 \tabularnewline
15 & 0.114696 & 1.2772 & 0.101959 \tabularnewline
16 & -0.015085 & -0.168 & 0.433435 \tabularnewline
17 & -0.126567 & -1.4094 & 0.080612 \tabularnewline
18 & 0.12451 & 1.3865 & 0.084043 \tabularnewline
19 & 0.009112 & 0.1015 & 0.459672 \tabularnewline
20 & -0.044453 & -0.495 & 0.310736 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302409&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.410852[/C][C]-4.5751[/C][C]6e-06[/C][/ROW]
[ROW][C]2[/C][C]-0.169911[/C][C]-1.8921[/C][C]0.030408[/C][/ROW]
[ROW][C]3[/C][C]0.145942[/C][C]1.6251[/C][C]0.053336[/C][/ROW]
[ROW][C]4[/C][C]0.029614[/C][C]0.3298[/C][C]0.371064[/C][/ROW]
[ROW][C]5[/C][C]-0.093891[/C][C]-1.0455[/C][C]0.148906[/C][/ROW]
[ROW][C]6[/C][C]-0.033914[/C][C]-0.3777[/C][C]0.353166[/C][/ROW]
[ROW][C]7[/C][C]0.089104[/C][C]0.9922[/C][C]0.161511[/C][/ROW]
[ROW][C]8[/C][C]-0.044051[/C][C]-0.4905[/C][C]0.312312[/C][/ROW]
[ROW][C]9[/C][C]-0.036929[/C][C]-0.4112[/C][C]0.340811[/C][/ROW]
[ROW][C]10[/C][C]-0.044054[/C][C]-0.4906[/C][C]0.312301[/C][/ROW]
[ROW][C]11[/C][C]-0.002796[/C][C]-0.0311[/C][C]0.487606[/C][/ROW]
[ROW][C]12[/C][C]0.12454[/C][C]1.3868[/C][C]0.083992[/C][/ROW]
[ROW][C]13[/C][C]0.019247[/C][C]0.2143[/C][C]0.415322[/C][/ROW]
[ROW][C]14[/C][C]-0.120079[/C][C]-1.3371[/C][C]0.091812[/C][/ROW]
[ROW][C]15[/C][C]0.114696[/C][C]1.2772[/C][C]0.101959[/C][/ROW]
[ROW][C]16[/C][C]-0.015085[/C][C]-0.168[/C][C]0.433435[/C][/ROW]
[ROW][C]17[/C][C]-0.126567[/C][C]-1.4094[/C][C]0.080612[/C][/ROW]
[ROW][C]18[/C][C]0.12451[/C][C]1.3865[/C][C]0.084043[/C][/ROW]
[ROW][C]19[/C][C]0.009112[/C][C]0.1015[/C][C]0.459672[/C][/ROW]
[ROW][C]20[/C][C]-0.044453[/C][C]-0.495[/C][C]0.310736[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302409&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302409&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.410852-4.57516e-06
2-0.169911-1.89210.030408
30.1459421.62510.053336
40.0296140.32980.371064
5-0.093891-1.04550.148906
6-0.033914-0.37770.353166
70.0891040.99220.161511
8-0.044051-0.49050.312312
9-0.036929-0.41120.340811
10-0.044054-0.49060.312301
11-0.002796-0.03110.487606
120.124541.38680.083992
130.0192470.21430.415322
14-0.120079-1.33710.091812
150.1146961.27720.101959
16-0.015085-0.1680.433435
17-0.126567-1.40940.080612
180.124511.38650.084043
190.0091120.10150.459672
20-0.044453-0.4950.310736







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.410852-4.57516e-06
2-0.407496-4.53777e-06
3-0.172731-1.92350.028358
4-0.048916-0.54470.293468
5-0.076911-0.85640.196703
6-0.138581-1.54320.062669
7-0.058254-0.64870.258868
8-0.075406-0.83970.201351
9-0.085448-0.95150.171599
10-0.193314-2.15270.016641
11-0.256517-2.85650.002512
12-0.084181-0.93740.175189
130.0697270.77640.219483
14-0.021024-0.23410.407639
150.0673410.74990.227374
160.0206710.23020.409166
17-0.115848-1.290.09972
180.0054080.06020.47604
190.0099540.11080.45596
200.0358960.39970.345024

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.410852 & -4.5751 & 6e-06 \tabularnewline
2 & -0.407496 & -4.5377 & 7e-06 \tabularnewline
3 & -0.172731 & -1.9235 & 0.028358 \tabularnewline
4 & -0.048916 & -0.5447 & 0.293468 \tabularnewline
5 & -0.076911 & -0.8564 & 0.196703 \tabularnewline
6 & -0.138581 & -1.5432 & 0.062669 \tabularnewline
7 & -0.058254 & -0.6487 & 0.258868 \tabularnewline
8 & -0.075406 & -0.8397 & 0.201351 \tabularnewline
9 & -0.085448 & -0.9515 & 0.171599 \tabularnewline
10 & -0.193314 & -2.1527 & 0.016641 \tabularnewline
11 & -0.256517 & -2.8565 & 0.002512 \tabularnewline
12 & -0.084181 & -0.9374 & 0.175189 \tabularnewline
13 & 0.069727 & 0.7764 & 0.219483 \tabularnewline
14 & -0.021024 & -0.2341 & 0.407639 \tabularnewline
15 & 0.067341 & 0.7499 & 0.227374 \tabularnewline
16 & 0.020671 & 0.2302 & 0.409166 \tabularnewline
17 & -0.115848 & -1.29 & 0.09972 \tabularnewline
18 & 0.005408 & 0.0602 & 0.47604 \tabularnewline
19 & 0.009954 & 0.1108 & 0.45596 \tabularnewline
20 & 0.035896 & 0.3997 & 0.345024 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=302409&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.410852[/C][C]-4.5751[/C][C]6e-06[/C][/ROW]
[ROW][C]2[/C][C]-0.407496[/C][C]-4.5377[/C][C]7e-06[/C][/ROW]
[ROW][C]3[/C][C]-0.172731[/C][C]-1.9235[/C][C]0.028358[/C][/ROW]
[ROW][C]4[/C][C]-0.048916[/C][C]-0.5447[/C][C]0.293468[/C][/ROW]
[ROW][C]5[/C][C]-0.076911[/C][C]-0.8564[/C][C]0.196703[/C][/ROW]
[ROW][C]6[/C][C]-0.138581[/C][C]-1.5432[/C][C]0.062669[/C][/ROW]
[ROW][C]7[/C][C]-0.058254[/C][C]-0.6487[/C][C]0.258868[/C][/ROW]
[ROW][C]8[/C][C]-0.075406[/C][C]-0.8397[/C][C]0.201351[/C][/ROW]
[ROW][C]9[/C][C]-0.085448[/C][C]-0.9515[/C][C]0.171599[/C][/ROW]
[ROW][C]10[/C][C]-0.193314[/C][C]-2.1527[/C][C]0.016641[/C][/ROW]
[ROW][C]11[/C][C]-0.256517[/C][C]-2.8565[/C][C]0.002512[/C][/ROW]
[ROW][C]12[/C][C]-0.084181[/C][C]-0.9374[/C][C]0.175189[/C][/ROW]
[ROW][C]13[/C][C]0.069727[/C][C]0.7764[/C][C]0.219483[/C][/ROW]
[ROW][C]14[/C][C]-0.021024[/C][C]-0.2341[/C][C]0.407639[/C][/ROW]
[ROW][C]15[/C][C]0.067341[/C][C]0.7499[/C][C]0.227374[/C][/ROW]
[ROW][C]16[/C][C]0.020671[/C][C]0.2302[/C][C]0.409166[/C][/ROW]
[ROW][C]17[/C][C]-0.115848[/C][C]-1.29[/C][C]0.09972[/C][/ROW]
[ROW][C]18[/C][C]0.005408[/C][C]0.0602[/C][C]0.47604[/C][/ROW]
[ROW][C]19[/C][C]0.009954[/C][C]0.1108[/C][C]0.45596[/C][/ROW]
[ROW][C]20[/C][C]0.035896[/C][C]0.3997[/C][C]0.345024[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=302409&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=302409&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.410852-4.57516e-06
2-0.407496-4.53777e-06
3-0.172731-1.92350.028358
4-0.048916-0.54470.293468
5-0.076911-0.85640.196703
6-0.138581-1.54320.062669
7-0.058254-0.64870.258868
8-0.075406-0.83970.201351
9-0.085448-0.95150.171599
10-0.193314-2.15270.016641
11-0.256517-2.85650.002512
12-0.084181-0.93740.175189
130.0697270.77640.219483
14-0.021024-0.23410.407639
150.0673410.74990.227374
160.0206710.23020.409166
17-0.115848-1.290.09972
180.0054080.06020.47604
190.0099540.11080.45596
200.0358960.39970.345024



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')